
Monads, Categories, and Computation

Robert L. Bocchino Jr.

Revised June 2024

Monads are widely used in functional programming (FP) languages as a way to assemble computations from

sequences of sub-computations. The concept of a monad was originally developed in a branch of mathematics

called category theory. Howev er, the presentation of monads in the FP context differs from the standard category-

theoretic presentation. Further, some of the category-theoretic motivation for the behavior of monads is lost in the

standard FP presentation.

This paper explains the connection between FP monads and category-theoretic monads. It is hoped that this connec-

tion will provide additional motivation for and insight into the concept of a monad as it appears in programming lan-

guages. In particular, most FP discussions of monads emphasize the practical value of monads for programming,

and they discuss the “monad laws” as an afterthought. This paper explains where the monad laws come from and

why they exist, apart from their practical utility.

1. The Definition of a Monad

We start with the definition of a monad in an FP context. We will use Haskell-like notation, which is intentionally

close to the category theory notation. However, the definition will differ slightly from the standard one given in

Haskell. Later in the paper, we’ll reconcile the two definitions.

A monad is a type M t together with three functions that operate on this type. Here t is a type parameter, also

sometimes called a generic parameter. (In Scala, M t would be written M[T], in Java it would be written M<T >,

and in Standard ML it would be written ′t M .) The three functions are as follows:

1. A function of type t → M t. We will call this function inject, because it injects a value of type t into a monad

of type M t. Haskell calls it return. Following standard notation in category theory, we will also refer to this

function as η t .

2. A function of type (t → t′) → (M t → M t′). We will call this function map, because it maps functions with

non-monadic argument and return types to functions with monadic types. Haskell calls it fmap. Following

standard notation in category theory, we will also refer to this function as M (that is, we will give the map

function the same name as the monad).

3. A function of type M (M t) → M t. Following the mathematical notation, we will omit the parentheses and

write M M t → M t. We will call this function flatten, because it flattens two lev els of monadic structure

into one. Haskell calls it join. Following standard notation in category theory, we will also refer to this func-

tion as µt .

These three functions must satisfy six combination laws, which we will explain below after introducing basic cate-

gory theory.1

2. Examples of Monads

Here are several common examples of monads used in functional programming.

The Option type or Maybe type. The Option type (ML, Scala, Rust) or Maybe type (Haskell) is a type Option t

that has the values Some x (for any value x of type t) or None. Here are the three functions:

1 Note that the concept of “a type with three functions” is expressed differently in different programming languages. In Haskell, one uses a

type class. In Java, one uses an interface. In Scala, one uses a trait. In Standard ML, one uses a signature. Thus the details of how monads work

vary from language to language. However, these details are below the level of abstraction that we will consider in this paper.

Monads, Categories, and Computation Page 2

1. Inject: x → Some x.

2. Map: f → { Some x → Some f (x), None → None }.

3. Flatten: { Some (Some x) → Some x, Some None → None, None → None }.

As usual in functional programming, p(X) → e(X) denotes the function F that maps a pattern p(X) to an expres-

sion e(X), where X = {x1, . . . , xn} is a set of free variables. To evaluate F(v), we (1) match the structure of v with

p(X), deducing bindings V = {v1, . . . , vn} for the variables X ; and (2) compute the value e(V). This notation gener-

alizes the mathematical notation x → e(x), where x is a single free variable, and e(x) is an expression in that vari-

able, as in the definition of inject.

In the definitions of map and flatten, the form { p1(X1) → e1(X1), p2(X2) → e2(X2), . . . } denotes the function that

matches a value v to one of the patterns pi(Xi) and then evaluates Fi(v), where Fi = pi(Xi) → ei(Xi). For example,

map takes a function f to a function map(f), where we evaluate map(f)(v) as follows:

• If v has the form Some v′ for some value v′, then map(f)(v) evaluates to Some f (v′).
• Otherwise v = None, and map(f)(v) evaluates to None.

In functional programming languages, this kind of function is typically specified with alternative definitions, or with

a single definition containing a case or match expression.

The list type. This is List t, the standard type of immutable lists. Here are the three functions:

1. Inject: x → [x].

2. Map: f → ([x, y, . . .] → [f (x), f (y), . . .]).

3. Flatten: [[x, . . .], [y, . . .], . . .] → [x, . . . , y, . . .].

inject takes a value x to the list [x] containing just that value. map takes a function f to the function that maps f

over each element of a list. flatten turns a list of lists L into a list L′ by erasing the inner list structure.

The state transformer type. The type M t is the type s → (t, s), where s is a state type, and t is a value type. The

type represents functions that transform states of type s, producing a value of type t in the process. Here are the

three functions:

1. Inject: x → (s → (x, s)).

2. Map: f → ((s → (x, s′)) → (s → (f (x), s′)).
3. Flatten: (s → (f , s′)) → (s → f (s′)).

Here x is a value of type t, and s is a value of type s. inject takes a value x to the state transformer that produces x,

leaving the state s unchanged. map takes a function f to the function that applies f to the result value of a state

transformation. flatten propagates state transformations: it takes a state transformation s → (f , s′), where f is

another state transformation, and it yields the transformation s → f (s′).

3. Categories

A category formalizes the idea of a collection of objects with mappings (or arrows) between them. This concept is

ubiquitous in mathematics and computer science. For example, in mathematics, the collection of all vector spaces

(objects) and linear maps between them (arrows) is a category. In computer science, the collection of all types

(objects) and functions from type to type (arrows) is a category.

Formally, a category C is a directed graph consisting of objects and arrows. The graph must satisfy the following

axioms.

Existence of identity arrows. For every object c ∈ C, there is a unique arrow c → c called the identity arrow or

identity for c and written idc.

Existence of composition. For every triple of objects c1, c2, and c3, and every pair of arrows f1: c1 → c2 and

f2: c2 → c3, there is a unique arrow c1 → c3. We call this arrow the composition of f1 and f2 and write it f2 f1.

Note that following standard mathematical notation, the order of composition goes right to left: g f means “tra-

verse f and then traverse g.” The reason is that arrows often represent functions, and functions appear in this order

when they are applied in composition: (g f)(x) = g(f (x)).

Associativity of composition. For every triple of composable arrows f1, f2, and f3, the order of composition does

not matter:

Monads, Categories, and Computation Page 3

(f3 f2) f1 = f3 (f2 f1).

Composition of identities. For any function f : c → c′, Composing an identity function with f on the left or the

right yields f :

idc′ f = f idc = f .

It is easy to see that the examples given above (and many other examples, such as groups and group homomor-

phisms) satisfy these rules.

In the rest of this paper, let P denote the programming language category: that is, the category with types t as

objects and functions f : t → t′ as arrows.

4. The Monad Laws

Now we can present the six monad laws that we referred to in § 1.

4.1. M Must Be a Functor from P to P

In category theory, a functor F is a mapping from the objects and arrows of one category C to another category C′.
F takes objects c of C to objects F c of C′, and it takes arrows f of C to arrows F f of C′. In general, C and C′
can be different categories. If they are the same (C′ = C), then we say that F is an endofunctor.

The first monad law is that M must be an endofunctor from the programming language category P to itself. The

requirement that M be a functor is the reason why we gav e the map function of M the name M (and the reason why

Haskell calls it fmap — the f is for functor). The map function is the “arrow to arrow” part of M , interpreted as a

functor.

In order for M to be a functor, the following properties must hold:

1. For all types t, M idt = idM t .

2. For all pairs of composable arrows f and f ′, M(f ′ f) = (M f ′) (M f).

It is easy to see that in all the examples given in § 2, these properties hold. For example, in the case of the option

type:

1. M id = { Some x → Some id(x), None → None } = id .

2. M(f ′ f) = { Some x → Some (f ′ f)(x), None → None }.

3. M f = { Some x → Some f (x), None → None }.

4. M f ′ = { Some x → Some f ′(x), None → None }.

5. The composition of the right-hand sides of (3) and (4) yields the right-hand side of (2).

Verifying the other examples is similar.

Finally, giv en that M is a functor, it is straightforward to check that M M and M M M are also functors, where for

any t, M M t means M(M t). We will need this fact below.

4.2. η Must Be a Natural Transformation from the Identity Functor to M

In category theory, a natural transformation is a relationship between two functors F and F ′, both of which go

from a category C to another category C′. By convention, natural transformations are written with Greek letters,

such as σ . For each object c ∈ C, F and F ′ in general map c to two different objects F c and F ′ c in C′. So to

specify a natural transformation σ from F to F ′, we need to provide, for every c ∈ C, an arrow σ c: F c → F ′ c.

The arrow σ c is called the c component of the natural transformation σ . A natural transformation must also satisfy

a commutativity relation (the “naturality”) which we describe below.

For any category C, the identity functor IC is the functor that takes each object of C to itself and each arrow of C to

itself (that is, IC c = c and IC f = f).

Recall that in the definition of a monad M , we specified for each type t a function η t . We want each η t to be the

component of a natural transformation η from IP to M , where we have already established (§ 4.1) that M is a func-

tor from P to P. In order for the transformation η to be natural, the following commutative diagram must be valid

for each t, t′, and f : t → t′:

Monads, Categories, and Computation Page 4

t

f

t′

η t M t

M f

M t′η t′

Here we interpret traversal of successive arrows as composition. Commutativity means that all compositions that

start and end at the same point in the diagram are identical. In this case, it means that η t′ f = (M f) η t .

It is straightforward to check that for all the examples given in section § 2, η is a natural transformation. For exam-

ple, for the Option type, starting with a value x in the upper left-hand corner, we can trace the flow of values around

the diagram as follows:

x

f

f (x)

inject
Some x

map f

Some f (x)
inject

Then the commutativity is apparent. The other examples are similar.

4.3. µ Must Be a Natural Transformation from M M to M

Recall that in the definition of a monad M , we specified for each type t an arrow µt : M M t → M t. We want these

arrows to be the components of a natural transformation from the functor M M to the functor M . That is, we

require the following diagram to commute for each t, t′, and f : t → t′:

M M t

M M f

M M t′

µt M t

M f

M t′
µt′

It is straightforward to check that for all the examples given in section § 2, µ is a natural transformation. For exam-

ple, here is an object diagram for the Option type, starting with a value Some (Some x) in the upper left-hand corner:

Some (Some x)

map (map f)

Some (Some f (x))

flatten
Some x

map f

Some f (x)
flatten

The other examples are similar.

4.4. µ Must Satisfy an Associativity Law

Consider functions of the form f : t → M t′. Call such functions Kleisli functions (after Heinrich Kleisli, who

developed the theory of these functions). For any Kleisli function f , let t f and t′f be the types t and t′ in the argu-

ment and return type of f . Call two Kleisli functions f and g Kleisli composable if t′f = tg. For example,

f : t1 → M t2 and g: t2 → M t3 are Kleisli composable.

Monads, Categories, and Computation Page 5

For any two Kleisli composable functions f and g, define a Kleisli composition operator × as follows:

g × f = µt′g M g f

(Here is the same definition annotated with expression types:

(g × f): t f → M t′g = (µt′g : M M t′g → M t′g) ((M g): M tg → M M t′g) (f : t f → M t′f)

Try to convince yourself that the types are correct and that they compose correctly. Remember that t′f = tg. Work-

ing out the types in this way is often a useful exercise for understanding complex expressions in mathematics and

functional programming.) Notice that g × f is again a Kleisli function, with tg× f = t f and t′g× f = t′g.

We want Kleisli composition to be associative. Let f , g, and h be Kleisli functions such that (f , g) and (g, h) are

Kleisli composable pairs. Notice that h × (g × f) and (h × g) × f are legal Kleisli compositions. To show associa-

tivity, first expand h × (g × f) as follows:

h × (g × f) = h × (µt′g M g f)

= µt′h M h µt′g M g f

= µt′h M h µth
M g f

= µt′h µM t′h M M h M g f

The second-to-last step is valid because g and h are Kleisli composable. The last step is valid because µ is a natural

transformation from M M to M . To see it, use the first commutative diagram in § 4.3, after applying the following

substitutions: f → h, t → th, and t′ → M t′h.

Next, expand (h × g) × f :

(h × g) × f = µt′h×g
M (h × g) f

= µt′h M (µt′h M h g) f

= µt′h M µt′h M M h M g f

The last equation holds because M is a functor.

Comparing the two expansions above, we see that Kleisli composition is associative if the following holds for all t:

µt µM t = µt M µt

Written as a diagram, the rule looks like this:

M M M t

µM t

M M t

M µt M M t

µt

M t
µt

Again, the verification of the examples in § 2 is straightforward. For example:

Some (Some (Some x))

flatten

Some (Some x)

map(flatten)
Some (Some x)

flatten

Some x
flatten

Monads, Categories, and Computation Page 6

4.5. η Must Be a Left Identity for Kleisli Composition

For each type t, η t : t → M t is a Kleisli function. We want the following relation to hold for any Kleisli function f :

η t′f × f = f

By definition we have this:

η t′f × f = µt′f M η t′f f

So we must require this for all t:

µt M η t = idM t

As a diagram:

M t
M η t M M t

µt

M t

idM t

Example of verification:

Some x
map(inject)

Some (Some x)

flatten

Some x

id

4.6. η Must Be a Right Identity for Kleisli Composition

We want the following relation to hold for any Kleisli function f :

f × η t f
= f

By definition we have this:

f × η t f
= µt′f M f η t f

Because η is a natural transformation (§ 4.2), we have this:

f × η t f
= µt′f η M t′f f

So we must require this for all t:

µt η M t = idM t

As a diagram:

M t
η M tM M t

µt

M t

idM t

Example of verification:

Monads, Categories, and Computation Page 7

Some x
inject

Some (Some x)

flatten

Some x

id

5. Monads and Computation

Monads are useful for programming because they provide an associative composition operator (Kleisli composition)

that we can use to sequence computations.

First, let’s look at Kleisli composition in a special case of a monad, the identity monad I , which we define as fol-

lows:

• I t = t.

• Each of the functions inject, map, and flatten is the identity function idt : t → t.

In computational terms, I is the “no-op” monad: it is the unique monad whose operations all do nothing. If we plug

this monad in to the definition of Kleisli composition, we see the following:

• Kleisli functions f : t → M t′ become arbitrary functions f : t → t′.
• Kleisli composition g × f becomes ordinary function composition g f .

These observations provide some insight into the computational behavior of monads. Ordinary function composi-

tion provides a way to sequence functional computations. So does Kleisli composition. But Kleisli composition

also provides some extra computation that we can specify by defining the monadic operations (type construction,

inject, map, and flatten). If we specify that this extra computation does nothing (the identity monad), then we get

back ordinary function composition. But by suitably defining a nontrivial monad M , we can use the extra computa-

tion associated with Kleisli composition in M to perform side operations such as accumulating state, logging output,

or aborting a computation when a None value occurs. There are at least two advantages to this style of program-

ming:

1. The side computations are specified once and then applied many times, instead of being specified many times

as they would be, for example, if the logging or error checking code were programmed directly.

2. The side computations are specified separately from the main computation, so the code is clearer and more

modular than it would be if the side computation and the main computation were intermixed.

These benefits are well documented, with concrete examples, in the literature on languages such as Haskell and

Scala that support programming with monads.

These observations may also provide insight into the idea of computation “inside a monad.” Haskell programmers

often refer to computations that occur “inside a monad” M . It is not immediately clear what this means, because

monads are not necessarily containers that have computations (or anything else) “inside” them. It may mean that a

computation is specified as a sequence of Kleisli functions f : t → M t′ for some monad M . It may also mean that

the results of computations have type M t, so they are hidden “inside” (or behind) the interface of M t, considered

as an abstract data type, and may be used only in operations provided by that interface. Since a user typically speci-

fies t, and a library typically specifies M , producing results of type M t allows the library to restrict what the user

can do with the values that it produces.

6. Haskell Monads

The discussion so far has followed the traditional approach in category theory. In Haskell, the standard definition of

a monad looks slightly different. A monad is still a parameterized type M t. Howev er, instead of functions inject,

map, and flatten, a Haskell programmer typically provides the following functions when specifying a monad:

• A function return: t → M t. This function is the equivalent of our inject function.

• A function bind: M t → (t → M t′) → M t′, written as an infix operator >>=. This function has no direct

equivalent in our definition of a monad.

Monads, Categories, and Computation Page 8

Notice that neither map nor flatten must be specified when defining a Haskell monad. However, every monad M

has a default implementation of fmap (equivalent to our map) and join (equivalent to our flatten). The default

implementations use the functions return and bind provided by the programmer. We will now show that our defini-

tion of a monad and the Haskell definition are essentially equivalent.

6.1. Deriving bind from map and flatten

First, we show that given a monad M as defined in § 1, we can use map and flatten to derive a Haskell-style bind

function. As is often helpful in functional programming, we “follow the types.” We hav e this:

• map: (t → t′) → (M t → M t′)
• flatten: M M t → M t

And we need this:

• bind: M t → (t → M t′) → M t′
This suggests that we do the following, assuming that x: M t and f : t → M t′ are the inputs to our bind function:

1. Apply map to f to obtain a function f ′: M t → M M t.

2. Apply f ′ to x to obtain a value x′: M M t.

3. Apply flatten to x′ to obtain the result of type M t′.
In the category-theoretic notation from before, here is our definition of bind:

x >>= f = (µt′ M f)(x)

For example, if x has type List t and f has type t → List t′, then we compute x >>= f by (1) applying f to each

element of x and (2) flattening the resulting list of lists into a list.

Notice that if x = g(x′) for some x′ ∈ t and g: t → M t, then we have

x >>= f = (µt′ M f)(g(x′))

= (µt′ M f g)(x′)

= (f × g)(x′)

So we have established the following identity:

(g × f)(x) = f (x) >>= g

We see that bind is the remainder of a Kleisli composition after applying the first function in the composition. Here

is one expansion in terms of bind for a composition of three Kleisli functions f , g, and h:

(h × g × f)(x) = f (x) >>= (h × g)

= f (x) >>= (x → (h × g)(x))

= f (x) >>= (x → (g(x) >>= h))

This expansion is often used in Haskell. Because Kleisli composition is associative, this expansion is also valid:

(h × g × f)(x) = (g × f)(x) >>= h

= (f (x) >>= g) >>= h

The equivalence of these expansions gives rise to one of the standard monad laws in Haskell (see § 6.4).

I assume that Haskell programmers prefer using bind to using Kleisli composition directly because it is more natural

for specifying computations. For example, in both expansions, the order of function application is left to right,

instead of right to left as it is in Kleisli composition. Also, in the first expansion, the first function in the composi-

tion, f , is at the outermost layer of parentheses. The second expansion is more compact; but in that expansion, f is

at the innermost layer.

Monads, Categories, and Computation Page 9

It is also useful to observe that bind is a kind of Kleisli application. Just as Kleisli composition provides a way to

compose two Kleisli functions f : t → M t′ and g: t′ → M t′′ to produce a function g × f : t → M t′′, bind provides

a way to apply a function f : t → M t′ to a value x: M t and produce a value (x >>= f): M t′. Indeed, if we let M be

the identity monad in the definition of bind , we get x >>= f = f (x), i.e., bind becomes ordinary function application

in this case. So x >>= f is to f (x) as g × f is to g f . This is why >>= is called bind: x >>= f binds x to the argu-

ment of f according to Kleisli application.

6.2. Deriving flatten from bind

Now we go in the other direction. First we show that given a Haskell-style bind function, we can derive our flatten

function. Again we follow the types. We are given

bind: M t → (t → M t′) → M t′

for any t and t′, and we want to derive

flatten: M M t → M t

for any t. If we put t = M t′ in the definition of bind , and rename t′ to t, then we have

bind: M M t → (M t → M t) → M t.

This has the type we want, except for the function argument of type M t → M t. The obvious choice for that argu-

ment is the identity function idM t . Indeed, if we put idM t in for f in the definition of bind in § 6.1, then since M is

a functor and so M id = id , the right-hand side reduces to µt(x), which is what we wanted. So we have established

the following:

µt(x) = x >>= idM t

(Notice that idM t : M t → M t is a Kleisli function f : t1 → M t2 with t1 = M t and t2 = t.)

6.3. Deriving map from inject and bind

Next we show how to use inject and bind to derive map. We are given

inject: t → M t

bind: M t → (t → M t′) → M t′

We want to derive

map: (t → t′) → (M t → M t′)

Assuming that f is the input to map, we do the following:

1. Compose f with inject to compute a function f ′: t → M t′.
2. Construct the function g that, for any argument x: M t, returns x >>= f ′.
3. Return g as the value of map(f).

Thus, we have the following provisional definition of map, written M ′:

(M ′ f)(x) = x >>= (η t′ f)

It remains to prove that this definition is correct; we should have M ′ = M . Expanding the right-hand side according

to the definition of bind in § 6.1 yields the following:

M ′ f = µt′ M(η t′ f)

= µt′ M η t′ M f

= M f

The second line holds because M is a functor, and the third line holds by the left identity law (§ 4.5). This proves

that the definition of map in terms of inject and bind is correct.

Monads, Categories, and Computation Page 10

6.4. The Monad Laws in Haskell

In Haskell, it is common to write the monad laws as follows, for all x: t, f : t → M t′, and g: t′ → M t′′:
1. (η t(x) >>= f) = f (x)

2. (x >>= η t) = x

3. ((x >>= f) >>= g) = (x >>= (x′ → (f (x′) >>= g))

It is straightforward to derive these identities from the previous discussion:

1. Rewrite the left-hand side as (f × η t)(x) and observe that η t is a right identity for ×.

2. Rewrite the left-hand side as (µt M η t)(x) and use the left-identity monad rule (§ 4.5).

3. Use the two expansions of Kleisli composition in terms of bind given in § 6.1.

So we see that with respect to Kleisli composition, (1) is the right identity rule, (2) is the left identity rule, and (3) is

the associativity rule, all written using >>= instead of ×.

When M is the identity monad, so (x >>= f) = f (x) and η t = idt , the identities become the following:

1. f (idt(x)) = f (x)

2. idt(x) = x

3. g(f (x)) = (x′ → g(f (x′))(x)

These identities are obviously true. The Haskell monad laws emphasize that these identities must hold in an arbi-

trary monad, when we replace idt with η t and function application with bind .

We can also write the third Haskell rule as

((x >>= f) >>= g) = (x >>= (g × f))

in general and

g(f (x)) = (g f)(x)

in the identity case. This is nice because it illustrates in one formula that bind (a.k.a. Kleisli application) is analo-

gous to function application, and Kleisli composition is analogous to function composition. It also states more

clearly the essence of the rule: that applying f and then applying g should produce the same result as applying the

composition of f and g.

7. The Kleisli Category

We can use category theory to formalize the relationship between Kleisli and ordinary application and composition.

Given the programming language category P and a monad M in P, we can construct a new category K called the

Kleisli category. Here is the construction:

• The objects k of K are in one-to-one correspondence with the objects M tk in P, where tk is any type in P.

• For each pair of objects k and k′ in K , the arrows f : k → k′ in K are in one-to-one correspondence with the

functions fP: tk → M t′k in P. Each arrow f in K is itself a function with type k → k′ in K : for each

x ∈ k = M tk , it maps x to (x >>= fP) ∈ k′ = M k′.

• For each k in K , the identity arrow idk : k → k in K is the arrow corresponding to ηkt
: tk → M tk in P.

• For each pair of arrows f : k1 → k2 and g: k2 → k3 in K , the composite arrow g f in K corresponds to the

function gP × fP: tk1
→ M tk3

in P.

Because Kleisli composition × is associative and η is a left and right identity for it, K is a category.

The Kleisli category may provide additional insight into the idea of computation “in a monad.” When we compute

“in a monad” M , we are computing in the Kleisli category K associated with M , applying functions

f : k → k′ = fP: tk → M tk′ to values x: k = M tk , and composing functions f : k → k′ = fP: tk → M tk′ and

g: k′ → k′′ = fP: tk′ → M tk′′ to construct larger computations.

We can think of the category K as a new functional programming language, defined by the monad M in the base lan-

guage, such that function application in K is defined by >>= in P, and function composition in K is defined by × in

P. Thus K is useful for constructing embedded domain-specific languages inside languages like Haskell that sup-

port programming with monads.

Monads, Categories, and Computation Page 11

8. Why Is It Called a Monad?

Finally, we address the reason for the name “monad,” which considered in isolation is an odd name for a program-

ming language construct. The name comes from the association between a monad and the mathematical concept of

a monoid. Both monad and monoid share the same root (the Greek word monos). The word monad also appears in

philosophy and biology, where it means a simple or indivisible entity.

In mathematics, a monoid is a set together with a binary operation that is associative and has an identity element.

For example, the integers under addition form a monoid with zero as the identity element, and the integers under

multiplication form a monoid with 1 as the identity element. In category theory, there is a standard formulation of a

monoid: a monoid is a set M together with two functions

µ: M × M → M η: 1 → M

where × denotes the Cartesian product of sets, and 1 denotes the one-point set {0}. µ is the binary operation, and the

η selects an element of M , η(0), to be the identity element of M . For M to be a monoid, the following diagrams

must commute:

M × M × M

µ × 1

M × M

1 × µ
M × M

µ

M
µ

1 × M
η × 1

M × M
1 × η

M × 1

µ

M

π2 π1

The first diagram states that µ is associative, i.e., for all x, y, and z ∈ M , µ(µ(x, y), z) = µ(x, (µ(y, z)). It uses the

following notation:

• 1 denotes the identity function M → M .

• 1 × µ: M × (M × M) → M × M takes (x, (y, z)) to (x, µ(y, z))

• µ × 1: (M × M) × M → M takes ((x, y), z) to (µ(x, y), z).

The second diagram states that η is a left and right identity for M , i.e., for all x ∈ M , µ(η(0), x) = µ(x, η(0)) = x. It

uses the following notation:

• η × 1: 1 × M → M × M takes (0, x) to (η(0), x).

• 1 × η: M × 1 → M × M takes (x, 0) to (x, η(0)).

• π2: 1 × M → M (projection onto the second element) takes (0, x) to x.

• π1: M × 1 → M (projection onto the first element) takes (x, 0) to x.

These diagrams are similar to the ones shown in § 4.4 through § 4.6 in connection with the associativity and identity

laws of a monad. We can rewrite those diagrams as follows:

M M M

µM

M M

Mµ
M M

µ

M
µ

IM M
η M

M M
Mη

M IM

µ

M

id id

These diagrams use the following notation:

• The nodes are functors, and the arrows are natural transformations.

• For each t, the natural transformation µM has component (µM)t = µM t , and similarly for η M .

• For each t, the natural transformation Mµ has component (Mµ)t = M µt , and similarly for Mη.

The meaning of these diagrams is just that the diagrams in § 4.4 through § 4.6 must hold for each type t.

Monads, Categories, and Computation Page 12

Notice that these diagrams are similar to the corresponding diagrams for monoids given above. The differences are

as follows:

• Where the monoid diagrams use the Cartesian product of sets M × M , the monad diagrams use the composi-

tion of functors M M .

• Where the monoid diagrams use the set 1, the monad diagrams use the identity functor IM .

• Where the monoid diagrams use the Cartesian product of functions 1 × or × 1, the monad diagrams use the

composition of natural transformations with M .

• Where the monoid diagrams use the projection functions π , the monad diagrams use the identity natural trans-

formation id from M to M .

The similarity between the diagrams motivates the name monad.

9. Conclusion

We hav e presented some basic category theory, and we have defined monads in the standard category-theoretic way.

We hav e discussed programming language monads and how they relate to category-theoretic monads. We hav e dis-

cussed the relationship between monads and monoids in mathematics, and the motivation for the name “monad.”

It is hoped that this discussion has provided some additional insight into the definition and behavior of a monad,

apart from the usual assertions in programming language texts that the monad laws “just make sense” or “are

required to make Haskell do blocks work as expected” (both of which, of course, are true).

References

Hutton, G. Programming in Haskell. 2d ed. Cambridge University Press, 2016.

Mac Lane, S. Categories for the Working Mathematician. 2d ed. Springer, 1997.

https://en.wikibooks.org/wiki/Haskell/Category_theory

https://wiki.haskell.org/All_About_Monads

