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This document presents basic definitions associated with the theory of schemes. A scheme is an algebraic and geo-
metric construct whose definition is motivated by the concept of an algebraic variety in classical algebraic geometry.
All of the classical geometry of varieties can be restated in the language of schemes. Doing this simplifies the
proofs of many classical results. Further, scheme theory enables new algebraic geometry that is not possible with
the classical methods. Therefore, schemes have replaced varieties as the fundamental objects of study in the field of
algebraic geometry.

This paper assumes that you are familiar with the material covered in my papers Definitions for Commutative Alge-

bra and Definitions for Classical Algebraic Geometry. Throughout this document, when we say “ring” we shall
mean “commutative ring.”1

One of the hallmarks of the scheme-theoretic approach to algebraic geometry is a deep connection to category the-
ory. In this paper, I hav e tried to minimize the dependence on the technical details of category theory. You should
know the definition of a category, which is given in § 2 of my paper Definitions for Category Theory. Up to § 7 of
this paper you don’t need to know more than that; the connections to category theory are discussed in footnotes, with
citations pointing out where you can learn more. Section 7 requires knowledge of some technical concepts from cat-
egory theory. If those concepts are unfamiliar, you can read the material cited there, or you can skip that section.

1. Affine Varieties

We begin by restating the definition of an affine variety in a way that will naturally lead to the definition of an affine
scheme (§ 4). As in Definitions for Classical Algebraic Geometry, let K be an algebraically closed field, let n be a
natural number greater than zero, and let An be the n-dimensional affine space over K . A point a of An is an n-tuple
of coordinates: a = (a1, . . . , an) = {ai}. Let K [z] denote the polynomial ring K [z1, . . . , zn], and let p(z) denote a
polynomial p(z1, . . . , zn) in K [z].

Recall that an affine variety V ⊆ An is the zero set V (F) of a family of polynomials F = {pα } in K [z]. That is, V is
the set of points a in An such that pα (a) = 0 for all pα in F . The recipe for computing pα (a) is the usual one, i.e.,
plug in the coordinate ai for each variable zi and collect terms. Note that this recipe relies on the representation of
the point a in terms of its coordinates {ai}. We wish to restate the definition of V in a way that does not rely on this
representation.

First, recall that there is a one-to-one correspondence between the points of An and the maximal ideals of the ring
K [z]; this correspondence associates to each point a = {ai} in An the maximal ideal generated by the polynomials
{zi − ai}. This ideal, which we denote ma, contains exactly the polynomials in K [z] that vanish at a. See Defini-

tions for Classical Algebraic Geometry, § 7.1. Thus we can move from considering points a in An to considering
maximal ideals m of K [z], and this representation is coordinate-free.

Next, observe that for any maximal ideal m of K [z], the residue field K [z]/m of K [z] modulo m is isomorphic to K .
See Definitions for Commutative Algebra § 6. Further, if p is a polynomial in K [z] and a is a point of An, then we
can write

p(z) = q(z) + p(a),

where q(z) = p(z) − p(a). Since q(a) = 0, q is an element of ma. Therefore the coset containing p(z) in K [z]/ma is
ma + p(a), which corresponds to the element p(a) of K . Thus we have a recipe for evaluating polynomials in K [z]

1 Some authors say “commutative ring with identity.” Here we use the definition given in § 6 of Definitions for Commutative Algebra, which

states that the nonzero elements of a ring R form a multiplicative monoid, so R has a multiplicative identity unless it is the zero ring. This defini-

tion is standard.



Definitions for Scheme Theory Page 2

without referring to coordinates: for any polynomial p and any maximal ideal m, let p(m) be the element of K cor-
responding to the coset of K [z]/m of which p is a representative.

Now we hav e a coordinate-free way to define an affine variety. Fix a family F = {pα } of polynomials in K [z].
Define the affine variety V (F) to be the set of all maximal ideals m of K [z] such that pα (m) = 0 for all pα in F .

We can use the same method to define the Zariski topology on An. Recall that the closed sets in the Zariski topology
are the affine varieties V ⊆ An. See Definitions for Classical Algebraic Geometry, § 5.1. Thus the closed sets are
exactly the sets V (F), where F is a family of polynomials in K [z].

Note the following:

1. For each α , pα corresponds to the zero coset of K [z]/m if and only if pα is a member of m, considered as a
set of polynomials.

2. Therefore V (F) is the set of maximal ideals m of K [z] such that pα is a member of m for all α .

Thus to formulate the concept of an algebraic variety, we don’t need to evaluate pα (m) at all; we can just ask
whether pα is a member of m. This move from the question “Does p evaluate to zero at a point?” to the question
“Is p a member of a particular ideal?” is fundamental to scheme theory.

If we do think about evaluating functions p at points m, then we just have to accept the weirdness that the functions
we evaluate are members of the points where we evaluate them. This is not how functions and points normally work
in mathematics. One way to think about this is as follows: we represent a point m as a set of functions, i.e., all and
only the functions p that evaluate to zero at m.

2. Sheaves

In this section we define the concept of a sheaf, which is a fundamental construction in scheme theory. A sheaf is a
topological space T together with a specification, for each open set U of T , of some local data associated with U .
The local data must satisfy several compatibility conditions on the areas of overlap between the open sets of T .

As with many ideas in modern mathematics, the concept of a sheaf is very abstract and general but is motivated by
examples that occur in practice. One can think of a sheaf as a “pattern” that appears in various applications in differ-
ential geometry, algebraic geometry, etc.

2.1. The Sheaf of Regular Functions on an Affine Variety

We begin with an example from classical algebraic geometry: the sheaf of regular functions on an affine variety.

Definition: Let V ⊆ An be an affine variety, and let U ⊆ V be an open subset of V in the Zariski topology on V

(§ 1). Let f :U → K be a function, and let a be a point of U . Recall that f is regular at a if there exist a set
W ⊆ U open in U containing a and polynomials p and q in K [z] such that, for all b in W , (a) q(b) ≠ 0 and (b)
f (b) = p(b)/q(b). Recall that f is regular on U if it is regular at every point a in U . See Definitions for Classical

Algebraic Geometry, § 7.1.

For each open set U in V , let O(U) denote the set of regular functions on U . O(U) is a ring, under the standard rules
for adding and multiplying polynomial fractions. See Definitions for Classical Algebraic Geometry, § 7.1.

Let U and W be open subsets of V , with U ⊆ W . Define the restriction map OW ,U : O(W ) → O(U) as follows:

OW ,U ( f ) = f |U .

That is, the image of f under OW ,U is f restricted to U .

Together, the rings O(U) and the maps OW ,U are called the sheaf of regular functions on V . We will denote this
sheaf O.

Properties: Let O denote the set of open subsets of V . Observe that O has the following properties:

S1. For any set U in O, OU ,U is the identity map.

S2. For any sets U ⊆ W ⊆ X in O, we hav e OW ,U OX ,W = OX ,U .

S3. Let U be set in O, and let S be a set of sets in O such that ∪S = U . For each set X in S, fix an element fX in
O(X). Suppose that for each pair (X , Y ) of sets in S we have

OX ,X ∩ Y ( fX ) = OY ,X ∩ Y ( fY ).
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Then there is a unique element f in O(U) such that OU ,X ( f ) = fX for all X in S.

As to property S3, for any a in U , we can set f (a) to be fX (a), for any X in S that contains a; the conditions ensure
that (a) some such X exists and (b) the definition of f is independent of the choice of X .

The stalk of the sheaf at a point: Let a be a point of V . Let S be the set of all pairs (U , f ), where U is open in V ,
U contains a, and f :U → K is a regular function. Construct a ring G from S by identifying pairs of elements that
satisfy the following equivalence relation: (U , f ) ∼ (W , g) if there exists an open set X ⊆ U ∩ W such that a ∈ X ,
and f and g agree on X . Recall that the elements of G are called regular function germs, because they character-
ize the local behavior of a class of functions, each of which is defined in a neighborhood of a.

In the terminology of sheaf theory, the ring G is called the stalk of the sheaf O at the point a and written Oa. The
elements of Oa are called the germs of the stalk.

Recall that if V is irreducible, then G is exactly the local ring of V at a, which we also denoted Oa(V ). See Defini-

tions for Classical Algebraic Geometry, § 7.1.

The stalk as a direct limit: We may express the stalk Oa as a direct limit as follows. Let Oa ⊆ O be the set of all
open sets of V that contain a. Giv e Oa the following partial order: U ≤ W if W ⊆ U (note the reverse inclusion).
Then Oa is a directed set, i.e., a nonempty partially ordered set in which every pair of elements has an upper bound.
Further, the restriction maps OU ,W make the family {O(U)}U ∈ Oa

into a direct system of modules over Oa (remem-
ber that a ring R is an R-module). Comparing the definition of the stalk Oa to the definition of the direct limit, we
see that

Oa =
→

lim {O(U)}U ∈ Oa
.

See Definitions for Commutative Algebra, § 10.

2.2. General Sheaves

We now giv e the general definition of a sheaf. Let T = (S, O) be a topological space with underlying set S and open
sets O. Let C be the pair (M , µ), where (1) M is a set of sets, possibly with additional structure; and (2) µ is a set of
mappings between the elements of M that satisfy the usual rules for identity maps and composition of maps. For
example, M could be a collection of sets, and µ could be set mappings; M could be a collection of groups, rings, or
modules, and µ could be homomorphisms; etc.2

Presheaves: First we define the concept of a presheaf. A presheaf is similar to a sheaf, except that it may be missing
some local data. Presheaves are useful because they generalize sheaves, and because we can complete them to
sheaves in a canonical way (§ 2.4).

Let P be the set of all pairs of sets (X , Y ) in O × O such that Y ⊆ X . A presheaf F from T to C is a pair of maps:

1. A map F: O → M that assigns, to each open set U in O, an object F(U) in M .

2. A map F: P → µ that assigns, to each pair (X , Y ) in P, a map F(X , Y ): F(X) → F(Y ).

We write FX ,Y to denote F(X , Y ).

The maps must satisfy properties S1 and S2 stated in the previous section, but not necessarily property S3. The ele-
ments of F(U) are called the sections of F over U , and the elements of F(S) are called global sections. The maps
FX ,Y are called restriction maps.3

Recall that in the sheaf of regular functions on an affine variety (§ 2.1), the sections are functions, and each restric-
tion map is an actual restriction, in the sense of restricting a function to a subset of its domain. For a general sheaf,
these statements need not be true.

Let F and G be presheaves from T to C. We say that G extends F if (1) F(U) ⊆ G(U) for each U ∈ O; and (2)
F(X , Y ) ⊆ G(X , Y ) (treating the maps as sets of ordered pairs) for each (X , Y ) ∈ P.

When C consists of sets and set mappings, we say that F is a presheaf of sets. When C consists of modules and
module homomorphisms, we say that F is a presheaf of modules. Similarly, we define a presheaf of groups or a
presheaf of rings.

2 In other words, C is a concrete category. See §§ 2 and 6 of my paper Definitions for Category Theory.
3 Let B be the category whose objects are the elements of O and whose arrows are the set inclusion maps. A presheaf F from T to C is a con-

travariant functor F from B to C. See Definitions for Category Theory, § 6.
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Sheaves: A sheaf F from T to C is a presheaf F from T to C that satisfies property S3 stated in the previous section.
This property is called the sheaf axiom. The sheaf axiom ensures that if we have two sections f1 defined on U1 and
f2 defined on U2, and f1 and f2 are defined consistently on the overlap between U1 and U2, then there is a section f

on U1 ∪ U2 that restricts to fi on each Ui . In the case where the sections are maps, one can imagine “gluing” or
“pasting” the function graphs on the smaller domains to construct a function graph on the larger domain. The sheaf
axiom ensures that this gluing or pasting operation always yields a section of the sheaf.

For example:

1. Let F∞ denote the sheaf of sets of infinitely differentiable real-valued functions on the open sets of R, with the
restriction maps FU ,W = f → f |W . It is easy to see that F is a presheaf, and that it satisfies the sheaf axiom.

2. Now let U = (−2, 2), and let f ∈ F(U) be the function x → 1. Let P be the presheaf given by deleting f from
F(U). P does not satisfy the sheaf axiom and so is not a sheaf. Indeed, let X = (−2, 1), let Y = (0, 2), let
fX ∈ G(X) = x → 1 on X , and let fY ∈ G(Y ) = y → 1 on Y . Then fX and fY agree on the intersection
X ∩ Y = (0, 1), but there is no function f defined on U that restricts to fX on X and restricts to fY on Y ,
because that function is f , which we deleted.

We define a sheaf of groups, rings, or modules similarly to a presheaf of groups, rings, or modules.

The stalk of a sheaf at a point: Let F be a sheaf from T = (S, O) to C, let a be a point of S, and let Oa ⊆ O be the
set of open sets U such that a ∈ U . The stalk of F at a, written Fa, is the set of all pairs (U , f ) where U is a mem-
ber of Oa, and f is a member of F(U), under the following equivalence relation: (U , f ) ∼ (W , g) if there exists a set
X in Oa such that X ⊆ U ∩ W , and FU ,X ( f ) = FW ,X (g). When the sets F(U) are modules, the stalk Fa is the direct
limit

Fa =
→

lim {F(U)}U ∈ Oa

as discussed in the previous section.

We write [U , f ]a to denote the equivalence class of the pair (U , f ) in the stalk Fa.

For example, let F = F∞, and let a be a point of R. Let f and g be two infinitely differentiable functions with
domains U and V that contain a. Then (U , f ) ∼ (V , g) in the stalk Fa if and only if f and g have the same Taylor
series expansion at a.4 Therefore we may think of the stalk Fa as follows:

1. Fa is the set of all Taylor series expansions t at a of infinitely differentiable functions whose domains of defi-
nition include a.

2. An element t ∈ Fa is represented by any infinitely differentiable function f whose domain U includes a and
whose Taylor series expansion at a is t. In this case we have [U , f ]a = t.

2.3. Morphisms of Sheaves

Let C = (M , µ), and let D = (M ′, µ′). Let F be a presheaf from T = (S, O) to C, and let G be a presheaf from T to D.
A morphism φ : F → G is a family of maps {φU : F(U) → G(U)}U ∈ O, one for each set in O, such that for every
inclusion U ⊆ W of sets in O, the diagram shown in Figure 1 commutes.5 Since every sheaf is a presheaf, the same
definition applies if F or G or both are sheaves.

F(W ) G(W )

F(U) G(U)

FW ,U

φU

φW

GW ,U

Figure 1: The commutative diagram for a morphism φ : F → G of presheaves or sheaves.

Note that if F and G are presheaves of modules (or rings, or groups), then the maps φU are module (or ring, or

4 For a discussion of Taylor series expansions, see § 9 of my paper The General Derivative.
5 In other words, φ is a natural transformation from the functor F to the functor G. See Definitions for Category Theory, § 7.
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group) homomorphisms. If there exists a morphism ψ : G → F such that ψU φU = φU ψU = id for all U , then we
say that φ is an isomorphism.

For each point a in S, the morphism φ induces a map φ a: Fa → Ga between the stalks.

Injective and surjective morphisms: Assume that F and G are sheaves.

1. φ is an isomorphism if and only if each of the maps φ a is an isomorphism (proof omitted).

2. If each map φ a is injective, then we say that φ is injective; and similarly if each map φ a is surjective or bijec-
tive. We claim the following (proofs omitted):

a. φ is injective if and only if each map φU is injective.

b. If the maps φU are surjective, then φ is surjective.

Note that the converse of item 2(b) is not true.

Now assume only that F and G are presheaves.

1. We say that φ is injective if each map φU is injective.

2. We define the concept of a surjective morphism φ : F → G in the next section, after we define the concept of
sheafification.

Subsheaves: Let F and G be sheaves on T , and let φ : F → G be an injective morphism. In this case we say that F is
a subsheaf of G.

2.4. Sheafification

In this section we describe a process called sheafification for extending a presheaf to a sheaf.

The presheaf of stalk maps: Let P be a presheaf from T = (S, O) to C, and let D be the disjoint union
a ∈ S
∪+ Pa of the

stalks Pa at the points a of S. That is,

D = {(a, x): a ∈ S, x ∈ Pa}.

For each open set U in O, make the following constructions:

1. For each p in P(U), define f p:U → D to be the map a → (a, [U , p]a). For example, if P = F∞, then
f p(a) = (a, t p,a), where t p,a represents the Taylor series expansion of p at a.

2. Let Q(U) be the set of mappings { f p}p ∈ P(U).

We claim the following (proofs omitted):

1. The sets Q(U), together with the restriction maps QU ,W = f → f |W , form a presheaf of sets on T . We call Q

the presheaf of stalk maps corresponding to the presheaf P.

2. For each open set U in O, let φU : P(U) → Q(U) be the map p → f p. The family of maps φ = {φU } is an iso-
morphism of presheaves. We call φ the morphism to the presheaf of stalk maps.

This construction lets us represent any presheaf P as a presheaf Q in which the sections are maps. In the case
P = F∞, the map φ takes each function p to a map f p that records, for each point a in the domain of p, the Taylor
series expansion of p at a.

Sheafification: We can extend the presheaf of stalk maps to a sheaf by adding sections to it, as follows. Let P, Q, D,
and U be as in the discussion above, and let f :U → D be a mapping such that for each a in U , f (a) is an element of
{a} × Pa. Let X = {(Ui , pi)} be a family of pairs such that

1. The Ui are open sets of O, and ∪Ui = U .

2. For each i, pi is an element of P(Ui).

We say that f is locally induced by the family X if, for each i, and for each point a in Ui , f (a) = (a, [Ui , pi]a).
Note that each mapping f p ∈ Q(U) as defined above is locally induced by the single pair (U , p).

Let F(U) be the set of all mappings f :U → D such that f is locally induced by a family of pairs X . Note that
F(U) ⊇ Q(U). The sets F(U), together with the restriction maps FU ,W = f → f |W , form a sheaf from T to C that
extends Q (§ 2.2) (proof omitted). We call F the sheafification of the presheaf P.

For example, let P be the presheaf given by deleting the function g(x) = 1 with domain U = (−2, 2) from F∞. Then
F(U) includes the function fg(x) = (x, t(g, x)), even though g is missing from P. This is because fg is locally
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induced (for example) by the pairs (X , g|X ) and (Y , g|Y ), where X = (−2, 1) and Y = (0, 2).

The universal property of sheafification: Let T = (S, O) be a topological space, let P be a presheaf from T to C,
and let F be the sheafification of T . Let φ : P → F be defined as for the morphism to the presheaf of stalk maps.

1. F and φ have the following universal property: for any presheaf Q from T to C and any morphism ψ : P → Q,
there exists a unique morphism ψ ′: F → Q such that ψ = ψ ′ φ (proof omitted).

2. It follows easily from item 1 that if P is a sheaf, then P is isomorphic to its sheafification F.

3. For each a ∈ S, the induced map φ a: Pa → Fa is an isomorphism. Further, giv en P, F and φ are the unique
sheaf and presheaf morphism with this property (proof omitted).

Surjective morphisms of presheaves: Let T be a topological space, let F and G be presheaves from T to C, and let
φ : F → G be a morphism. Construct the presheaf P from T to C as follows:

1. P(U) = φU (F(U)) ⊆ G(U).

2. PX ,Y is GX ,Y restricted to P(U).

Let H be the sheafification of P, and let ψ : H → G be the morphism induced by the inclusion morphism from P to G

and by the universal property of sheafification.

1. We say that φ is surjective if ψU (H(U)) = G(U) for all U .

2. If F and G are sheaves, then this definition agrees with the definition given in § 2.3 for a surjective morphism
of sheaves (proof omitted).

2.5. Constructions on Sheaves

In this section we describe several useful constructions on presheaves and sheaves. We will use these constructions
in later sections.

The quotient of a sheaf by a sheaf: Fix a topological space T = (S, O). Let R be a ring, let F and G be sheaves of
R-modules on T , and suppose there exists an injective morphism φ : F → G.

1. The quotient presheaf of G by F is the presheaf P given by the following rules:

a. For each open set U in O, P(U) = G(U)/F(U).

b. For each pair of open sets X and Y in O with Y ⊆ X , PX ,Y is the map that takes the equivalence class
[x] in G(X)/F(X) to the equivalence class [GX ,Y (x)] in G(Y )/F(Y ).

2. The quotient sheaf of G by F, written G/F, is the sheafification of P.

The pushforward of a presheaf: Let T1 = (S1, O1) and T2 = (S2, O2) be topological spaces, and let φ : T1 → T2 be a
continuous map. Suppose that P is a presheaf from T1 to C = (M , µ). The pushforward or direct image of P by φ ,
written φ*P, is the presheaf from T2 to C given by the following rules:

1. For each open set U in O2, (φ*P)(U) = P(φ−1(U)).

2. For each pair of open sets X and Y in O2 with Y ⊆ X , (φ*P)X ,Y = Pφ−1(X),φ−1(Y ).

The pushforward of a sheaf is a sheaf (proof omitted).

The restriction of a presheaf: Let P be a presheaf from T = (S, O) to C = (M , µ). Let U ⊆ S be an open set.

1. We write T |U to denote the topological space (U , O′), where O′ is induced by O via the subset topology.

2. We write P|U to denote the presheaf from T |U to C obtained by restricting the maps of P to the domains pro-
vided by T |U .

We call P|U the restriction of the presheaf P to the open set U . If P is a sheaf, then P|U is also a sheaf (proof omit-
ted). If φ : P → P′ is a morphism of presheaves, then we write φ |P to denote the induced map from P|U to P′.
B-sheaves: Let T = (S, O) be a topological space. Recall that a subset B ⊆ O is called a base or basis for T if each
open set in O may be expressed as a union of sets in B. We also say that the sets in B are basic open sets of T .

Let B be a base for T . Let C = (M , µ) be as in the definition of a sheaf. A B-sheaf from T to C is like a sheaf from
T to C, but it is defined on the sets B. Formally, we define a B-sheaf F in the same way as a sheaf F, with the fol-
lowing amendments:
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1. We replace O with B ev erywhere in the definition.

2. We rewrite the sheaf axiom S3 as follows:

S3. Let U be set in B, and let S be a set of sets in B such that ∪S = U . For each set X in S, fix an element
fX in F(X). Suppose that for each pair (X , Y ) of sets in S, and for each set W ∈ B such that
W ⊆ X ∩ Y , we hav e

FX ,W ( fX ) = FY ,W ( fY ).

Then there is a unique element f in F(U) such that FU ,X ( f ) = fX for all X in S.

Notice that we cannot simply replace O with B in axiom S3, because F is defined on the sets B; it is not in
general defined on the sets X ∩ Y .

Let F be a B-sheaf on T . Then there is a unique sheaf G on T such that G and F agree on the basic open sets of T .
See [Eisenbud and Harris 1999], Proposition I-12. Therefore we may specify a sheaf by specifying a B-sheaf.

3. Ringed Spaces

In scheme theory we are primarily concerned with a special kind of topological space equipped with a sheaf, called a
ringed space. A ringed space is a pair (T , O), where T is a topological space, and O is a sheaf of commutative rings
on T (§ 2.2). An affine variety together with its sheaf of regular functions (§ 2.1) is a ringed space. In later sections
we shall see that schemes are also ringed spaces.

In the rest of this section, let T = (S, O) be a topological space, and let S = (T , O) be a ringed space.

Restrictions of ringed spaces: Let U be an open set in O. We define the restriction of S to U , written S|U , to be
the pair (T |U , O|U ). The restriction S|U is a ringed space (proof omitted).

Locally ringed spaces: S is called a locally ringed space if each of the stalks {Oa}a ∈ S is a local ring.

Local homomorphisms of local rings: Let A be a local ring with maximal ideal mA, and let B be a local ring with
maximal ideal mB. Let φ : A → B be a homomorphism of rings. if φ (mA) = mB, then we say that φ is a local homo-

morphism.

Morphisms of ringed spaces: Let S = (T , O) and S′ = (T ′, O′) be ringed spaces. A morphism from S to S′ is a pair
Φ = (φ ,ψ ) such that the following conditions hold:

1. We require that φ is a continuous map from T = (S, O) to T ′ = (S′, O′).
2. We require that ψ is a morphism of sheaves from O′ to φ*O. See § 2.3 for the definition of a morphism of

sheaves and § 2.5 for the definition of φ*O. Note that both O′ and φ*O are sheaves of rings on T ′, so the defi-
nition of a morphism of sheaves giv en in § 2.3 applies.

3. For each element a in S, the map ψ induces a map ψ a: O′φ (a) → Oa.6 If S and S′ are locally ringed spaces, then
we require that each map ψ a be a local homomorphism.

If φ is a homeomorphism and ψ is an isomorphism, then we say that Φ is an isomorphism.

4. Affine Schemes

In this section we define the concept of an affine scheme, which is the analog in scheme theory of an affine variety.
Recall that, in classical algebraic geometry, for each affine variety V over an algebraically closed field K , we define
the coordinate ring K [V ]. This is the ring K [z]/I (V ), where I (V ) is the ideal of polynomials in K [z] that vanish on
V . See Definitions for Classical Algebraic Geometry, § 7.1. In scheme theory, we go in the other direction: we start
with a commutative ring R, and we define a ringed space called the spectrum of R, or Spec R.7 The relationship
between R and Spec R is analogous to the relationship between K [V ] and the ringed space formed by V together
with its sheaf of regular functions (§ 2.1). Then we use Spec R to define the concept of an affine scheme.

This approach admits a larger class of “coordinate rings” than in classical algebraic geometry. For example, the
“coordinate ring” doesn’t hav e to be a K -algebra for an algebraically closed field K , and it doesn’t hav e to be finitely

6 Fix an open set U ⊆ S′ containing φ (a) .  Then a is an element of φ−1(U). Now fix an element y in O′(U) and consider the element

x = [y,U]φ (a) of O′φ (a). Then ψU is a map from O′(U) to (φ*O)(U) = O(φ−1(U)). Therefore we may set ψ a(x) = [ψU (y), φ−1(U)]a.
7 This notation agrees with [Eisenbud and Harris 1999]. [Hartshorne 1977] writes Spec R to denote the topological space of the ringed space,

without the sheaf.
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generated. Also, there needn’t be any coordinates, because we are not constrained to work in affine space An.

In the rest of this section, R denotes a commutative ring. We proceed as follows:

• In § 4.1, we define the topological space associated with Spec R.

• In § 4.2, we define the sheaf of regular functions of Spec R.

• In § 4.3, we define Spec R.

• In § 4.4, we give the definition of an affine scheme.

4.1. The Topological Space of Spec R

In this section we define the topological space T = (S, O) associated with Spec R.

The set S: In § 1, we observed that the points a of An correspond to the maximal ideals ma of K [z]. More gener-
ally, for any affine variety V ⊆ An, the points a of V correspond to the maximal ideals ma of the coordinate ring
K [V ]. Thus, in classical algebraic geometry, for a given coordinate ring R, the points in the Zariski topology are the
maximal ideals of R.

In scheme theory, we adopt this point of view, and we generalize it. We define the points of S of Spec R to be the
prime ideals of R. Because every maximal ideal is prime, this definition gives us all the points of classical algebraic
geometry, plus some extra points. For example:

1. When R is the polynomial ring K [z], S consists of the points of An (i.e., the maximal ideals ma) plus the irre-
ducible affine varieties V ⊆ An.

2. When R is the coordinate ring K [V ] of the affine variety V ⊆ An, S consists of the points of V plus the irre-
ducible affine subvarieties of V .

The open sets O: We define O analogously to the Zariski topology on An, and again we call T the Zariski topology.
We make the following constructions:

1. For any prime ideal p of R, let Kp denote the quotient field of the integral domain R/p.

2. For any r ∈ R, and any prime ideal p of R, let r(p) denote the element of Kp represented by r. In particular,
when r(p) = 0, we say that r vanishes at p.

Note that these constructions generalize the ones we made in § 1, with R = K [z]. There we said that, for p ∈ R and
m a maximal ideal of R, p(m) is the element of the field R/m represented by p.8

Next we define sets V (F) as in § 1. Fix a family F = {rα } of elements of R. Define V (F) to be the zero set of F ,
i.e., the set of all prime ideals p of R such that rα (p) = 0 for all rα in F . Note that rα (p) = 0 if and only if rα is a
member of the ideal p, considered as a set of elements of R. Therefore V (F) is the set of all prime ideals p such that
F ⊆ p. Note also that we use the same notation V (F) as in § 1, but in the context of Spec R we don’t call V (F) a
variety.

Now we define the Zariski topology exactly as in § 1: the open sets O are the complements of the closed sets, and
the closed sets are the sets V (F), where F is a family of elements of R. Setting F = {0} shows that R is closed, so
∅ is open. Setting F = {r}r ∈ R shows that ∅ is closed, so R is open.9 Otherwise, the proof that this definition gives
a topology is the same one given in § 5.1 of Definitions for Classical Algebraic Geometry.

Let p be a point of S, i.e., a prime ideal of R. We assert the following (proofs omitted):

1. The closure of the set {p} consists of all prime ideals q ⊆ R such that p ⊆ q. In particular, the set {p} is
closed if and only if p is a maximal ideal. When {p} is closed, we say that p is a closed point.

2. Assume that R is the coordinate ring K [V ] of an affine variety V over an algebraically closed field K . Then

a. The points of V correspond to the closed points of S (i.e., the maximal ideals).

b. Giv en a prime ideal p ⊆ R, the closed points contained in the closure of {p} are exactly the points in the
subvariety of V cut out by p.

8 Here is a motivation for using prime ideals as the points of schemes. By the observation we made in § 1, we can represent a point p as the set

of all functions p such that p(p) = 0. If pq ∈ p, then pq(p) = p(p)q(p) = 0. Since p and q take their values in a field, and fields are integral

domains, we must have p(p) = 0 or q(p) = 0, i.e., p ∈ p or q ∈ p. So prime ideals are the maximally general points in this sense.
9 Recall that a prime ideal p must be a proper subset of R. See Definitions for Commutative Algebra, § 6. Therefore there is no prime ideal p

such that r(p) = 0 for all r in R.
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Distinguished open sets: Let T = (S, O) be the topological space associated with Spec R, and let r be an element of
R. We write Sr to denote the open set R − V (r), where V (r) is a shorthand for V ({r}). Note that V (r) is closed, so
its complement in R is open. Note also that Sr consists of exactly the prime ideals p of R such that r ∉ p. We call
Sr the distinguished open set associated with r. This definition is analogous to the definition of a distinguished
open set in An given in § 5 of Definitions for Classical Algebraic Geometry.

The distinguished open sets {Sr : r ∈ R} form a base for the Zariski topology T . The proof of this fact is the same as
the one given in § 5 of Definitions for Classical Algebraic Geometry.

The distinguished open sets Sr are closed under finite intersection (proof omitted).

4.2. The Sheaf of Regular Functions of Spec R

Now we define a sheaf of rings on T called the sheaf of regular functions of Spec R. This sheaf is also called the
structure sheaf of Spec R. It is denoted O or OSpec R.

By the discussion in § 2.2, it suffices to define a B-sheaf on the distinguished open sets Sr of O. To do this, we need
to do the following:

1. Define the set O(Sr ) for each r ∈ R.

2. Define the restriction map Or,s: Or → Os for each pair (Ss, Sr ) such that Ss ⊆ Sr .

3. Show that these definitions satisfy the sheaf axiom.

The sets O(Sr ): For any r ∈ R, let Xr denote the multiplicative monoid {1, r, r2, . . . }  consisting of all powers rn

with n ≥ 0. Let R[r−1] denote the ring of fractions X−1
r R. We may represent each element of this ring as p/rn, for

some p ∈ R and n ≥ 0. See Definitions for Commutative Algebra, § 14.

Let Pr be the set of prime ideals of R[r−1], and let φ : Sr → Pr be the map that takes a prime ideal p in Sr to the
prime ideal {p/x: p ∈ p, x ∈ X} in R[r−1]. Then φ is a bijection (proof omitted). Thus we may identify the ele-
ments of Sr with the prime ideals of R[r−1]. Accordingly, we make the following definition:

O(S) = R

O(Sr ) = O(S)[r−1] = R[r−1] for all r in R

Compare the observations in § 7.1 of Definitions for Classical Algebraic Geometry. There we said that the ring of
regular functions on the distinguished open set V − V (q) of an affine variety V is K [V ][q−1]. So the definitions
agree in this case.

The restriction maps Or,s: Suppose Ss ⊆ Sr . Then SC
r ⊆ SC

s , so for any prime ideal p of R, if r ∈ p, then s ∈ p.
Thus s is a member of the intersection of the prime ideals containing r, and this intersection equals the radical of the
principal ideal (r). See Definitions for Commutative Algebra, § 6. Therefore sn = pr for some n ≥ 0 and p ∈ R.

Now consider an element of R[r−1]. Any such element has a representation q/rm, with q ∈ R and m ≥ 0. Define

Or,s(q/rm) = qpm/smn where sn = pr

Then the right-hand side is an element of O(Ss) = R[s−1], as required. Further, plugging in sn = pr on the right-
hand side and simplifying terms yields q/rm.

The sheaf axiom: For the proof that this definition satisfies the sheaf axiom, see [Eisenbud and Harris 1999],
§ 1.1.4.

4.3. The Definition of Spec R

For any commutative ring R, we define Spec R to be the pair (T , O), where T = (S, O) is the topological space
defined in § 4.1, and O is the sheaf of regular functions on T defined in § 4.2. In § 5.1, we will see the way in which
the elements of the rings O(U) may be interpreted as functions.

Spec R is a locally ringed space (§ 3) (proof omitted).
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4.4. The Definition of an Affine Scheme

Now we can define an affine scheme. Let T = (S, O) be a topological space. An affine scheme is a locally ringed
space S = (T , O) (§ 3) that is isomorphic to the locally ringed space Spec O(S) (§ 4.3).

5. Schemes

We now hav e all the machinery we need to define general schemes.

5.1. The Definition of a Scheme

A scheme is a locally ringed space S = (T , O) such that S is locally affine. This means there is an open cover {Ui}
of S such that, for each Ui , the restriction S|Ui

of S to Ui (§ 3) is the affine scheme

Si = (Ti , Oi) = ((Si , Oi), Oi) = Spec Oi(Si)

(§ 4.4). We say that the affine schemes Si cover the scheme S. Compare the definition of a variety V in projective
space, which is covered by affine open sets Ui ∩ V . See Definitions for Classical Algebraic Geometry, § 6.2.

Let S = (T , O) = ((S, O), O) be a scheme.

1. The stalks {Oa: a ∈ S} are called the local rings of S.

2. For any a ∈ S, we denote by Ka the residue field of Oa, i.e., the ring Oa modulo its unique maximal ideal.
Let φ : Oa → Ka be the natural map, i.e., the map that takes each element of Oa to the equivalence class that it
represents in Ka. Let D be the disjoint union

a ∈ S
∪+ Ka, i.e., the set {(a, k): a ∈ S, k ∈ Ka}.

3. Let U be an open set of O. A regular function on U is an element p of O(U). We may associate with any
such element the function f p:U → D given by f p(a) = (a, φ ([U , p]a)). Note the similarity to the construction
that we used for the presheaf of stalk maps (§ 2.2).

4. A global regular function is a regular function on S.

5. S is irreducible if S cannot be expressed as the union of two closed sets, each properly contained in S (i.e.,
neither equal to S).

6. Let {Ui}i ∈ I be an open cover of S such that each S|Ui
is Spec Ri . If I is a finite set and each Ri is a Noether-

ian ring, then we say that S is Noetherian.

5.2. Open Subschemes

Let S = (T , O) = ((S, O), O) be a scheme. Let U ⊆ S be an open subset. The restriction S|U is a scheme (proof omit-
ted). We say that S|U is an open subscheme of S. There is one open subscheme S|U of S for each open set U ⊆ S.

Let S|U be an open subscheme of S. If S|U is an affine scheme, then we say that it is an affine open subscheme of S,
and we say that U is an affine open set in the topology T . By definition, S is covered by affine open subschemes
S|Ui

, and S is covered by affine open sets Ui (§ 5.1).

5.3. Sheaves of O-Modules

Let S = (T , O) = ((S, O), O) be a scheme, and let F be a sheaf of abelian groups on T such that the following facts
are true:

1. For each open set U ⊆ S, F(U) is an O(U)-module.

2. For each pair of open sets V ⊆ U ⊆ S, and for any a in O(U) and b in F(U), we have

FU ,V (ab) = OU ,V (a)FU ,V (b).

In this case we say that F is a sheaf of O-modules on S.

Quasicoherent sheaves of O-modules: We now define a concept called a quasicoherent sheaf of O-modules. We
will use this concept to define closed subschemes (§ 5.6).

Let S = ((S, O), O) be a scheme, and let F be a sheaf of O-modules on S.

1. Assume that S is the affine scheme Spec O(S). We say that F is quasicoherent if, for each distinguished open
set Sr ⊆ S, we hav e
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F(Sr ) =̃ F(S)[r−1].

Note that F(S) is an O(S)-module, so F(Sr ) is an O(S)[r−1]-module, as required. See Definitions for Commu-

tative Algebra, § 14. Note also that O itself is a quasicoherent sheaf of O-modules on S, because
O(Sr ) = O(S)[r−1]. See § 4.2.

2. Now let S be a general scheme. For every open set U ⊆ S, F|U is a sheaf of O-modules on the scheme S|U .
We say that F is quasicoherent if, for every affine open subscheme S|U of S, F|U is quasicoherent in the sense
of item 1.

Coherent sheaves of O-modules: Let S be a scheme, and let F be a sheaf of O-modules on S. We say that F is
coherent if it is quasicoherent and all the modules F(U) are finitely generated.

5.4. Sheaves of O-Algebras

Fix a ring A. Recall that an A-algebra is a ring B that is also an A-module, such that the map a → a ⋅ 1B is a ring
homomorphism. See Definitions for Commutative Algebra, § 9. Let F be a sheaf of O-modules on S (§ 5.3). If
each module F(U) is an O(U)-algebra, then we say that F is a sheaf of O-algebras on S. A sheaf of O-algebras is
quasicoherent if it is quasicoherent as a sheaf of O-modules; and similarly for coherent sheaves.

5.5. Sheaves of Ideals

In this section, let S = (T , O) = ((S, O), O) be a scheme.

Sheaves of ideals on S: Let I be a sheaf of O-modules on S (§ 5.3) such that, for every open set U ⊆ S,
I(U) ⊆ O(U). In this case I(U) is an ideal of O(U), and we say that I is a sheaf of ideals on S.

Sheaves of ideals in F: Fix a sheaf F of O-algebras on S. Let I be a sheaf of O-modules on S such that for every
open set U ⊆ S, I(U) ⊆ F(U). In this case I(U) is an ideal of F(U), and we say that I is a sheaf of ideals in F.
Note that a sheaf of ideals on S = (T , O) is a sheaf of ideals in O.

Quasicoherent sheaves of ideals: Let S be a scheme, and let I be a sheaf of ideals on S that is quasicoherent as a
sheaf of O-modules (§ 5.3). Then by the definition of a quasicoherent sheaf of modules, we have the following:

1. Assume that S is an affine scheme, and let I denote the ideal I(S) ⊆ O(S). For all distinguished open sets Sr

we have the O(Sr )[r−1]-module isomorphism

I(Sr ) =̃ I [r−1]

2. In general, property 1 holds for all affine open subschemes S|U .

Prime ideal sheaves: Let F be a quasicoherent sheaf of O-algebras on S (§ 5.4). Let I be a sheaf of ideals in F that
is quasicoherent as a sheaf of O-modules on S. Assume the following:

1. For each open set U in S, either (a) I(U) is a prime ideal of F(U) or (b) I(U) = F(U).

2. I ≠ F, i.e., for at least one open set U of S, I(U) ≠ F(U).

In this case we say that I is a prime ideal sheaf in F.

Proposition: Fix an affine scheme S = ((S, O), O) = Spec O(S). The points of S are in one-to-one correspondence

with the prime ideal sheaves in O.

Proof: Observe that O is a quasicoherent sheaf of O-algebras on S (§ 5.4). Let P be the set of prime ideal sheaves in
O. We must establish a bijection between P and S.

1. Because I is quasicoherent, it is determined by the ideal I = I(S) ⊆ O(S) (§ 5.5). If I = O(S), then
I(Sr ) = O(S)[r−1] = O(Sr ) for all distinguished open sets Sr in S, so I = O, and I is not a prime ideal sheaf.
Therefore I must be a prime ideal of O(S), i.e., a point of S. Each ideal corresponds to a different prime ideal
sheaf, so there is an injective map from P to S.

2. By the definition of a quasicoherent sheaf of ideals, each prime ideal I ⊆ O(S) determines a different prime
ideal sheaf in P. Thus there is an injective map from S to P.
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5.6. Closed Subschemes

Affine schemes: Fix a ring R, and let S = (T , O) = ((S, O), O) be the affine scheme Spec R, so that S is the set of
prime ideals of R. Let I ⊆ R be an ideal. Observe the following:

1. The closed set V (I ) is the set of all prime ideals p ⊆ R such that I ⊆ p (§ 4.1).

2. The prime ideals of R/I are exactly the prime ideals p ⊆ R such that I ⊆ p, taken modulo I .

Therefore we identify Spec R/I with V (I ) and call Spec R/I a closed subscheme of Spec R. There is one closed
subscheme R/I of Spec R for each ideal I ⊆ R. We say that I is the ideal of R associated to the closed subscheme
R/I .

General schemes: Let S = (T , O) = ((S, O), O) be a scheme, and let X be a closed subset of S, i.e., XC ∈ O. Let
T ′ = (X , O′) be a topological space, and let O′ be a sheaf of rings on T ′. We say that S′ = (T ′, O′) is a closed sub-

scheme of S if the following statements are true:

1. There exists a quasicoherent sheaf of ideals I on S (§ 5.5) such that for each affine subscheme S|U , X ∩ U is
the set of points of the closed subscheme of S|U associated to the ideal I(U) ⊆ O(U).

2. Let φ : X → S be the inclusion map. The pushforward φ*O′ is the quotient sheaf O/I, interpreting O and O′ as
sheaves of abelian groups.

Note the following (proofs omitted):

1. When S is an affine scheme Spec R, there are two definitions of a closed subscheme of S (with S as an affine
scheme and with S as a general scheme), and these definitions agree. Let I be an ideal of R, so that Spec R/I
is a closed subscheme of S. The quasicoherent sheaf of ideals in the general definition is I(U) = I O(U).

2. Each quasicoherent sheaf of ideals I on S induces one and only one closed subscheme SI of S. We say that I

is the quasicoherent sheaf of ideals associated to the closed subscheme SI.

Fix a topological space T = (S, O), a scheme S = (T , O), and a closed subscheme SI of S. Let V be an open subset
of O, and let f ∈ O(V ) be a regular function. We say that f vanishes on S′ if f is an element of I(V ).

5.7. Locally Closed Subschemes

Let S = (T , O) be a scheme, let U be an open subset of T , and let S|U be the corresponding open subscheme of S

(§ 5.2). A closed subscheme of S|U is called a locally closed subscheme of S.

Now let S be a scheme, and let S′ be a locally closed subscheme of S. The closure of S, written
__

S, is the smallest
closed subscheme of S containing S′. The following definition is equivalent (proof omitted):

1. Assume that S′ is a closed subscheme of the open subscheme S|U of S.

2. Let F be the sheaf of ideals on S defined as follows: F(W ) is the set of regular functions in O(W ) whose
restrictions to W vanish on U .

3. Then
___

S′ is the closed subscheme SF of S (§ 5.6).

5.8. Reduced Schemes

In this section we define the concept of a reduced scheme. Despite what the names suggest, this concept is unrelated
to the concept of an irreducible scheme (§ 5.1).

Affine schemes: Let R be a ring. Recall that an element r of R is nilpotent if there exists an integer n > 0 such that
rn = 0. Recall that the set of all nilpotent elements of R is an ideal, called the nilradical of R, and that it is the inter-
section of the prime ideals of R. See Definitions for Commutative Algebra, § 6. Let N denote the nilradical of R.

Now consider the affine scheme S = Spec R. We define the reduced scheme associated to S, denoted Sred, to be
Spec R/N , that is, the spectrum of R modulo its nilradical. Note the following:

1. Sred is a closed subscheme of S (§ 5.6).

2. Let S = (T , O) and Sred = (Tred, Ored). Then T = Tred as topological spaces (proof omitted).

3. (Sred)red = Sred.

We say that an affine scheme S is reduced if S = Sred. In particular, Sred is reduced.
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General schemes: Let S = (T , O) be a general scheme. We define the nilradical of S to be the sheaf of ideals N on
S such that, for each open set U of T , N (U) is the nilradical of O(U). N is a quasicoherent sheaf of ideals on S

(§ 5.5) (proof omitted).

Let Sred be the closed subscheme of S associated to N (§ 5.6). We say that Sred is the reduced scheme associated to

S. Again we have (Sred)red = Sred, and we say that S is reduced if S = Sred.

Let S be an affine scheme. Then the definition of Sred given for S as a general scheme agrees with the definition of
Sred given for S as an affine scheme (proof omitted).

5.9. The Local Ring at a Point

Let S = (T , O) = ((S, O), O) be a scheme. As noted in § 5.1, for each point a in S the stalk Oa is called the local

ring of S at a. In this section we state some geometric definitions associated with these local rings.

The maximal ideal: For each point a of S, let ma be the unique maximal ideal of the local ring Oa. ma is the set of
all elements [U , p]a such that U is an element of O, U contains a, p is an element of O(U), and p vanishes at a

(§ 4.1) (proof omitted).

The dimension: We define the dimension of S as follows:

1. The dimension of S at a, denoted dima S, is the Krull dimension of Oa, i.e., the supremum of the lengths of all
chains of prime ideals of Oa.

2. The dimension of S, denoted dim S, is the supremum of the dimensions dima S at the points a in S.

Notice that this definition generalizes the dimension of a variety, as defined in § 20 of Definitions for Classical Alge-

braic Geometry. There we said that for an irreducible variety V , (1) the local rings Oa all have the same dimension;
and (2) for each a in V , dim Oa = dim V . We also said that for a general variety V , the dimension is the maximum
of the dimensions of the (finitely many) irreducible components of V .

The Zariski tangent space: Let a be a point of S. We define the Zariski tangent space to S at a, denoted Ta,
exactly as in § 15.1 of Definitions for Classical Algebraic Geometry:

1. Let Fa be the field Oa/ma. The Zariski cotangent space to S at a is the Fa-vector space T *
a = ma/m2

a.

2. The Zariski tangent space Ta is the dual space T **
a , i.e., the space of linear maps λ : T *

a → Fa.

Singular and nonsingular points: Let a be a point of S.

1. If dim Ta = dima S, then we say that S is nonsingular or regular at a.

2. Otherwise dim Ta ≥ dima S, and we say that S is singular at a.

When S is Noetherian (§ 5.1), then by definition S is nonsingular at a point a if and only if Oa is a regular local ring.
See Definitions for Commutative Algebra, § 31.

5.10. Morphisms

In this section, let S = (T , O) and S′ = (T ′, O′) be schemes, with T = (S, O) and T ′ = (S′, O′).
General morphisms: Recall that S and S′ are locally ringed spaces that are locally affine (§ 5.1). A scheme mor-

phism or morphism from S to S′ is a morphism Φ = (φ ,ψ ) of the locally ringed spaces (§ 3). Each scheme mor-
phism satisfies the following condition (proof omitted):

Proposition: Let a be a point of S, and let U be an open neighborhood of φ (a) in S′. Let p be an element of

O′(U). Then p vanishes at φ (a) if and only if ψU ( p) vanishes at a.

Note that ψ = {ψU }U ∈ O′ is a morphism of sheaves from O′ to φ*O (§ 2.3). Therefore ψU is a ring homomorphism
from O(U) to φ*O(U) = O(φ−1(U)) (§ 2.5).

Morphisms to affine schemes: Let R′ be a ring, and assume that S′ is the affine scheme Spec R′. Let Φ: S → S′ be
a morphism, with Φ = (φ ,ψ ). Note the following:

1. ψ S′ is a ring homomorphism from O(S′) to φ*O(S′).
2. Because S′ = Spec R′, O(S′) = R′ (§ 4.2).

3. φ*O(S′) = O(φ−1(S′)) = O(S).



Definitions for Scheme Theory Page 14

Therefore ψ S′ is a ring homomorphism from R′ to O(S).

Let hom(S, Spec R′) denote the set of scheme morphisms from S to Spec R′. Let hom(R′, O(S)) denote the set of
ring homomorphisms from R′ to O(S). The following result establishes a one-to-one correspondence between these
sets (proof omitted):

Theorem. The map (φ ,ψ ) → ψ S′ is a bijection between hom(S, Spec R′) and hom(R′, O(S)).

In particular, when S is the affine scheme Spec R, we hav e the following:

Corollary. The sets hom(Spec R, Spec R′) and hom(R′, R) are in one-to-one correspondence.

Therefore the category of affine schemes is the category of commutative rings with arrows reversed.10 Here is the
corresponding statement from classical algebraic geometry:

Let V and W be affine varieties embedded in An(K ). Let φ : V → W denote any regular map, and let p denote any

element of the coordinate ring K [W ]. The map φ → ( p → p φ ) establishes a bijection between the regular

maps φ : V → W and the ring homomorphisms ψ : K [W ] → K [V ].

Restrictions of morphisms: Let S and S′ be schemes, let Φ = (φ ,ψ ): S → S′ be a morphism, and let SU be an open
subscheme of S (§ 5.2). We define the restriction of Φ to SU , written Φ|SU

or ΦU , as follows:

Φ|SU
= (φ |U ,ψ |U ).

6. Constructions on Schemes

We now describe several useful constructions on schemes.

6.1. The Gluing Construction

In this section we describe a construction called the gluing construction for assembling larger schemes from fami-
lies of smaller schemes.

Gluing sheaves: First we describe a construction for gluing sheaves. Let T = (S, O) be a topological space, and let
{Ui}i ∈ I be an open cover of S. For each i, let Ti = (Ui , Oi) be the topological space induced on Ui by the subset
topology, and assume there is a sheaf Fi from Ti to C = (M , µ).

Under certain conditions we can combine or “glue” the sheaves Fi into a single sheaf F from T to C. For each
(i, j) ∈ I × I , let Uij denote the set Ui ∩ U j . (Note that Uij = U ji .) For each triple (i, j, k) define the following
sheaves:

• Fij = Fi |Uij
.

• Fijk = Fij |Uk
= Fi |Uij ∩ Uik

.

The conditions are as follows:

G1. For each Fij there is a sheaf isomorphism φ ij : Fij → F ji , such that φ ii is the identity map.

G2. For each Fijk we have φ jk (φ ij |Fijk
) = φ ik |Fijk

Under these conditions, there is a unique sheaf F from T to C with the following properties (proof omitted):

1. For each i there is a sheaf isomorphism ψ i: F|Ui
→ Fi .

2. For each φ ij we have φ ij = ψ j (ψ −1
i |Fij

).

Gluing schemes (special case): We can use the gluing construction on sheaves to glue together affine schemes
whose topological spaces are embedded in a common space. Again let T = (S, O) be a topological space, and let
{Ui}i ∈ I be an open cover of S. For each i, let Ti = (Ui , Oi) be the topological space induced on Ui by the subset
topology, and assume there is a sheaf of rings Oi on Ti that makes Si = (Ti , Oi) into an affine scheme, i.e., a locally
ringed space that is isomorphic to Spec Oi(Ui) (§ 4.4). Assume further that the family {Oi} satisfies conditions G1

and G2 stated above. Then the gluing construction on {Oi} yields a sheaf O on T . Further, S = (T , O) is a scheme,
because it is locally affine with respect to the open cover {Ui} of T (§ 5.1).

Conversely, let S = (T , O) be a scheme covered by affine schemes {Si}. Then S is formed by gluing together the
affine schemes Si in this way. In this case we have Oi = O|Ui

for each i, so Oi |Uij
= O j |Uij

= O|Uij
, and the sheaf

10 That is, the opposite category. See Definitions for Category Theory, § 8.
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isomorphisms φ ij required are the identity maps.

Gluing schemes (general case): We now describe a general construction for gluing schemes together. Let {Si}i ∈ I

be a family of schemes, with Si = (Ti , Oi) and Ti = (Si , Oi). For each (i, j) in I × I , let Uij be an open subset of Si

such that Uii = Si . For all triples (i, j, k) define the following open subschemes of S:

• Sij = Si |Uij
.

• Sijk = Sij |Uik
= Si |Uij ∩ Uik

.

Suppose that these schemes satisfy the following conditions:

G3. For each Sij there is a scheme isomorphism Φij : Sij → S ji , such that Φii is the identity map.

G4. For each Sijk we have Φ jk (Φij |Sijk
) = Φik |Sijk

.

Under these conditions, there is a unique scheme S with the following properties (proof omitted):

1. S is covered by affine schemes {S′i}i ∈ I .

2. For each i there is a scheme isomorphism Ψi: S′i → Si .

3. For each Φij we have Φij = Ψ j (Ψ−1
i |Sij

).

Notice that this construction generalizes the gluing construction for sheaves.

The affine space over a scheme: Here is a basic example of the gluing construction for schemes. For any scheme S

and n > 0 we define an associated scheme called the n-dimensional affine space over S, denoted An
S.

First, assume that S is isomorphic to Spec R for some ring R. Let R[x] denote R[x1, . . . , xn,], i.e., the polynomial
ring in n formal variables over R. We define An

S to be the scheme Spec R[x], i.e., the spectrum of the polynomial
ring in n formal variables over R. We also denote this scheme An

R. Notice that when R is an algebraically closed
field K , we hav e An

K = Spec K [z]. Let T (An
K ) denote the topological space of An

K . By definition this is the set of
prime ideals of K [z] (§ 4.1); whereas the the n-dimensional affine space An(K ) of classical algebraic geometry con-
sists of the maximal ideals of K [z]. So T (An

K ) has An(K ) embedded in it.

Now suppose that S is a scheme covered by affine schemes {Si}, where Si = (Ti , Oi) =̃ Spec Ri , and Ti = (Ui , Oi).
Let T (Spec Ri) denote the topological space of Spec Ri . For each pair (i, j), let Uij = Ui ∩ U j , and let
Vij ⊆ T (Spec Ri) be the image of Uij under the isomorphism Si =̃ Spec Ri . Then by assumption there are scheme
isomorphisms

Spec Ri |Vij
=̃ Spec R j |V ji

. (1)

Let T (An
Ri

) denote the topological space of An
Ri

. Let Wij ⊆ T (An
Ri

) = T (Spec Ri[x]) be the image of Vij under the
map p → pRi[x]; it is straightforward to show that this map takes prime ideals of Ri to prime ideals of Ri[x], and
that Wij is homeomorphic to Vij and therefore an open subset of T (An

Ri
). Each scheme isomorphism (1) induces a

scheme isomorphism

An
Ri

|Wij
=̃ An

R j
|W ji

. (2)

The scheme isomorphisms (2) satisfy the gluing construction for the family {An
Ri

}i ∈ I . The scheme constructed by
gluing together this family is An

S. This construction is independent of the affine open cover chosen for S (proof
omitted).

The projective space over a scheme: For any scheme S and n > 0  we also define an associated scheme called the
n-dimensional projective space over S, denoted Pn

S.

First, assume that S is isomorphic to Spec R for some ring R. We define Pn
S, which we also denote Pn

R in this case.
We do this by gluing together n + 1 copies of An

R = Spec R[x], as follows:

1. Let R[X] denote the ring R[X0, . . . , Xn].

2. For each i in [0, n]:

a. Let α i: R[x] → R[X][X−1
i ] be the map given by (1) renumbering the variables x1 through xn as x0

through xn in order, skipping xi; and (2) replacing each x j with X j /Xi . For example,
α1(x2

1 + x2) = (X0/X1)2 + (X2/X1). This map is an isomorphism of R[x] onto its image.

b. Let Ri = α i(R[x]). Then Ri =̃ R[x]. Let Si = Spec Ri = (Ti , Oi), and let Ti = (Si , Oi). Then Si =̃ An
R.
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c. For each j ≠ i in [0, n], let Uij ⊆ Si be the distinguished open set (§ 4.1) that is the complement of the
zero set of X j /Xi . By definition, we have Oi(Uij) = Ri[(X j /Xi)

−1] = Ri[Xi /X j] (§ 4.2).

3. For each Uij , the map X j /Xi → Xi /X j takes Uij to U ji and takes Oi(Uij) to O j(U ji). Therefore these maps
induce isomorphisms Φij : Si |Uij → S j |U ji , which we may use to glue the schemes Si . Because Si =̃ An

R, this
gluing induces a gluing of the n + 1 copies of An

R, which we call Pn
R.

Now suppose that S is a scheme covered by affine schemes {Si}i ∈ I . Construct each scheme Pn
Ri

as described above.
From the construction, and from the properties of the gluing construction, each Pn

Ri
is covered by affine schemes

{S′ij} j ∈ J . Now for each pair (i, j, k) in I × J × I use the construction given for the affine space over a scheme to
glue S′ij to S′kj . The resulting scheme is Pn

S.

6.2. Fibered Products

In this section we define a construction called the fibered product of two schemes S1 and S2 over a third scheme S,
written S1 ×S S2.

The tensor product as a fibered coproduct: First we review a basic property of the tensor product of modules (see
Definitions for Commutative Algebra, § 7). Let R be a ring, let A, B, and C be R-modules, and consider the diagram
shown in Figure 2. Note the following:

1. Because r ⊗R 1 = 1 ⊗R r for all r in R, the rectangle in the lower right commutes.

2. For any module homomorphisms φ A and φ B such that the solid arrows commute, there exists a unique homo-
morphism φ that makes all the arrows commute. This homomorphism is given by

φ (
i
Σ ai ⊗ bi) =

i
Σ φ A(ai) ⊗ φ B(bi).

These properties make A ⊗R B into the fibered coproduct or fibered sum of A and B over R in the category R-Mod
of R modules. A fibered coproduct is also called a pushout.11

A ⊗R B A

B R

b → 1 ⊗R b

r → r ⋅ 1

a → a ⊗R 1

r → r ⋅ 1

C

φ B

φ Aφ

Figure 2: The tensor product as a fibered coproduct.

In the same way we can construct the fibered coproduct of R-algebras. Recall that an R-algebra is a ring A that is
also an R-module, such that the map f : R → A given by r → r ⋅ 1A is a ring homomorphism. In particular, the ring
R is an R-algebra. The tensor product of R-modules naturally yields a tensor product of R-algebras. See Definitions

for Commutative Algebra, § 9. Therefore Figure 2 is also valid in the category of R-algebras.

The fibered product of affine schemes: Now let S1, S2, and S be the affine schemes Spec A, Spec B, and Spec R.
Assume there are scheme morphisms Φ′1: S1 → S and Φ′2: S2 → S. From § 5.10, we know that the category of affine
schemes is the category of commutative rings with arrows reversed. Therefore the scheme morphisms Φ′1 and Φ′2
correspond to ring homomorphisms φ ′1: R → A and φ ′2: R → B, and these homomorphisms make A and B into R-
modules via restriction of scalars (see Definitions for Commutative Algebra, § 7). Further, if we define

S1 ×S S2 = Spec (A ⊗R B),

then we obtain the diagram shown in Figure 3, where S3 = Spec C. We obtain this diagram by applying Spec to
each of the rings in Figure 2, applying the definitions, and reversing all arrows. Figure 3 has the analogous universal

11 Compare the discussion of pullbacks and pushouts in § 12 of Definitions for Category Theory.
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property to Figure 2, i.e., for any Φ1 and Φ2 that make the solid arrows commute, there is a unique Φ that makes all
the arrows commute.

Figure 3 shows that S1 ×S S2 is the fibered product of S1 and S2 over S in the category of affine schemes. A fibered
product is also called a pullback. Fibered products are useful because they allow us to define operations such as
taking the product of two schemes, or taking the preimage of a morphism between two schemes, in a way that corre-
sponds to the analogous operations in the category of sets.

S1 ×S S2 S1

S2 SΦ′2

Φ′1

S3

Φ2

Φ1Φ

Figure 3: The fibered product of schemes.

The fibered product of general schemes: Next, consider Figure 3 in the case where S1, S2, and S are general
schemes, and the morphisms Φ′1: S1 → S and Φ′2: S2 → S are given. Let Φ′1 = (φ ′1,ψ ′1), and Φ′2 = (φ ′2,ψ ′2). By defi-
nition, we can cover S with affine open subschemes S|Wk

. Let Uk be the inverse image of Wk under φ ′1. Then Uk is
open, so we can form S1|Uk

and cover it with open affine schemes S1|Uki
. Similarly, we can cover the inverse image

Vk of Wk under φ ′2 with open affine schemes S2|Vkj
. The morphisms Φ′1 and Φ′2 induce morphisms

Φ′1ki: S1|Uki
→ S|Wk

and Φ′2kj : S2|Vkj
→ S|Wk

.

Now for each triple (i, j, k) we can use the fibered product of affine schemes to construct the scheme

(S1 ×S S2)ijk = S1|Uki
×S|Wk

S2|Vkj
.

The gluing construction for schemes (§ 6.1) then yields a unique way to glue the schemes (S1 ×S S2)ijk together into
a single scheme S1 ×S S2 (proof omitted). This is the fibered product of the general schemes S1 and S2 over the gen-
eral scheme S.

The fiber of a morphism over a point: Let S1 = ((S1, O1), O1) and S2 = ((S2, O2), O2) be schemes, and let
Φ: S1 → S2 be a morphism. Let p be a point of S2. Let Spec R be an affine open subscheme of S2 that contains p;
by the definition of a scheme, this scheme exists. Then p corresponds to a prime ideal p of R, and we may form the
field Kp (§ 4.1). Because Kp is a field, it has a single prime ideal (the zero ideal), and so the scheme Spec Kp has a
single point. We define the fiber of Φ over p, written Φ−1( p), to be the fibered product S1 ×S2

Kp. This definition
does not depend on the choice of R (proof omitted).

This definition is motivated by the situation in the category of sets: there, given a map φ : S1 → S2, a point p in S2,
and the inclusion map {p} → S2, the fibered product S1 ×S2

{p} is φ−1( p) × {p} ⊆ S1 × {p}. See Figure 4. The
maps π i are the projection maps. Again the fibered product has the universal property that for any set S and maps φ1

and φ2 that make the solid arrows commute, there is a unique map φ that makes all the arrows commute. In this case
the fibered product is the “fiber over p” in an intuitive sense: it is the Cartesian product of the preimage φ−1( p) with
the one-point set {p}.

Let Φ = (φ ,ψ ). If S1 = ((S1, O1), O1) and S2 = ((S2, O2), O2) are the affine schemes Spec R1 and Spec R2, then we
have the following (proof omitted):

1. The points of Φ−1(p) are the prime ideals q of S1 such that φ (q) = p.

2. If p is a closed point,12 then Φ−1( p) is the scheme Spec I R1, where I ⊆ R1 is the ideal ψ S2
(p). Here ψ S2

is
the element of the family of maps ψ = {ψU } that maps R2 = O(S2) to R1 = O(φ−1(S2)) = O(S1). See § 5.10.

12 That is, p is a maximal ideal. See § 4.1.
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φ−1( p) × {p} S1

{p} S2

π2

π1

φ

S

φ2

φ1φ

Figure 4: The fiber over a point in the category of sets.

The preimage of a closed subscheme: Again let S1 = ((S1, O1), O1) and S2 = ((S2, O2), O2) be schemes, and let
Φ = (φ ,ψ ): S1 → S2 be a morphism. Let S be a closed subscheme of S2 (§ 5.6). We define the preimage or inverse

image of S under Φ, written Φ−1(S), to be the fibered product S1 ×S2
S. We claim the following (proofs omitted):

1. Φ−1(S) is a closed subscheme of S1.

2. In general, the ideal sheaf J associated to Φ−1(S) is J(U) = ψU (I(U)) O(S1), where I is the ideal sheaf associ-
ated to S.

3. In the case S1 = Spec R1 and S2 = Spec R2, the ideal J associated to Φ−1(S) is ψ S2
(I ) R1, where I is the ideal

associated to S. Note that this statement agrees with what we said above in the case that S is a closed point.

6.3. The Category of S-Schemes

Fix a scheme S. A scheme over S or S-scheme is a pair (S1, Φ1), where S1 is a scheme, and Φ1: S1 → S is a scheme
morphism. We make the set of S-schemes into a category as follows:

1. The objects are the S-schemes.

2. A morphism Φ: (S1, Φ1) → (S2, Φ2) is a scheme morphism Φ: S1 → S2 such that Φ2 Φ = Φ1.

This construction makes S a terminal object in the category of S-schemes, i.e., every object in the category has
exactly one arrow to S. As a result, the fibered product S1 ×S S2 is the category-theoretic product S1 × S2 in the cate-
gory of S-schemes.13

There are at least two reasons why it is useful to introduce S-schemes:

1. Fix a morphism Φ1: S1 → S. Then for each point p in S there is a corresponding scheme, i.e., the fiber of Φ1

over p (§ 6.2). Therefore we can think of Φ1 as a family of schemes parameterized by the points of S.

2. In some domains (a) each scheme S1 maps to S in a natural way and (b) the morphisms Φ12: S1 → S2 that we
care about are the ones that are compatible with the maps Φ1: S1 → S and Φ2: S2 → S.

Schemes over a field K : As an example of item 2, consider the case where S is the affine scheme Spec K , where K

is a field. In this case we say that S1 is a scheme over K or a K -scheme. By the theorem in § 5.10, a morphism
from S1 = ((S1, O1), O1) to S = Spec K corresponds to a homomorphism from K to O1(S1), and this homomorphism
makes O1(S1) into a K -algebra by restriction of scalars. The morphisms in the category of K -schemes are the mor-
phisms of schemes that respect the K -algebra structure. In many domains these are the morphisms we care about.
For example, when translating classical algebraic geometry to the language of scheme theory, we work in the cate-
gory of schemes over an algebraically closed field K .

Schemes over Z: As another example, consider the case where S is the affine scheme Spec Z. In this case we say
that S1 is a scheme over Z or a Z-scheme. Every ring is a Z-algebra, via the map that takes n ⋅ 1 to the sum of 1 n

times (if n ≥ 0) or the sum of the additive inv erse of 1 n times (if n < 0). Therefore there is a homomorphism from
Z to O1(S1), which corresponds to a morphism from S1 to Z. Thus every scheme S1 is a Z-scheme, and the category
of Z-schemes is just the category of schemes.

13 See Definitions for Category Theory, § 11.1. Compare the situation in the category of sets, where the fibered product of two sets over a

point is the Cartesian product of the sets.
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6.4. Separated Schemes

In the theory of manifolds, we require that the topological space T = (S, O) associated with a manifold be Hausdorff,
i.e., for any two distinct points a and b in S, there exist open sets Ua and Ub in O such that a ∈ Ua, b ∈ Ub, and
Ua ∩ Ub = ∅. T is Hausdorff if and only if the diagonal set ∆ = {(a, a): a ∈ S} is a closed subset of S × S under
the product topology induced by O.14

In the theory of schemes, we can’t require that the topological space T associated with a scheme be Hausdorff,
because the Zariski topology is not Hausdorff. However, we can make an analogous definition. Let S′ be a scheme,
and let (S, Φ) be an S′-scheme. Let S = ((S, O), O), let Φ = (φ ,ψ ), and let S′ = ((S′, O′), O′).

1. Assume that S = Spec R and S′ = Spec R′, so that S ×S′ S = Spec (R ⊗R′ R) (§ 6.2). We define the diagonal

ideal I∆(S ×S′ S) ⊆ R ⊗R′ R to be the ideal generated by the set {r ⊗ 1 − 1 ⊗ r: r ∈ R}.

2. Now let S and S′ be general schemes. We say that S is separated over S′ or is a separated S′-scheme if there
exists a closed subscheme ∆ = ((S∆, O∆), O∆) of S ×S′ S with the following property:

a. Let the ideal sheaf of S∆ be I∆ (§ 5.6).

b. We require that for each pair of affine open sets U ⊆ S and U ′ ⊆ S′ with φ (U) ⊆ U ′

I∆(U) = I∆(S|U ×S′|U ′
S|U ).

We say that a scheme S is separated if it is separated over Z.

Any affine scheme is separated over Spec Z or over any other affine scheme, because in this case ∆ is the closed sub-
scheme associated to the diagonal ideal I∆(S ×S′ S). In general, separated schemes are the schemes of interest in the
theory. When gluing schemes together (§ 6.1) we must be careful to ensure that the result is a separated scheme.

6.5. The Spectrum of a Sheaf

In § 4 we described Spec R, the spectrum of a commutative ring R. In this section we describe a generalization of
this concept called Spec F, the spectrum of a quasicoherent sheaf F of O-algebras (§ 5.4) on a scheme S = (T , O).
Spec F is also called a global spectrum, because it describes the structure associated with an entire sheaf. In con-
trast, the spectrum of a ring describes the local structure associated with an affine open set.

Spec O: First we define Spec F in the special case F = O. This will motivate the more general definition.

Let S = (T , O) be an affine scheme. In this case O is a quasicoherent sheaf of O-algebras on S, and S = Spec O(S).
Therefore we can define Spec O = Spec O(S) = S.

Next, let S = (T , O) be a general scheme, and cover S with affine open subschemes Si = S|Ui
= (Ti , Oi). In this case

we have the following:

1. O is a quasicoherent sheaf of O-algebras on S.

2. Each of the Oi is a quasicoherent sheaf of Oi-algebras on Si , so Spec Oi = Si .

3. O is obtained by gluing together the sheaves Oi (§ 6.1).

Therefore we may again define Spec O = S.

Spec F: Now let S = (T , O) be a scheme, and let F be a quasicoherent sheaf of O-algebras on S. We define Spec F

as follows:

1. Cover S with affine open subschemes Si = Si |Ui
= (Ti , Oi).

2. For each Si , let Fi be the quasicoherent sheaf of O-algebras F|Ui
. Define Spec Fi = Spec Fi(U). Notice this

agrees with the definition we gav e for an affine scheme in the case that Fi = Oi .

3. Use the gluing construction on schemes (§ 6.1) to glue the schemes Spec Fi into the scheme Spec F. The
construction is similar to the one that we gav e in § 6.1 for the affine space over a scheme. Note that this defi-
nition agrees with the definition we gav e in the case that F = O.

This construction is independent of the open affine cover chosen for S (proof omitted).

We make the Spec F into an S-scheme (§ 6.3) as follows:

14 See, e.g., https://planetmath.org/aspacemathnormalxishausdorffifandonlyifdeltaxisclosed.
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1. For each i, Fi(U) is an Oi(U)-algebra. Therefore there is a ring homomorphism φ i: Oi(U) → Fi(U), and
therefore a corresponding scheme homomorphism Φi: Spec Fi(U) → Spec Oi(U) (§ 5.10).

2. The homomorphisms Φi induce, via the gluing, a homomorphism Φ: Spec F → S.

When F = O, Φ is the identity morphism.

7. The Functors h and hS

To read this section, you should be familiar with §§ 1–8 and 13 of my paper Definitions for Category Theory.
Throughout this section we assume that our categories have small hom sets, so that (for example) we can refer to the
category Set instead of SetV .

Let C be a category, and recall the following facts:

1. For any object b of C, the contravariant functor C(−, b): Cop → Set takes each object a to C(a, b) (i.e., the set
of morphisms from a to b) and takes each morphism f : a′ → a to C( f , b) (i.e., the morphism from C(a, b) to
C(a′, b) defined by h → h f ). See Definitions for Category Theory, § 6.

2. The contravariant Yoneda functor Y ′: C → SetCop

takes each object b to the functor Y ′ b = C(−, b) and takes
each morphism b → b′ to the natural transformation η = C(−, f ) defined by ηa = C(a, f ) = h → f h. C(a, f )
is an arrow from Y ′ b a = C(a, b) to Y ′ b′ a = C(a, b′). Therefore η is a natural transformation from Y ′ b to

Y ′ b′, so it is an arrow in the category SetCop

. See Definitions for Category Theory, § 13.2.

These concepts are useful in scheme theory. First, let Sch denote the category of schemes. Write h to denote the

contravariant Yoneda functor Y ′: Sch → SetSchop

. This functor is useful because it maps schemes S to functors h S,
and one can develop geometric notions in the category of functors. For example, one can define open and closed
subfunctors of a functor. One can then use the geometry of functors to define the geometry of schemes.

Next, fix a scheme S, and consider the functor hS = h S. For any scheme S′, the set hS S′ is the set of scheme mor-
phisms from S′ to S. This set is called the set of S′-valued points of S. When S = Spec R, we may write R instead
of S; and similarly when S′ = Spec R′.
The concept of S′-valued points has its roots in the classical problem of solving systems of equations. For example,
let Z[x] = Z[x1, . . . , xn] be the ring of formal polynomials over Z in n variables, and let F = {pα } be a family of
polynomials in Z[x]. Let R be a ring. For any tuple t = (a1, . . . , an) of elements in R, let φ t : Z[x] → R be the map
defined by substituting ai for each xi and collecting terms.

Suppose we want to compute the set X of tuples t such that φ t( pα ) = 0 for all α . Let I be the ideal generated by the
polynomials in F , and let R′ = Z[x]/I . Then φ t is an element of X if and only if it defines a homomorphism from R′
to R. This is true if and only if φ t corresponds to a scheme morphism from Spec R to Spec R′ (§ 5.10). Thus, X is
in bijection with the set hR R′.
So far we have worked in the category Sch of schemes. These concepts apply identically in the category S-Sch of S-
schemes, for any scheme S (§ 6.3).
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scheme over S: § 6.3
scheme over Z: § 6.3
scheme: § 5.1
sections of F over U : § 2.2
separated over S′: § 6.4
separated S′-scheme: § 6.4
separated: § 6.4
sheaf axiom: § 2.2
sheaf of ideals in F: § 5.5
sheaf of ideals on S: § 5.5
sheaf of O-algebras on S.: § 5.4
sheaf of O-modules: § 5.3
sheaf of regular functions: §§ 2.1, 4.2
sheaf: §§ 2, 2.2
sheafification: § 2.4
singular: § 5.9
spectrum: § 4
S-scheme: § 6.3
stalk: §§ 2.1, 2.2
structure sheaf: § 4.2
subsheaf: § 2.3
surjective: § 2.4
S′-valued points: § 7
terminal object: § 6.3
vanishes: §§ 4.1, 5.6
Zariski cotangent space: § 5.9
Zariski tangent space: § 5.9
Z-scheme: § 6.3


