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This paper presents two important theorems in higher-dimensional calculus. The inverse mapping theorem says
that, under the right conditions, a differentiable map between normed vector spaces has a local differentiable inverse.
The implicit mapping theorem says that under the right conditions, if we have normed vector spaces X = X1 × X2

and Y , subsets Ui ⊆ Xi , and a map f :U1 × U2 → Y that is differentiable at a = (a1, a2), then by considering pairs
x = (x1, x2) in U = U1 × U2 such that f (x) = f (a), we obtain a map g: V ⊆ U1 → U2 (the implicit map) that takes
x1 to x2 and that is differentiable at a1.

This paper assumes that you are familiar with the concepts presented in my paper The General Derivative. It also
assumes that you are familiar with Cauchy and convergent sequences in normed vector spaces, as covered in my
paper Calculus over the Complex Numbers.

For simplicity, we assume that all vector spaces are finite-dimensional over R or C. It is straightforward to general-
ize these concepts to infinite-dimensional vector spaces and vector spaces over other fields; we just have to specify
that all vector spaces are complete and that all linear maps are continuous.1

1. The Inverse Mapping Theorem

In this section we discuss the inverse mapping theorem.

1.1. Preliminary Definitions

First we collect some basic definitions that we will need to state and prove the theorem.

Open balls: Let X be a normed vector space, let a be a vector in X , and let r > 0  be a real number. The open ball

centered at a with radius r, written B(a, r), is the set of all vectors x in X such that |x − a| < r. For example:

1. An open ball B(a, r) in R is an open interval (a − r, a + r).

2. An open ball B(a, r) in R2 is a disk of radius r centered at a that does not include its boundary.

Open sets: Let X be a normed vector space, and let U be a subset of X . We say that U is open if, for each vector a

in U , there exists a real number r > 0  such that B(a, r) ⊆ U . For example, the set of all vectors x = (x1, x2) in R2

such that x1 ∈ (−1, 1) and x2 ∈ (−1, 1) is open in R2. Both the empty set ∅ and the entire vector space X are open.

Open neighborhoods: Let X be a normed vector space, and let a be a vector in X . An open set U containing a is
called an open neighborhood of a.

Complements and closed sets: Let X be a normed vector space, and let U ⊆ X be a subset.

1. The complement of U , written UC , is the set X − U , i.e., the set of all points x in X such that x is not con-
tained in U .

2. We say that U is closed if its complement UC is open. For example, for any a in X and r > 0, the closed ball
B≤(a, r) consisting of all points x in X such that |x − a| ≤ r is closed.

Both the empty set ∅ and the entire vector space X are closed.

Maps: Let X and Y be normed vector spaces, and let f :U ⊆ X → V ⊆ Y be a map. We say that f is injective if it
does not map any two distinct vectors in U to the same vector in V . More formally, this means that for any two vec-
tors a and b in U , if f (a) = f (b), then a = b. We say that f is surjective if every vector in V is the image f (a) of
some vector a in U . When both of these conditions hold, we say that f is bijective.

1 A complete normed vector space is called a Banach space. Every finite-dimensional normed vector space over R or C is a Banach space.
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We write f (U) to denote the set of all elements f (a) such that a is an element of U . The condition that f :U → V is
surjective is equivalent to the condition f (U) = V .

Inverse maps: Let X and Y be normed vector spaces, and let f :U ⊆ X → V ⊆ Y be a map.

1. An inverse map for f is a map f −1: V → U such that f −1 f is the identity map on U and f f −1 is the
identity map on V . A inverse map f −1 exists if and only if f is bijective. When an inverse map f −1 exists, we
say that f is invertible.

2. Let W ⊆ U be an open subset. The restriction map f |W : W → V is the map f restricted to the domain W ,
i.e., the map a → f (a) for all vectors a in W .

3. Let a be a vector in U . We say that f has a local inverse at a if there is an open neighborhood W ⊆ U of a

such that f |W is injective. In this case there is a map g: W → f (W ) such that g(a) = f (a) for all a in W , and
g has an inverse g−1.

Order of differentiability: Let X and Y be finite-dimensional normed vector spaces over R or C, let f :U ⊆ X → Y

be a map, let p be a point in U , and let n > 0 be a natural number. We say that f is differentiable to order n at p if
Di f ( p) exists for all i ∈ [1, n]. We say that f is infinitely differentiable at p if Di f ( p) exists for all i > 0. We say
that f is differentiable to order n (respectively infinitely differentiable) if it has that property at every point in its
domain.

Note that if Dn f exists for n > 1, then Df n−1 is continuous, because differentiability implies continuity. Accord-
ingly, we make the following definition. If Dn f exists and is continuous, then we say that f is continuously differ-

entiable to order n . An infinitely differentiable function is continuously differentiable to all orders.

1.2. An Example

We now present a simple example from first-year calculus. Let f : R → R be the function f (x) = x2. Then f has no
local inverse at zero. Indeed, choose any open set W containing zero. Then for any positive number a that is suffi-
ciently close to zero, both a and −a are in W , and a2 = (−a)2. Therefore f is not injective when restricted to W .2

On the other hand, f does have a local inverse at any point a ≠ 0. For example, let a = 2, and let W be the open
interval (1, 3). Then f (a) = 22 = 4, and f (W ) is the open interval (1, 9). There is only one number x in W such that
f (x) = 4, and that is x = 2. The other real number x such that x2 = 4, namely x = −2, is not a member of W .

In general, f has a local inverse at any point a where f is either increasing or decreasing for all points sufficiently
close to a, i.e., its derivative at a is not zero. In the case of f (x) = x2, we hav e Df (x) = 2x, so Df (a) = 0 if and only
if a = 0. In § 1.5, we shall see that a general map f has a local inverse at points a where its derivative Df (a) is
invertible as a linear map λ : R → R.

Let W be an open subset of R that does not contain zero. From first-year calculus, we know that the local inverse
g−1: f (W ) → W is given by g(x) = x1/2. We also know that g−1 is differentiable on f (W ), with derivative
Dg−1(y) = (1 / 2) y−1/2. Substituting y = f (x) = x2, we obtain

Dg−1( f (x)) =
1

2
⋅

1

(x2)1/2
=

1

2x
= Df (x)−1, (1)

where Df (x)−1 denotes the inverse of Df (x) as a linear map. In § 1.5, we shall see that equation (1) is a specific
case of a general rule for the derivative of a local inverse.

1.3. Preliminary Results

To prove the inverse mapping theorem, we will need the following results.

1.3.1. Contraction Maps

The proof of the inverse mapping theorem depends upon a key fact about a special kind of map from a normed vec-
tor space to itself. Let X be a normed vector space, let U ⊆ X be a subset, and let f :U → U be a map. We say that
f is a contraction map or shrinking map with constant c if (a) c is a real number such that 0 < c < 1, and (b) for
any vectors a and b in U , we hav e

2 By convention, we write √ a or a1/2 to denote the nonnegative square root of a. Note that the function f (x) = x1/2 does not satisfy the defini-

tion of an inverse in a neighborhood of zero; for example, when W = (−2, 2), we have ((−1)2)1/2 = 11/2 = 1 ≠ −1.
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| f (a) − f (b)| ≤ c|a − b|. (2)

For example, let f : R → R be the map x → x/2. Then f is a contraction map with constant c = 1/2, because for
any a and b in R we have

| f (a) − f (b)| =




a

2
−

b

2





=
1

2
|a − b|,

so (2) holds with c = 1/2. Observe the following facts about this map:

1. We hav e f (0) = 0/2 = 0. Therefore point x = 0 is a fixed point of f , i.e., a point a such that f (a) = a.

2. For any point a, we hav e f (a) = a/2. Therefore f moves a closer to zero, unless a is already zero. Further,

n→∞
lim f n(a) =

n→∞
lim

a

2n
= 0, where f n denotes f ⋅⋅⋅ f (n times).

We generalize these observations with the following contraction lemma:

Let X be a finite-dimensional normed vector space over R or C, let U be a nonempty closed subset of X,  and let

f :U → U be a contraction map with constant c. Then

1. f has a fixed point p, i.e., a point p in U  such that f ( p) = p.

2. The fixed point p is unique, i.e., for any fixed point q, we have q = p.

3. For any point a in U, we have
n→∞
lim f n(a) = p.

Proof: (1) Choose a point a in U . We will show that pa =
n→∞
lim f n(a) exists and is a fixed point of f .

Let i, j, and k be positive integers with i = j + k. Applying (2) j times yields

| f i(a) − f j(a)| = | f j( f k(a)) − f j(a)| ≤ c j | f k(a) − a|. (3)

Further,

| f k(a) − a| = |a − f k(a)| = |a +
k−1

n=1
Σ (− f n(a) + f n(a)) − f k(a)|

= |
k−1

n=0
Σ ( f n(a) − f n+1(a))|

≤
k−1

n=0
Σ | f n(a) − f n+1(a)|

≤
k−1

n=0
Σ cn |a − f (a)|

≤
1

1 − c
|a − f (a)|,

where we have used the triangle inequality to move the norm bars inside the sum, and the last step follows from the
convergence of the geometric series.3 The last term is a constant N , independent of i, j, and k. Therefore (3) yields

| f i(a) − f j(a)| ≤ c j N ,

and by taking large enough j we can make the right-hand side arbitrarily small. Therefore the sequence
Sa = { f i(a)}i ∈ N (where N denotes the natural numbers 0, 1, 2, . . .) is Cauchy;4 and because X is finite-dimensional
over R or C and therefore complete, S converges to an element pa in X . It is a basic fact about closed sets in a topo-
logical space that if S is a sequence of points in a closed set U ⊆ X , and S converges to a point q in X , then U con-
tains q.5 Therefore U contains pa.

3 See Calculus over the Complex Numbers, § 4.2.
4 See Calculus over the Complex Numbers, § 4.2.
5 See, e.g., [Gaal 2009]. Here is a simple proof in the case of a normed vector space. It suffices to prove the contrapositive, i.e., if q is not

contained in U , then no sequence of points in U converges to q. Because U is closed, its complement UC is open. Therefore there exists an open
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To see that pa is a fixed point of f , consider the absolute difference

| f ( pa) − pa | = | f ( pa) − f n(a) + f n(a) − pa | (n > 0)

≤ | f ( pa) − f n(a)| + | f n(a) − pa |

≤ c|pa − f n−1(a)| + | f n(a) − pa |.

For large enough n, we can make both terms on the right arbitrarily small, so the left-hand side must be zero, i.e.,
f ( pa) = pa.

(2) Suppose p and q are fixed points of f . Then we have

|p − q| = | f ( p) − f (q)| ≤ c|p − q|.

If | p − q| ≠ 0, then we can divide through by this term, yielding 1 ≤ c. But c < 1  by assumption. Therefore
|p − q| = 0, i.e., p = q.

(3) This fact follows from the proofs of (1) and (2).

1.3.2. The Map λ → λ−1

We will also need the fact that the map λ → λ−1 is an infinitely differentiable map from a subset of L(X , Y ) to
L(Y , X). As usual, L(X , Y ) denotes the space of linear maps from X to Y .

Let X and Y be finite-dimensional normed vector spaces over R or C. Let U ⊆ L(X , Y ) be an open set of invert-

ible linear maps. Let f :U → L(Y , X) be the map λ → λ−1. Then f is infinitely differentiable.

Proof: Fix a point λ in U . We first show that Df exists at λ . Choose a point λ1 ∈ L(X , Y ) such that λ + λ1 ∈ U ,
and consider the difference map

∆ = f (λ + λ1) − f (λ) = (λ + λ1)−1 − λ−1.

Fix a point x ∈ X , and let y = (λ + λ1)(x). Then

∆(y) = x − x − λ−1(λ1(x)) = −(λ−1(λ1((λ + λ1)−1(y))).

Therefore

∆ = (λ + λ1)−1 − λ−1 = −λ−1 λ1 (λ + λ−1
1 ),

i.e.,

(λ + λ1)−1 = λ−1 − λ−1 λ1 (λ + λ−1
1 ). (4)

Substituting the right-hand side of (4) for (λ + λ1)−1 in the right-hand side, we obtain

f (λ + λ1) = (λ + λ1)−1 = λ−1 − λ−1 λ1 (λ−1 − λ−1 λ 1 (λ + λ−1
1 ))

= f (λ) + g(λ1) + φ (λ1), (5)

where

g(λ1) = −λ−1 λ1 λ−1

and

φ (λ1) = λ−1 λ1 λ−1 λ1 (λ + λ−1
1 ).

Then g is a composition of linear maps, so it is linear. Therefore by the definition of the derivative and (5), we have
g(λ1) = Df (λ)(λ1) if φ is o(λ1). But this is true because

|φ (λ1)| ≤ |λ−1||λ1||λ−1||λ1||λ + λ−1
1 |,

and dividing by |λ1| leaves a factor of |λ1| that goes to zero as λ1 goes to zero.

ball B(q, r) contained in UC . This means that every point in U has at least distance r to q, so no sequence of points in U can get arbitrarily close

to q.
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Thus we have shown that f (λ) = λ−1 has the first derivative

D1 f (λ) = (λ1 → − f (λ) λ1 f (λ)) (6)

ev erywhere on U . Now we examine the higher-order derivatives. Rewrite (6) as follows:

D1 f (λ)(λ1) = − f (λ) (λ1 f (λ)). (7)

The outer composition in (7) is a composition of linear maps, which is a bilinear map. Therefore we can apply the
product rule (The General Derivative, § 7.4) to the outer composition. Doing that yields

D2 f (λ)(λ1)(λ2) = −Df (λ)(λ2) (λ1 f (λ)) − f (λ) D(λ1 f (λ))(λ2). (8)

By the rule for composition with a linear map (The General Derivative, § 7.6), we have

D2 f (λ)(λ1)(λ2) = −Df (λ)(λ2) λ1 f (λ) − f (λ) λ1 Df (λ)(λ2).

= f (λ) λ2 f (λ) λ1 f (λ) + f (λ) λ1 f (λ) λ2 f (λ). (9)

We can then repeat this process, generating a derivative of any desired order.

Example: Identify R with L(R, R) according to the isomorphism r → M(r). (Recall that M(r) is the linear map
“multiply by r.”). Then an element λ of L(R, R) corresponds to a number r, and λ−1 corresponds to 1/r. Let
f : R − {0} → R be the map (λ → λ−1) = (r → 1/r). In this context we compose linear maps by multiplying num-
bers. So by (6), Df (r) is the linear map M(−1/r2) = h → − h/r2. Indeed,

f (r + h) − f (r) − Df (r)(h) =
1

r + h
−

1

r
+

h

r2
=

h2

r2(r + h)
,

which is o(h). Notice also that the formula Df agrees with the rule learned in first-year calculus for the derivative of
the function f (x) = 1/x.

1.4. The Weak Inverse Mapping Theorem

We now state and prove a weak form of the inverse mapping theorem. This form contains some assumptions that
make the proof easier, and that we will relax in § 1.5.

Let X be a finite-dimensional normed vector space over R or C. Fix an open neighborhood U of 0 in X  and a

map f :U → X that takes 0 to 0. Assume that f is continuously differentiable to order n > 0, that the derivative

Df (x) is invertible at each point x ∈ U, and that Df (0) is the identity map I : X → X. Then f has a local inverse

at 0, i.e., there exists an open neighborhood W ⊆ U of 0 and a map g: W → f (W ) such that g = f on W  and g

has an inverse g−1. Moreover, g−1 is continuously differentiable to order n, and at each point y in f (W ) we have

Dg−1(y) = Df (g−1(y))−1.

Proof: Let F :U → X be the mapping x → x − f (x). Then DF(0) = 0, and DF is continuous on U , so there exists a
real number r > 0 such that

x ∈ B≤(0, r) ⇒ |DF(x)| ≤
1

2
.

Fix such an r, and let W = B(0, r) ∩ f −1(B(0, r/2)). f is differentiable and therefore continuous. Therefore
f −1(B(0, r/2)) is open, so W is an intersection of open sets and therefore an open neighborhood of zero.

We wish to show that f |W is injective, i.e., for any y in f (W ) there exists a unique x y in W such that f (x y) = y. It
suffices to show that for any y in B≤(0, r/2), there exists a unique x y in B≤(0, r) such that f (x y) = y, because in this
case, for any y in f (W ),

1. y is in B≤(0, r/2), so there is a unique x y in B≤(0, r) such that f (x y) = y.

2. x y is in W and W ⊆ B≤(0, r), so if x y is unique in B≤(0, r), then it must unique in W .

Let x1 and x2 be any points in B≤(0, r), and let h = x2 − x1. By the generalized mean value theorem (The General

Derivative, § 7.8), we have
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|F(x1) − F(x2)| = |F(x1) − F(x1 + h)| =





1

0
∫ DF(x1 + th)(h) dt






≤
1

0
∫ |DF(x1 + th)(h)| dt

≤
1

0
∫ |DF(x1 + th))||h| dt ≤

1

0
∫ 1

2
|h| dt =

1

2
|x1 − x2|. (10)

In particular, setting x1 = x and x2 = 0, we have

x ∈ B≤(0, r) ⇒ |F(x)| ≤
1

2
|x|. (11)

For any point y in B≤(0, r/2), define F y: B≤(0, r) → B≤(0, r) as follows:

F y(x) = y + F(x) = x + (y − f (x)).

The range in the definition of F y is well-defined because

|F y(x)| = |y + F(x)| ≤ |y| + |F(x)|

≤
r

2
+ |F(x)| (because y ∈ B≤(0, r/2))

≤
r

2
+

|x|

2
(by (11))

≤
r

2
+

r

2
(because x ∈ B≤(0, r))

= r.

Further, F y is a contraction map with constant 1/2, because for any points x1 and x2 in B≤(0, r), we have

|F y(x1) − F y(x2)| = |F(x1) − F(x2)|

≤
1

2
|x1 − x2| (by 10).

Define

x y =
n→∞
lim F n

y (0).

By § 1.3.1, x y is well-defined, is a member of B≤(0, r), and is a fixed point of F y, i.e.,

F y(x y) = x y + (y − f (x y)) = x y,

so f (x y) = y as required. Further, by the uniqueness of the fixed point, x y is the only point in B≤(0, r) with this
property.

We hav e established that f |W is injective, so there exists a map g: W → f (W ) such that g equals f on W and g has
an inverse g−1. We now show that g−1 is continuous on f (W ). For all x in W , we hav e x = f (x) + F(x). Therefore
for all x1 and x2 in W , we hav e

|x1 − x2| = | f (x1) + F(x1) − f (x2) − F(x2)|

= | f (x1) − f (x2) + F(x1) − F(x2)|

≤ | f (x1) − f (x2)| + |F(x1) − F(x2)|

≤ | f (x1) − f (x2)| +
1

2
|x1 − x2| (by (10)).

Moving the second term on the right to the left and collecting terms yields
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|x1 − x2| ≤ 2| f (x1) − f (x2)|,

so for all y1 and y2 in f (W ), we have

|g−1(y1) − g−1(y2)| ≤ 2|y1 − y2|. (12)

Inequality (12) establishes that g−1 is continuous.

We now show that g−1 is continuously differentiable. Choose elements y ∈ f (W ) and h ∈ X such that
y + h ∈ f (W ). Let x y = g−1(y) and x y+h = g−1(y + h). Then x y and x y+h both lie in B≤(0, r). Consider the differ-
ence function

φ (h) = g−1(y + h) − g−1(y) − Df (x y)−1(h).

To show that g−1 is differentiable at y with derivative Dg−1(y) = Df (x y)−1 = Df (g−1(y))−1, we need to show that φ is
o(h), i.e., φ (h)/|h| tends to zero as h tends to zero.

Let k = x y+h − x y. Then h = f (x y+h) − f (x y) = f (x y + k) − f (x y), and

φ (h) = k − Df (x y)−1( f (x y + k) − f (x y)). (13)

Because f is differentiable at x y, we hav e

f (x y + k) = f (x y) + Df (x y)(k) + ψ (k), (14)

where ψ is o(k). Substituting (14) into (13) and canceling terms yields

φ (h) = Df (x y)−1(ψ (k)). (15)

Further,

|Df (x y)−1(ψ (k))| ≤ |Df (x y)−1||ψ (k)|,

and |Df (x y)−1| is independent of k, so it suffices to show that ψ (k) is o(h). As h tends to zero,
k = g−1(y + h) − g−1(y) tends to zero by the continuity of g−1, and so ψ (k)/|k | tends to zero because ψ is o(k). Thus
it suffices to show that |k | ≤ 2|h| for all h in f (W ). But this is true because by (12), we have

|k | = |g−1(y + h) − g−1(y)| ≤ 2|y + h − y| = 2|h|.

The derivative Dg−1(y) = Df (g−1(y))−1 is continuous, because it is the composition of the following continuous
maps:

1. g−1, which is continuous by what we proved above.

2. Df , which is continuous by hypothesis.

3. λ → λ−1, which is differentiable and therefore continuous by § 1.3.2.

Now for the higher-order derivatives. If the order n in the statement of the theorem is 1, we are done. Otherwise, let
F be the function λ → λ−1 defined on invertible linear maps in L(X , X), and write

Dg−1 = F Df g−1 = G g−1, (16)

where G = F Df . By assumption f has n ≥ 2 continuous derivatives, and by § 1.3.2 F has infinitely many contin-
uous derivatives. Therefore G is continuously differentiable, and we may apply the chain rule to (16), yielding the
continuous derivative

D2g−1(x) = (DG g−1)(x) Dg−1(x). (17)

If n = 2, we are done. Otherwise by the chain rule we have the continuous derivative

DG(x) = (DF Df )(x) D2 f (x). (18)

By applying the product rule to the outer composition in (18) and the chain rule to the inner composition in (18),
analogously to what we did in § 1.3.2, we can form the continuous derivative D2G(x). We can repeat this process
n − 2 times, forming n − 1 continuous derivatives of G. Now we can apply the same procedure to (17), forming n

continuous derivatives of g−1.
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1.5. The Inverse Mapping Theorem

Now we state and prove the stronger form of the theorem.

Let X and Y be finite-dimensional normed vector spaces over R or C. Fix an open subset U ⊆ X and a map

f :U → Y .  Assume that f is continuously differentiable to order n > 0 and that the derivative Df (x) is invertible

at each point x ∈ U. Then at each point p ∈ U, f has a local inverse, i.e., there exists an open neighborhood

W ⊆ U of p and a map g: W → f (W ) such that g = f on W  and g has an inverse g−1. Moreover, g−1 is continu-

ously differentiable to order n, and at each point y in f (W ) we have Dg−1(y) = Df (g−1(y))−1.

Proof: First we prove the theorem in the case that p = f ( p) = 0. Let λ : X → Y be the linear map Df ( p) = Df (0),
and consider the inverse map λ−1: Y → X , which exists by assumption. Let f1:U → X = λ−1 f . Then f1(0) = 0,
and Df1(0) = λ−1 Df (0) = λ−1 λ = I . Moreover, we hav e

f = λ f1.

By § 1.4, there exists an open neighborhood W ⊆ U of 0 and a map g1: W → f1(U) such that g1 = f1 on W , g1 has
an inverse g−1

1 , and for each x ∈ W g−1
1 is continuously differentiable to order n at y1 = f1(x) with

Dg−1
1 (y1) = Df1(x)−1. Therefore, there exists a map g = λ g1: W → f (W ) such that g = f on W , g has an inverse

g−1 = g−1
1 λ−1, and g−1 is continuously differentiable to order n at y = f (x). Moreover,

Dg−1(y) = Dg−1
1 (y) λ−1 = Df1(x)−1 λ−1

and

Df (x) = λ Df1(x).

Therefore Dg−1(y) = Df (x)−1, as was to be shown.

Now we relax the assumption p = f ( p) = 0. Let h1: X → X be the map x → x + p, let h2: Y → Y be the map
y → y − f ( p), and consider the map f2 = h2 f h1: h−1

1 (U) → h2( f (U)). Then f2 maps zero to zero. Moreover,
we have

f = h−1
2 f2 h−1

1 .

By the result just shown, there exists an open neighborhood W1 ⊆ h−1
1 (U) of h−1

1 ( p) = 0 and a map g2: W1 → f2(W1)
such that g2 = f2 on W1, g2 has an inverse g−1

2 , and for all x ∈ W1 g−1
2 is continuously differentiable to order n at

y = f2(x) with Dg−1
2 (y) = Df2(x)−1. Therefore there exists an open neighborhood W = h1(W1) ⊆ U of p and a map

g = h−1
2 g2 h−1

1 : W → f (W ) such that g = f on W , g has an inverse g−1 = h1 g−1
2 h2, and g−1 is continuously

differentiable to order n at y = f (x). Moreover, the derivatives of h1 and h2 and their inverses map every vector to
the identity map I , so

Dg−1(y) = Dg−1
2 (h2(y)) = Df2(g−1

2 (h2(y)))−1 = Df2(h−1
1 (x))−1

and

Df (x) = Df2(h−1
1 (x)).

Therefore Dg−1(y) = Df (x)−1, as was to be shown.

2. The Implicit Mapping Theorem

In this section we discuss the implicit mapping theorem.

2.1. An Example

Again we start with a simple example from first-year calculus. Let f : R2 → R be the function

f (x) = f (x1, x2) = x2
1 + x2

2, (1)

and consider the equation f (x) = 1. The set of points x satisfying equation (1) is the unit circle centered at the ori-
gin in R2. Observe the following:

1. D2 f (x1, x2) = 2x2.
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2. Let p = (0, 1). Then D2 f ( p) = 2 ≠ 0. Let U1 be a small neighborhood of 0, say U1 = B(0, 1/2), and let U2 be
a small neighborhood of 1, say U2 = B(1, 1/2). Consider the set S of points x = (x1, x2) in U = U1 × U2 such
that f (x) = 1. Then the relation g(x1) = x2 for all (x1, x2) in S defines a function g:U1 → U2. This function

is given by g(x1) = √ 1 − x2
1, and it is differentiable with derivative

Dg(x1) =
1

2
(1 − x2

1)−1/2 (−2x1) =
−x1

√ 1 − x2
1

.

3. Let q = (1, 0). Then D2 f (q) = 0. Let U1 be a small neighborhood of 1, say U1 = B(1, 1/2), and let U2 be a
small neighborhood of 0, say U2 = B(0, 1/2). Consider the set S of points x = (x1, x2) in U = U1 × U2 such
that f (x) = 1. Then the relation g(x1) = x2 does not yield a well-defined function g:U1 → U2, because for

each x1 ≠ 1 in S1, there are two numbers x2 such that f (x1, x2) = 1, namely √ 1 − x2
1 and −√ 1 − x2

1.

The map g in item 2 is called an implicit map. In general, for a map f : X1 × X2 → Y , an implicit map g(x1) = x2

exists near points p where f is differentiable and Df2( p) is inv ertible as a linear map.

2.2. The Weak Implicit Mapping Theorem

As before, we first state and prove a weak form of the theorem.

Let X1 and X2 be finite-dimensional normed vector spaces over R or C, let U1 ⊆ X1 and U2 ⊆ X2 be open sets,

let U = U1 × U2, and let f :U → X2 be a map. Assume that f is continuously differentiable to order n > 0 and

that the derivative Df (x) is invertible at each point x ∈ U. Let a = (a1, a2) be a point in U, and assume that

D2 f (a) = I .  Let b = f (a). Then there exists an open neighborhood W1 of a1 in U1 and a map g: W1 → U2 such

that g(a1) = a2, f (x1, g(x1)) = b for all x1 in W1, and g is continuously differentiable to order n.

Proof: Let φ :U → U1 × X2 be the map (x1, x2) → (x1, f (x1, x2)). Taking the derivative of φ yields

Dφ (a) =




IX1

D1 f (a)

0

D2 f (a)





=




IX1

D1 f (a)

0

IX2




.

As a linear map, Dφ (a) has an inverse

Dφ (a)−1 =




IX1

−D1 f (a)

0

IX2




.

Therefore by § 1.5 there exists an open neighborhood W ⊆ U of a and a map χ : W → φ (W ) such that χ = φ on W ,
χ has an inverse χ −1 = ψ , and ψ is continuously differentiable to order n on χ (W ).

Let ψ1 and ψ2 be the coordinate maps of ψ , i.e., for all x = (x1, x2) in χ (W ), let

ψ (x1, x2) = (ψ1(x1, x2),ψ2(x1, x2)).

Then ψ1(x1, x2) = x1, and ψ2 is continuously differentiable to order n. Let W1 be the set of elements x1 such that
(x1, x2) ∈ W for some x2 ∈ X2. Then W1 is an open neighborhood of a1 in U1. Define the mapping g: W1 → U2 by

g(x1) = ψ2(x1, b).

Then g is continuously differentiable to order n. Further, for all x1 in W1, we hav e

(x1, f (x1, g(x1))) = φ (x1, g(x1)) = φ (ψ1(x1, b),ψ2(x1, b))

= φ (ψ (x1, b)) = (x1, b).

Therefore f (x1, g(x1)) = b, as required.

2.3. The Implicit Mapping Theorem

Now we state and prove the stronger form of the theorem.
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Let X1, X2, and Y be finite-dimensional normed vector spaces over R or C, let U1 ⊆ X1 and U2 ⊆ X2 be open

sets, let U = U1 × U2, and let f :U → Y be a map. Assume that f is continuously differentiable to order n > 0
and that the derivative Df (x) is invertible at each point x ∈ U. Let a = (a1, a2) be a point in U, and let b = f (a).
Then there exists an open neighborhood W1 of a1 in U1 and a map g: W1 → U2 such that g(a1) = a2,

f (x1, g(x1)) = b for all x1 in W1, and g is continuously differentiable to order n. Moreover, there exists a real

number r > 0 such that the values g(x) are uniquely determined for all x ∈ B(a1, r).

Proof: Let λ : X2 → Y be the linear map D2 f (a), and consider the inverse map λ−1: Y → X2. Let

f *:U → X2 = λ−1 f .

Then D2 f *(a) = I . Let b* = f *(a). By § 2.2 there exists an open neighborhood W1 of a1 in U1 and a map
g: W1 → U2 such that g(a1) = a2, g is continuously differentiable to order n, and

f *(x1, g(x1)) = b* (2)

for all x1 in W1. Applying λ to both sides of (2), we see that f (x1, g(x1)) = b, as required.

As to the uniqueness of g on B(a1, r), it suffices to show the uniqueness result for the map f *. Fix an open neigh-
borhood W1 of a1 and a map g as guaranteed in § 2.2, and choose r > 0 such that B(a1, r) ⊆ W1. Let V1 be an open
neighborhood of of a1, and let h: V1 → U2 be a continuous map such that h(a1) = a2 and f *(x1, h(x1)) = b for all
x1 ∈ V1. Let S = V1 ∩ B(a1, r). It suffices to show that g and h attain the same values on S.

Let φ be as in § 2.2. For all x1 ∈ S, we hav e

φ (x1, h(x1)) = (x1, f *(x1, h(x1))) = (x1, b)

and

φ (x1, g(x1)) = (x1, f *(x1, g(x1))) = (x1, b)

and therefore

φ (x1, h(x1)) = φ (x1, g(x1)). (3)

Let W and W1 be as defined in § 2.2. φ is invertible on W , so for all x1 such that (x1, h(x1)) ∈ W , (3) implies
h(x1) = g(x1). Moreover, (x1, g(x1)) ∈ W for all x1 ∈ S ⊆ B(a1, r) ⊆ W1. Further, g(a1) = a2 = h(a1), and g and h

are continuous. Therefore there exists an open set T ⊆ S containing a1 such that (x1, h(x1)) ∈ W for all x1 ∈ T ,
and so h = g on T . For example, let B2 be an open ball around a2 contained in W . By the continuity of the map
x1 → (x1, h(x1)), we may choose an open ball B1 around a1 contained in S such that (x1, h(x1)) ∈ B2 for all
x1 ∈ B1. Then we may let T = B1.

We now show that S itself is such a set T . Choose x1 ∈ S, and let v = x1 − a1. Let Z be the set of real numbers t

such that 0 ≤ t ≤ 1 and g(a1 + tv) = h(a1 + tv). Then Z is not empty, so it has a least upper bound. Let s be a real
number in Z . By definition, g(a1 + sv) = h(a1 + sv). If s < 1, then all the conditions of the present theorem are sat-
isfied at a1 + sv, so we can reassert all the arguments made thus far to establish that g and h are equal in a neighbor-
hood of a1 + sv. Therefore s is not the least upper bound if s < 1. Hence the least upper bound is 1, i.e., Z = S.
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