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The subject of this paper is integration in real vector spaces of finite dimension. Starting with the one-variable inte-
gral learned in first-year calculus, this paper connects that case to the more general theory. It then discusses path
integrals and their extensions to higher dimensions. It presents the basic theory of differential forms.

This paper can serve as a bridge between integration as taught in first- and second-year calculus and more advanced
material, e.g., differential forms as taught in graduate real analysis and differential geometry. I recommend that you
read my paper The General Derivative, at least through § 7, before reading this paper. Otherwise, the prerequisites
for reading this paper are the same as for reading that one.

Throughout this paper we consider mappings f : X → Y , where X and Y are finite-dimensional real vector spaces.

1. Integration in R

First-year calculus: We begin with the case X = Y = R. This is the case of a single real variable, covered in first-
year calculus. Let f : R → R be a function defined and continuous on a closed interval s = [a, b].1 In first-year cal-
culus, we learn that we can write the formula

∫ f (x) dx. (1)

This formula makes sense if and only if there exists a function F : R → R, defined and differentiable on s, such that
F ′(x) = f (x) everywhere on s, where F ′(x) is the derivative of F(x). In this case we write

∫ f (x) dx = F(x), (2)

where the equality is taken modulo the relation that two functions are equivalent if they differ by a constant on s. In
other words, the right-hand side of (2) denotes any representative of the class { G: R → R | for some C ∈ R and all
x ∈ s, G(x) = F(x) + C }.

We also learn that the formula

b

a

∫ f (x) dx (3)

represents the area under the curve from a to b, represented as a limit of sums of rectangles.

Finally, we learn that formulas (2) and (3) are related in the following way: if (2) holds, then we may compute (3)
according to the formula

b

a

∫ f (x) dx = F(b) − F(a). (4)

Here F represents an element of the class ∫ f (x) dx; the particular one doesn’t matter, because the constant term

cancels out.

Formula (1) is usually called an indefinite integral. We may also call it a formal integral, because it maps one
function to another without computing any numeric result. Formula (2) expresses the fact that the formal integral is

1 A closed interval is a set of real numbers lying between two numbers, including the endpoints. For example, the set of all real numbers r

such that −1 ≤ r ≤ 1 is a closed interval. We often write closed intervals by listing the endpoints in brackets, e.g., [−1, 1]. An open interval is

similar, but it excludes its endpoints and is written with parentheses. For example, the open interval (−1, 1) represents all real numbers r such that

−1 < r < 1.
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an antiderivative. Formula (3) is usually called a definite integral. Formula (4), which expresses the relationship
between the indefinite integral and the definite integral, is one way of stating the fundamental theorem of calculus.

The linear map dx: In first-year calculus, the symbol dx is mainly a marker that indicates the variable of integra-
tion. However, there is a deeper theory here: by interpreting the symbol dx as a linear map, we can connect the sin-
gle-variable integral to the general derivative in the following elegant way.

Let the symbol dx mean the identity map from R to R, i.e., the map h → h, for all h in R. Then dx is a linear map.
For each fixed value of x, f (x) is a number; and by the rules for multiplying numbers by mappings, f (x) dx repre-
sents the linear map h → f (x)h. If f (x) = F ′(x), then f (x) dx = x → (h → F ′(x)h) is our old friend DF(x), where
D is the differential operator defined in The General Derivative. With this interpretation, formula (2) becomes

∫ DF(x) = F(x). (5)

In the context of integration, we write d instead of D for the differential operator. Also, we often write just f

instead of f (x), if the variable of the function domain X is either obvious or unimportant. Therefore, (5) often
appears in the alternate form

∫ df = f .

This formula elegantly expresses the relationship between the derivative and the integral. In The General Derivative

we wrote

∫ DF(x)(1) dx

in order to convert the linear map DF(x) to a real number so that we could integrate it. However, this really was not
necessary: by interpreting dx as a linear map, we can instead write

∫ DF(x),

which is equivalent and simpler.

Differential forms: The concept of a differential form generalizes the expressions f (x) dx that appear in one-
dimensional integrals; using differential forms, one can integrate over domains of zero or more dimensions. We use
the symbol ω to denote a differential form. Every differential form has a degree corresponding to the dimension of
the domain of integration: a point, a one-dimensional path, a two-dimensional surface, etc.

Zero forms: When X = Y = R, a differential form of degree zero, also called a zero form, is a function f : R → R.
Let Ω0(R) denote the set of zero forms. It is a real vector space, according to the rules rf = x → rf (x) and
f1 + f2 = x → f1(x) + f2(x).

We integrate a zero form over a set of dimension zero, i.e., a point. To integrate the zero form f at a point a, we
evaluate f at a. That is,

a

∫ f = f (a),

where a is a real number.

One forms: When X = Y = R, a differential form of degree one, also called a one form, is a map ω : R → L(R, R),
where as usual L(R, R) is the vector space of linear maps λ : R → R. This space is often called the dual space of R

and written R*. We may write any such one form as f dx, where f is a zero form and dx is the map h → h dis-
cussed above. For example, if ω (x) = f (x) dx and f (x) = x + 3, then ω (2) = 5 dx, which is the linear map
M(5) = h → 5h.

Let Ω1(R) denote the set of one forms. It is a real vector space, according to the rules r( f dx) = (rf ) dx and
f1 dx + f2 dx = ( f1 + f2) dx.

Notice the following:

1. If the function f is differentiable, then we may apply the differential operator d to the zero form f to obtain
the one form df = f ′ dx. The differential operator causes the degree of the form to go up by one from zero to
one.
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2. If the function f is integrable, then we may apply the integral operator ∫ to the one form f dx to obtain the

zero form ∫ f dx = F , where F ′ = f . Again the equality is taken modulo the constant functions. The integral

operator causes the degree of the form to go down by one from one to zero.

The operator d is called the exterior derivative. When applied to a zero form f , df just means the derivative Df .
When applied to forms of higher degree, d and D have different meanings. For example, DDf = D2 f means the
second derivative of f , whereas ddf = 0. We will explain this further below.

Let ω = f dx be a differential form such that f is integrable, so that ω = dF for some function F . In this case we
say that ω is an exact differential form. When dω = 0, we say that ω is closed.

Forms of higher degree: When X = R, all forms of degree two and greater are identically zero. Below we will
explain why this is true; for now we will just accept it as a fact.

Closed intervals: We integrate a one form over a collection of points with dimension one. The simplest such collec-
tion is a closed interval [a, b]. By convention we assume a ≤ b. Just as in first-year calculus, we integrate an exact
one form over a closed interval s = [a, b] by computing the definite integral from a to b:

s

∫ f dx =
b

a

∫ f dx = F(b) − F(a),

where dF = f dx.

We often think of integration over a closed interval as the area under the curve f (x) between a and b. It can also
represent, for example, the work done by a particle moving from a to b with constant speed one and constant direc-
tion as it is acted on by the force f .

Paths: A path is a differentiable function σ : s → R, where s = [a, b] is a closed interval. Integration over a path σ
generalizes the idea of integration over a closed interval s. For example, a path σ (t) can represent the position of a
moving particle p as a function of time. Then integration over σ (t) can represent the work done by p as it moves
from σ (a) to σ (b) with varying speed.

We say that a path σ : s → R is closed if its start and end points are the same, i.e., s = [a, b] and σ (a) = σ (b). An
example of a closed path in R is the motion of a particle that starts moving at some nonzero speed in one direction,
slows to a stop as it moves, and starts moving faster and faster in the opposite direction until it reaches the point at
which it started. We describe the slowing, stopping, and starting to emphasize that the path position must be a dif-
ferentiable function of time.

To compute the integral of a one form over a path, we convert it to an integral over a closed interval, according to the
following rule:

σ
∫ f (x) dx =

s

∫ f (σ (t))σ ′(t) dt. (6)

If we write f (x) dx = ω (x), then f (σ (t)) dx = ω (σ (t)). From the discussion above, we can write σ ′(t) dt = dσ (t).
Then remembering that ω (σ (t)) and dσ (t) are both linear maps from R to R, we can restate the path integration rule
(6) as follows:

σ
∫ f (x) dx =

s

∫ ω (σ (t)) dσ (t). (7)

The composition in (7) represents the map

h → ( f (σ (t)) dx)(dσ (t)(h)) = ( f (σ (t) dx)(σ ′(t)h) = f (σ (t))σ ′(t)h.

We call this map the pullback of the differential form ω with respect to the path σ, because it uses the map σ from
the line segment to R to pull the integral back from R to the line segment. We define the pullback σ *ω according to
the rule

(σ *ω )(t) = ω (σ (t)) dσ (t). (8)

Using this definition of the pullback, we may restate the path integration rule more succinctly as follows:
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σ
∫ ω =

s

∫ σ *ω . (9)

This formulation readily generalizes to higher dimensions; we will discuss this further below.

Note that a closed interval is also a path: it is the special case where σ (t) = t and σ *ω = ω .

Regions: We generalize the notion of a path as follows: A region σ is a function from s to R, where s is either a
point or a closed interval. If s is a closed interval, then the function must be differentiable. This definition lets us
use the same symbol σ to denote regions of dimension zero (i.e., points) and regions of dimension one (i.e., paths).
Below we will discuss regions of higher dimension.

Formal linear combinations: A formal linear combination of elements is a sum of numbers times the elements,
where we specify nothing about the elements except that we can combine them in this way. We collect syntactically
identical terms as in high school algebra. For example, a formal linear combination of the elements x and y is a sum
ax + by, for numbers a and b. Collecting terms means, for example, that x + x = 2x.

Chains: A chain is a finite collection of regions of the same dimension, together with an associated integer weight

for each region. For each region σ in the chain, the associated weight n represents an orientation (via the sign of n)
and a multiplicity (via the magnitude of n). The orientation says whether σ contributes positively or negatively to
the chain. The multiplicity says how many times to count σ in the chain.

We use the symbol γ to represent a chain, and we write a chain as a formal linear combination of paths. For exam-
ple, the one-dimensional chain γ consisting of path σ1 with integer 2 and path σ2 with integer −1 might be written

γ = 2σ1 − σ2.

A chain γ is closed if all of the regions appearing in γ are closed.

To integrate a form ω of degree k over a chain γ of dimension k, we integrate ω over each of the regions in γ, multi-
ply by the integers, and add the results. For example:

2σ1−σ2

∫ ω = 2

σ1

∫ ω −
σ2

∫ ω .

Stokes’ theorem for closed intervals: We can use integration over chains to express the fundamental theorem of
calculus in an elegant way. Let s = [a, b] be a closed interval. We can think of the points a and b as forming the
boundary of s. So we define the boundary chain ∂s to be the zero-dimensional chain b − a. Then by the definition
of integration over chains, and by the fundamental theorem of calculus, we have

s

∫ df =
∂s

∫ f ,

because both sides are equal to f (b) − f (a). This statement is the simplest case of a more general theorem called
the generalized Stokes’ theorem. We will state and prove the general theorem later in this paper.

Stokes’ theorem for paths: We can easily extend Stokes’ theorem to path integrals. Indeed, fix s = [a, b] and
σ : s → R. Then by definition we have

σ
∫ df =

s

∫ σ *df =
s

∫ df (σ (t)) dσ (t)

By the chain rule, this is

s

∫ d( f σ )(t) = f (σ (b)) − f (σ (a)).

Now define the boundary chain ∂σ = σ (b) − σ (a). Then by definition we have

σ
∫ df =

∂σ
∫ f .

Again we will extend this statement to higher dimensions below.
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Path independence for exact one forms: Notice that the boundary chain ∂σ depends only on the endpoints σ (a)
and σ (b) of the path σ and not on the path itself: for any two paths σ1: s → R and σ2: s → R with σ1(a) = σ2(a) and
σ1(b) = σ2(b), we have ∂σ1 = ∂σ2. Therefore by Stokes’ theorem, for any exact one form df , if σ1 and σ2 have the
same endpoints, then

σ1

∫ df =
σ2

∫ df .

In this case we say that the integral is independent of the path (but it does depend on the path endpoints). For
example, the work done by a particle moving from point a to b and acted on by force df is f (b) − f (a) reg ardless of
how fast the particle moves or whether it speeds up, slows down, stops, or changes direction.

A related consequence of Stokes’ theorem is that for any closed path σ , we hav e f (σ (b)) − f (σ (a)) = 0, and so

σ
∫ df = 0.

Similarly, for any closed chain γ, we hav e

γ
∫ df = 0.

Integrating non-exact one forms: If the one form ω is not exact, then we cannot evaluate the definite integral

b

a

∫ ω .

However, it may be the case that for one or more paths σ : [a, b] → R, the one form σ *ω is exact. In this case we

can evaluate the integral

σ
∫ ω for any such path. Further, the value of the integral may depend on the path.

The most beautiful example of this phenomenon that I know of comes from complex analysis. Of course it is cheat-
ing a bit to present an example from complex analysis in a paper about real integration. However, I think it is worth
taking a minor detour to study this example. Also, this example shows how path integration in complex analysis is
closely related to path integration in real analysis.

If you haven’t studied complex analysis, don’t worry. All you need to know to understand this example is the fol-
lowing:

1. The complex numbers C are the real numbers R together with a number i such that i2 = −1. Multiples of i

such as i, −i, 2i, etc. are called pure imaginary numbers.

2. In general, a complex number z is the sum of a real number and a pure imaginary number, i.e., z = a + bi for
some real numbers a and b. The complex numbers form a plane, with the real numbers as the horizontal axis
and the pure imaginary numbers as the vertical axis.

3. Every complex number z lying on the unit circle centered at the origin may be written z(t) = cos t + i sin t,
where t is an angle in radians from the positive real axis. We define eit = cos t + i sin t.

4. A complex function is a mapping f : C → C. We can take derivatives and integrals of complex functions,
similarly to the corresponding operations for real functions. The derivative of z(t) = cos t + i sin t = eit with
respect to t is z′(t) = − sin t + i cos t = ieit .

Now let s be the closed interval [0, 2π ], let σ : s → C be the complex path σ (t) = eit , and let us compute the integral

σ
∫ 1

z
dz.

By definition this is

2π

0
∫ 1

σ (t)
σ ′(t) dt =

2π

0
∫ 1

eit
ieit dt =

2π

0
∫ i dt = 2π i.

Notice that σ is a closed path, but the value of the integral is nonzero. Also, the value of the integral depends on the

path. For example, let σ2: s → C be the complex path σ2(t) = 2eit . Then

σ2

∫ 1

z
dz = 4π i. Howev er, σ and σ2 have
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the same endpoints, because e0 = e2π i = e4π i = 1. More generally, for any path σ n that winds n times around the unit

circle, the value of the path integral is 2π in. This computation shows that the complex differential form
1

z
dz is not

exact, i.e., there is no complex function f defined on the unit circle in the complex plane such that df =
1

z
dz.

2. Integration over Points and Paths in Rn

In this section we let X = Rn and Y = R. We consider functions f : Rn → R, i.e., functions f (x) where
x = (x1, . . . , xn) is an element of Rn. We continue to integrate zero forms over points and one forms over paths.

Differential forms: A zero form is a function f : Rn → R. A one form is a map ω : Rn → L(Rn, R). The space
L(Rn, R) is often called the dual space of Rn and written (Rn)*. These formulas are the same as in the previous sec-
tion, except that now we hav e X = Rn instead of X = R.

To integrate a one form ω in the case X = Rn, we hav e to express ω in terms of the coordinates x1, . . . , xn. To do
that, we make the following construction. Let dxi: Rn → R be the linear map that projects onto coordinate i of Ri .
That is, if h = (h1, . . . , hn) is an element of Rn, then dxi(h) = hi . Let fi: Rn → R be functions, and write

f1 dx1 + ⋅⋅⋅ + fn dxn (1)

to mean the map λ : Rn → L(Rn, R) giv en by

λ(x)(h) = f1(x) dx1(h) + ⋅⋅⋅ + fn(x) dxn(h)

= f1(x)h1 + ⋅⋅⋅ + fn(x)hn.

Then we may write every one form ω in the manner of (1), with a suitable choice of functions fi . We make the set
of one forms Ω1(Rn) into a vector space by distributing scalar multiplication over addition and by collecting additive
terms in the obvious way.

By definition, a one form ω is exact if and only if there exists a function f : Rn → R such that df = ω . By the defini-
tion of the differential operator d , this is true if and only if, for all i, fi = Di f , where Di is the partial derivative with
respect to the coordinate xi . In this case we can formally integrate the one form, yielding f :

∫ D1 f dx1 + ⋅⋅⋅ + Dn f dxn = ∫ df = f .

As usual, the right-hand equality is modulo the constant functions.

Note the following:

1. In The General Derivative, we said that Di f (x) was a linear map. Here Di f (x) is a real number.

2. Many sources write
∂ f

∂xi

instead of Di f .

Integration over points and paths: When X = Rn and Y = R, integration of a zero form f over a point a is the
same as before:

a

∫ f = f (a).

When X = Rn and Y = R, a path σ is a differentiable mapping from a closed interval s = [a, b] to Rn. For example,
let n = 2, a = 0, b = 1, and σ (t) = (t, t). This path traces the diagonal line from (0, 0) to (1, 1) in R2 as t goes from 0
to 1.

To integrate a one form over a path σ , we use the same definition as for X = R, i.e.,

σ
∫ ω =

s

∫ σ *ω .

The definition of the map σ *ω given in the previous section goes through when X = Rn.

As an example with n = 2, let ω = f1 dx1 + f2 dx2 and σ (t) = (σ1(t), σ2(t)). Then the definition of σ *ω gives
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σ
∫ ω =

s

∫ ω (σ (t)) dσ (t). (2)

The composition in (2) represents the map

h → ( f1(σ (t)) dx1 + f2(σ (t)) dx2)((σ ′1(t)h, σ ′2(t)h)) = f1(σ (t))σ ′1(t)h + f2(σ (t))σ ′2(t)h.

Therefore we have

σ
∫ ω =

s

∫ f1(σ (t))σ ′1(t) dt + f2(σ (t))σ ′2(t) dt. (3)

If we write f = ( f1, f2) and dx = (dx1, dx2), then we can write ω = f1 dx1 + f2 dx2 = f ⋅ dx, where where the dot
represents the dot product. Further, if we write dσ (t) = (σ ′1(t) dt, σ ′2(t) dt), then we can rewrite equation (3) as fol-
lows:

σ
∫ ω =

s

∫ f (σ (t)) ⋅ dσ (t) =
s

∫ ( f σ ) ⋅ dσ . (4)

Equation (4) has a physical or geometric interpretation: the dot product f (σ (t)) ⋅ dσ (t) represents the contribution at
each point σ (t) of the vector field f with respect to the instantaneous velocity vector dσ (t) of the path σ. Integrat-
ing this expression with respect to t sums up all the contributions. For example, if f (x) represents a force at each
point x, and σ (t) represents the position of a moving point mass at time t, then the path integral represents the total
work done by the point mass in the time interval [a, b].

Note that when X = Rn and n > 1, we cannot integrate a one form directly over a closed interval: we must use a
path. This is because there are more coordinates in the domain (n) than the degree of the form (1). We will have
more to say about this in the next section.

From the definition of the pullback σ , we can see that for any one forms ω1 and ω2, we hav e
σ *(ω1 + ω2) = σ *ω1 + σ *ω2. Therefore

σ
∫ ω1 + ω2 =

s

∫ σ *(ω1 + ω2) =
s

∫ σ *ω1 + σ *ω2 =
s

∫ σ *ω1 +
s

∫ σ *ω2 =
σ
∫ ω1 +

σ
∫ ω2.

Thus integration over paths is well-behaved with respect to sums of differential forms. For example,

σ
∫ f1 dx1 + f2 dx2 =

σ
∫ f1 dx1 +

σ
∫ f2 dx2.

Stokes’ theorem: Stokes’ theorem for paths applies in Rn for any n > 0. Nothing in the argument given in the pre-
vious section depends on dimension one.

Path dependence: The observations about path independence for exact one forms and integration of non-exact one
forms carry over identically from the previous section into this one. Again, nothing depends on the dimensions of
X .

3. Higher-Dimensional Regions

Now we turn our attention to regions of dimension k ≥ 2. We let X = Rn for n ≥ 2 and Y = R.

3.1. Differential Forms

Tw o forms: To integrate over regions of dimension two, we use a differential form of degree two, also called a two

form. A two form is a map ω : Rn → L(Rn, R)∧L(Rn, R), where the expression to the right of the arrow denotes the
alternating product or wedge product of the vector space L(Rn, R) with itself. This alternating product is the vec-
tor space of formal linear combinations of vectors λ1∧λ2, where λ1 and λ2 represent linear maps in L(Rn, R), sub-
ject to the following rules:

Alt-1. λ1∧λ2 = −(λ2∧λ1).

Alt-2. (λ1 + λ2)∧λ3 = λ1∧λ3 + λ2∧λ3.

Alt-3. For all r ∈ R, r(λ1∧λ2) = (rλ1)∧λ2.
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These rules reflect the structure of two-dimensional integration. In particular, rule Alt-1 reflects the change of sign
that occurs when reversing the orientation of a boundary. We will discuss this issue further below. For now, we con-
tinue with the algebraic properties.

From Alt-1 we can derive λ∧λ = −(λ∧λ), so 2(λ∧λ) = 0, so λ∧λ = 0. From Alt-1 and Alt-2 we can derive

λ1∧(λ2 + λ3) = −((λ2 + λ3)∧λ1) = −(λ2∧λ1 + λ3∧λ1) = λ1∧λ2 + λ1∧λ3.

From Alt-1 and Alt-3 we can derive

r(λ1∧λ2) = r(−(λ2∧λ1)) = −((rλ2)∧λ1) = λ1∧(rλ2).

The linear maps dxi = (x1, . . . , xn) → xi (1 ≤ i ≤ n) form a basis for L(Rn, R). Indeed, each map λ in L(Rn, R) is a
dot product x → v ⋅ x for some vector v = (v1, . . . , vn) in Rn, and so we may write λ as the linear combination
v1 dx1 + ⋅⋅⋅ + vn dxn of the basis vectors dxi . Therefore the elements dxi∧dx j (1 ≤ i ≤ n, 1 ≤ j ≤ n, i < j) form a
basis for L(Rn, R)∧L(Rn, R). We require i < j to eliminate duplicates according to rules Alt-1 and Alt-2. For
example, R2∧R2 has the single basis vector dx1∧dx2, and R3∧R3 has basis vectors dx1∧dx2, dx1∧dx3, and dx2∧dx3.
Other combinations are redundant. For example, dx1∧dx1 = 0, and dx2∧dx1 = −dx1∧dx2. In general L(Rn, R) has
dimension n, and the number of basis vectors dxi∧dx j (i.e., the dimension of L(Rn, R)∧L(Rn, R)) is

m = 

n

2




=
n(n − 1)

2
.

Let e1, . . . , em denote the basis vectors dxi∧dx j , constructed as described above and arranged in order of i then in
order of j. Because the vectors ei are a basis for L(Rn, R), and a two form is a map ω : Rn → L(Rn, R)∧L(Rn, R),
we can write any two form ω (x) as a sum

ω (x) = f1(x) e1 + ⋅⋅⋅ + fm(x) em,

where each fi is a function from Rn to R that gives the component of ω along ei at each point x. For example, when
n = 3, we have

ω (x) = f1(x) dx1∧dx2 + f2(x) dx1∧dx3 + f3(x) dx2∧dx3.

If a is a point in R3, such that fi(a) = ai for each i, then evaluating ω at a yields

ω (a) = a1 dx1∧dx2 + a2 dx1∧dx3 + a3 dx2∧dx3,

where the ai are numbers. This notation looks ambiguous: does a1 dx1∧dx2 mean a1 (dx1∧dx2) or (a1 dx1)∧dx2?
However, by rule Alt-3, it doesn’t matter: both expressions represent the same element of L(R3, R)∧L(R3, R).

k forms: To generalize to regions of dimension k, we use a differential form of degree k, also called a k form. It is

a map ω : Rn → ∧k L(Rn, R), where the expression to the right of the arrow denotes the k-fold alternating product of
L(Rn, R) with itself. This definition agrees with the definitions already given for zero forms, one forms, and two
forms, if we interpret ∧0 L(Rn, R) as R and ∧1 L(Rn, R) as L(Rn, R). For k > 1, the k-fold alternating product is the
real vector space whose elements are formal linear combinations of vectors v = λ1∧⋅⋅⋅∧λ k , where each λ i is an ele-
ment of L(Rn, R), subject to the following rules:

Alt-1. Exchanging any two adjacent elements λ i and λ i+1 of v yields −v.

Alt-2. (λ11 + λ12)∧v = λ11∧v + λ12∧v, where v = λ2∧⋅⋅⋅∧λ k .

Alt-3. For all r ∈ R, r(λ1∧v) = (rλ1)∧v, where v = λ2∧⋅⋅⋅∧λ k .

These rules generalize the rules we gav e for the k = 2 case.

From Alt-1, we conclude that if any two distinct elements λ i and λ j of v are equal, then v = 0. Using Alt-1, we can

apply Alt-2 to any element λ i = λ i1 + λ i2 of a vector v = λ1∧⋅⋅⋅∧λ k in ∧k L(Rn, R). For example, when i = 3:

λ1∧λ2∧(λ31 + λ32) = −(λ1∧(λ31 + λ32)∧λ2) = (λ31 + λ32)∧λ1∧λ2 = λ31∧λ1∧λ2 + λ32∧λ1∧λ2

= −(λ1∧λ31∧λ2) − (λ1∧λ32∧λ2) = λ1∧λ2∧λ31 + λ1∧λ2∧λ32.

From Alt-1 and Alt-3, we conclude that multiplying v by r is equivalent to multiplying any element λ i by r. For
example:

r(λ1∧λ2∧λ3) = −r(λ1∧λ3∧λ2) = r(λ3∧λ1∧λ2) = (rλ3)∧λ1∧λ2 = −λ1∧(rλ3)∧λ2. = λ1∧λ2∧(rλ3).
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For k > 0, let I be a strictly increasing function from the integers [1, k] to the integers [1, n]. There are

m = 

n

k




=
n!

k!(n − k)!
such functions; arrange them in the order of I (1), then the order of I (2), etc., and call them

I1, . . . , Im. Let ei = dx Ii(1)∧⋅⋅⋅∧dx Ii(k). Then the set e1, . . . , em is a basis for ∧k L(Rn, R), and we can write any k

form ω (x) as a sum

ω (x) = f1(x) e1 + ⋅⋅⋅ + fm(x) em,

where each fi is a function from Rn to R. For example, when n = 4 and k = 3, we have m = 

4

3




= 4, and the basis

vectors are e1 = dx1∧dx2∧dx3, e2 = dx1∧dx2∧dx4, e3 = dx1∧dx3∧dx4, and e4 = dx2∧dx3∧dx4.

We write Ωk(Rn) to denote the set of k forms in Rn. It is a vector space, according to the usual rules

ω1 + ω2 = x → ω1(x) + ω2(x)

rω = x → r(ω (x))

In § 1, we mentioned that when X = R, all forms of degree two and higher are identically zero. We can see this is

true because dx∧dx = 0. In general, Ωk(Rn) = 0 when k > n.

If you find yourself forgetting what n and k mean, just remember:

• n is the dimension of the domain space and the maximum number of symbols dxi appearing in a form of any
degree.

• k is the degree of a form (zero; or one more than the number of ∧ symbols appearing in each term of the
form). It is the dimension of a region of integration, which is embedded in the domain space.

n and k are related only in that we must have k ≤ n to have a non-degenerate k form.

Primitive k forms: The representation of a k form in terms of the basis vectors ei depends on the choice of coordi-
nates x j that provide the linear maps dx j . We now discuss a useful alternative representation that is coordinate-free.

For k > 0, a vector in ∧k L(Rn, R) is a sum
i
Σ λ i1∧⋅⋅⋅∧λ ik . A k form ω (x) maps an element x in Rn to such a vector.

Therefore we may represent ω as a sum of terms
i
Σω i , where each term ω i is a k form ω i(x) = λ i1(x)∧⋅⋅⋅∧λ ik(x),

and the sum is taken in the vector space Ωk(Rn).

In this notation, each symbol λ(x) denotes a linear map h → λ(x)(h). We could write ω (x) =
k

i=1
∧ λ i(x)(h), but then

the notation gets cluttered. Just remember that there are actually two variables: the variable x that maps to λ(x), and
the variable h that maps to λ(x)(h).

We will call a k form ω (x) = λ1(x)∧⋅⋅⋅∧λ k(x) a primitive k form, to distinguish it from general k forms that are
sums of primitive k forms. As an example, consider the k form ω (x) = f (x) dx1∧⋅⋅⋅∧dxk . We may represent ω (x)
as the primitive k form ( f (x) dx1)∧⋅⋅⋅∧dxk . The first element in the wedge product is the map λ1(x) = f (x) dx1.
The other elements are constant maps λ i(x) such that λ i(x) = dxi for all x.

Let µ(U , V ) denote the vector space of maps from the vector space U to the vector space V . Then the representation
of k forms in terms of primitive forms shows that

Ωk(Rn) = µ(Rn,
k

i=1
∧ L(Rn, R)) =

k

i=1
∧ µ(Rn, L(Rn, R)).

In other words, a map to the alternating product is an element of the alternating product of maps. For example, we
may think of the primitive k form λ1(x)∧λ2(x) either as a map x → λ1(x)∧λ2(x) or as a wedge product of maps
(x → λ1(x))∧(x → λ2(x)); and similarly for formal linear combinations of primitive k forms.

The wedge product of differential forms: Let k1 and k2 be integers greater than zero. Given a primitive k1 form
ω1(x) = λ11(x)∧⋅⋅⋅∧λ1k1

(x) and a primitive k2 form ω2(x) = λ21(x)∧⋅⋅⋅∧λ2k2
(x), let k = k1 + k2. We define the prim-

itive k form (ω1∧ω2)(x) as follows:

(ω1∧ω2)(x) = λ11(x)∧⋅⋅⋅∧λ1k1
(x)∧λ21(x)∧⋅⋅⋅∧λ2k2

(x).

On the right, once we apply x we have k elements in L(Rn, R), and we can construct their wedge product as shown
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to get an element of
k

i=1
∧ L(Rn, R).

We call the operation ∧ the wedge product of the primitive forms ω1 and ω2. We extend the wedge product to all
pairs of k1 and k2 forms by linearity, i.e., we specify

(ω1 + ω2)∧ω3 = ω1∧ω3 + ω2∧ω3.

Note, for example, that

f dx1∧g dx2 = ( f dx1)∧(g dx2) = fg dx1∧dx2,

where the multiplication fg occurs in the vector space of functions.

The exterior derivative: The exterior derivative is a linear map d: Ωk(Rn) → Ωk+1(Rn), for k ≥ 0. When k = 0, the
exterior derivative d is the derivative D. When k > 0, we define

d( f e) = df ∧e, (1)

where e is a basis vector of ∧k L(Rn, R), f is differentiable, and ∧ represents the wedge product of differential forms

just defined. We extend d by linearity to all points v of Ωk(Rn) where the component functions fi of v along the
basis vectors ei are differentiable. That is, we let d

i
Σ fi ei =

i
Σ d( fi ei). This definition is invariant under a change

of coordinates; we will show this in § 3.3.

As an example, let ω be the one form f1 dx1 + f2 dx2 ∈ Ω1(R2), and let us compute the two form dω . By linearity,
we have

dω = d( f1 dx1) + d( f2 dx2).

By (1), we have

dω = (D1 f1 dx1 + D2 f1 dx2)∧dx1 + (D1 f2 dx1 + D2 f2 dx2)∧dx2.

By the extended form of Alt-2, this is

D1 f1 dx1∧dx1 + D2 f1 dx2∧dx1 + D1 f2 dx1∧dx2 + D2 f2 dx2∧dx2.

By the extended form of Alt-1, the dxi∧dxi terms drop out, and we find

dω = D2 f1 dx2∧dx1 + D1 f2 dx1∧dx2.

By Alt-1 and linearity, we hav e

dω = (D1 f2 − D2 f1) dx1∧dx2,

because we can replace dx2∧dx1 with −dx1∧dx2 and collect like terms.

If ω is exact, then by definition there exists a function f such that f1 = D1 f and f2 = D2 f . Therefore

dω = (D1 D2 f − D2 D1 f ) dx1∧dx2,

and since the second-order partial derivatives Dij are symmetric in i and j, we hav e dω = ddf = 0, i.e., ω is closed.

In fact, it is true for any k form ω that if ω is exact and dω exists, then ω is closed. In other words, for any form ω
such that the expression ddω makes sense, we have

ddω = 0. (2)

To see this, first assume ω is a one form df =
i
Σ Di fi dxi . Then ddf =

j,i
Σ D j Di fi dx j∧dxi . Here i and j range over

the n coordinates of Rn. Each distinct pair (i, j) appears exactly twice in the sum, once as Di D j f dxi∧dx j and once
as D j Di f dx j∧dxi . Since the double partial derivatives are symmetric, everything cancels out to zero by Alt-1.

Now assume ω = dω0, for a k form ω0 with k > 0, and write ω0 in terms of the basis vectors ei for Ωk(Rn):

ω0 = f1 e1 + ⋅⋅⋅ + fm em.

Then we must have

ω = dω0 = df1∧e1 + ⋅⋅⋅ + dfm∧em.
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It suffices to show that d(dfi∧ei) = 0 for each i. But this is clear, because

dfi∧ei =
j

Σ D j f j dx j∧ei

and

d(dfi∧ei) =
k, j
Σ Dk D j fi dxk∧dx j∧ei .

Again every pair ( j, k) is represented exactly twice, once as D j Dk f dx j∧dxk∧ei and once as Dk D j f dxk∧dx j∧ei ,
so everything cancels out to zero.

The product rule for the exterior derivative: Let f and g be functions from Rn to R. As usual, let fg represent
x → f (x)g(x), where the product on the right-hand side is taken in R. Then from the properties of the general de-
rivative, we hav e the product rule, i.e.,

d( fg) = (df )g + f (dg).

We now assert an analogous rule for the exterior derivative of a wedge product of forms. Let ω1 be a k1 form and ω2

be a k2 form, where k1 > 0 and k2 > 0. Then

d(ω1∧ω2) = dω1∧ω2 + (−1)k1ω1∧dω2. (3)

Proof: By linearity, it suffices to show (3) in the case where ω1 = f ei and ω2 = g e j , where ei and e j are basis vec-

tors in Ωk1(Rn) and Ωk2(Rn), respectively. Then

d(ω1∧ω2) = d( f ei∧g e j).

By rule Alt-3, we can move g across ei:

= d( fg ei∧e j)

By the definition of the exterior derivative:

= d( fg)∧ei∧e j

By the product rule for functions:

= ((df )g + f (dg))∧ei∧e j

By rules Alt-2 and Alt-3:

= g df ∧ei∧e j + f dg∧ei∧e j

By rule Alt-3, we can move the function g across df ∧ei:

= df ∧ei∧g e j + f dg∧ei∧e j

By rule Alt-1, we can move the one form dg across ei , but we have to multiply by −1 for each of the k1 terms in ei:

= df ∧ei∧g e j + (−1)k1 f ei∧dg∧e j

By the definition of ω1 and ω2:

= df ∧ei∧ω2 + (−1)k1ω1∧dg∧e j

By the definition of dω1 and dω2:

= dω1∧ω2 + (−1)k1ω1∧dω2.

The exterior derivative of f dω : We can use (2) and (3) to prove the following formula, which is useful for com-
puting exterior derivatives:

d( f dω ) = df ∧dω . (4)

Note that (4) extends (1), because each basis vector e may be expressed as either dxi or d(xi e j) for some coordinate
xi and some basis vector e j of lower degree. Also, from (4) we immediately get back (2), because
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ddω = d(1 ⋅ dω ) = d1∧dω = 0∧dω = 0.

Proof: To prove (4), we use induction. In the base case of a one form f dg, we hav e

d( f dg) = d( f
i
Σ Di g dxi) =

i
Σ d( f Di g dxi)

=
i
Σ d( f Di g)∧dxi =

i
Σ(df Di g + f dDi g)∧dxi

=
i
Σ(df Di g∧dxi) +

i
Σ( f dDi g∧dxi)

=
i
Σ(df ∧ Di g dxi) +

i
Σ( f ∧dDi g dxi)

= df ∧
i
Σ(Di g dxi) + f ∧d(

i
Σ Di g dxi)

= df ∧dg + f ∧ddg = df ∧dg + f ∧0 = df ∧dg.

Here we have used the fact that ddg = 0, according to (2).

In the inductive case, let ω = ω1∧ω2, where each of ω1 and ω2 has lower degree than ω . By (3), we have

d( f dω ) = d( f d(ω1∧ω2))

= d( f (dω1∧ω2 + (−1)k1(ω1∧dω2))

= d(( f dω1)∧ω2) + (−1)k1 d(ω1∧( f dω2)). (5)

By (3) again, the first term of (5) is

d(( f dω1)∧ω2) = d( f dω1)∧ω2 + (−1)k1+1( f dω1)∧dω2

= d( f dω1)∧ω2 + (−1)k1+1ω0,

where we have written ω0 for the second factor of the second term. By induction, this is

df ∧dω1∧ω2 + (−1)k1+1ω0. (6)

By (3) yet again, the second term of (5) is

(−1)k1 d(ω1∧( f dω2)) = (−1)k1[dω1∧( f dω2) + (−1)k1ω1∧d( f dω2)]

= (−1)k1( f dω1)∧dω2 + ω1∧d( f dω2)

= (−1)k1ω0 + ω1∧d( f dω2).

By induction this is

(−1)k1ω0 + ω1∧df ∧dω2

= (−1)k1ω0 + (−1)k1 df ∧ω1∧dω2. (7)

When we add (6) and (7), the ω0 terms cancel out because of the opposite sign. Therefore, applying (3) one more
time, we have

d( f dω ) = df ∧(dω1∧dω2 + (−1)k1ω1∧dω2)

= df ∧d(ω1∧ω2)

= df ∧dω .
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3.2. Integration

The formal integral: The formal integral is a linear map ∫ : Ωk+1(Rn) → Ωk(Rn), for k ≥ 0. It is defined on the

exact k + 1 forms of Ωk+1(Rn) and maps ω = df to ∫ ω = ∫ df = f .

Integrating two forms: We will call a k form ω simple if it is an element of the one-dimensional vector space

Ωk(Rk). For example, f (x) dx is a simple one form, and f (x1, x2) dx1∧dx2 is a simple two form. Note that every

simple k form is primitive after collecting terms, because the only basis vector in Ωk(Rk) is dx1∧⋅⋅⋅∧dxk .

In § 1, we integrated a simple one form over a closed interval s = [a, b] in R. To integrate a simple two form, we
integrate over an ordered pair of closed intervals s = (s1, s2) = ([a1, b1], [a2, b2]), which we will call a rectangle of

dimension two. In general, a rectangle of dimension k is an ordered k-tuple of closed intervals. A rectangle of
dimension one is a closed interval. A rectangle of dimension zero is a point.

A rectangle of dimension two specifies a rectangular subset of R2, consisting of all points (x1, x2) in R2 such that xi

lies in the closed interval [ai , bi] for each i. For example, if s = ([0, 1], [0, 1]), then s represents all points whose x1

and x2 coordinates both lie between zero and one. We use the symbol s to refer to both the ordered pair and the set
of points.

Given a simple two form ω = f dx1∧dx2 and a rectangle s = (s1, s2) of dimension two, we define the integral of ω
over s as follows:

s

∫ ω =
s

∫ f dx1∧dx2 =
s2

∫
s1

∫ f dx1dx2. (8)

This notation means the following:

1. Interpret f dx1 as an element f1(x1) dx1 of L(R, V ), where V is the vector space of functions f2(x2): R → R.

2. Integrate the simple one form f1(x1) dx1 over the closed interval s1, yielding a function f2(x2): R → R.
Using the theory of integration over general real vector spaces, we may perform this integration as if x2 were a
constant.2

3. Integrate the simple one form f2(x2) dx2 over the closed interval s2, yielding a value in R.

For example, let ω = x1 x2 dx1∧dx2, and let s = ([0, 1], [0, 1]). Then

s

∫ ω =
1

0
∫

1

0
∫ x1 x2 dx1dx2 =

1

0
∫





x2
1 x2

2

1

0
|



dx2 =

1

0
∫ x2

2
dx2 =

x2
2

4

1

0
| =

1

4
.

This process is known as double integration.

Here we have chosen to integrate first with respect to dx1. This choice is arbitrary; the theory of integration (see,
e.g., [Lang 1997]) tells us that the order of the integral signs in (8) does not matter. All that matters is that we inte-
grate from the inside out. For example, if we switched the integral signs in (8), then we would write the variables of
integration as dx2 dx1.

To integrate a two form in Ω2(Rn), where n ≥ 2, we fix a rectangle s of dimension two and construct a differentiable
mapping σ : s → Rn. We will call the mapping σ a two-dimensional region in Rn. It is the two-dimensional analog
of the one-dimensional path σ that we described in § 2. The identity map σ : s → R2 makes a rectangle s of dimen-
sion two into a two-dimensional region in R2.

Let ω be a two form in Rn. We define the pullback σ *ω as follows:

1. If ω (x) = λ1(x)∧λ2(x) is a primitive two form, then

(σ *ω )(y) = σ *(λ1(x))∧σ *(λ2(x)) = (λ1(σ (y)) dσ (y))∧(λ2(σ (y)) dσ (y)).

Here σ *(λ i(x)) is the same pullback for a one form that we defined in § 1 (8).

2 For a sketch of the general theory, see § 4.
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2. For any two forms ω1 and ω2, σ *(ω1 + ω2) = σ *ω1 + σ *ω2.

When applied to combinations
i
Σ fi ei of the basis vectors ei , these rules yield

1. σ *( f dxi∧dx j)(y) = f (σ (y)) (dxi dσ (y))∧(dx j dσ (y)).

2. σ *

i
Σ fi ei =

i
Σσ *( fi ei).

Observe that the pullback σ *ω is a two form defined on s ⊆ R2. Therefore σ *ω is a simple two form, and we can
integrate it over s. We define

σ
∫ ω =

s

∫ σ *ω .

This is the same definition that we used for path integrals in § 1. The only difference is that we have now over-
loaded the symbol s to refer to a rectangle of dimension two and the symbol σ to represent a two-dimensional
region. The overloading of symbols causes no confusion, so long as we remember the dimension k in which we are
working.

As an example, let ω = f dx1∧dx2 = x1 x2 dx1∧dx2 and s = ([0, 1], [0, 1]) as in the previous example, and let

σ (y1, y2) = (2y1, 2y2). Let us compute

σ
∫ ω . We hav e the following:

• f (σ (y)) = 4y1 y2.

• dσ (y) = (2dy1, 2dy2), i.e., dσ (y) is the linear map h → (2dy1, 2dy2)(h) = ((2dy1)(h), (2dy2)(h)) = (2h1, 2h2).

• dx1 dσ (y) = 2dy1.

• dx2 dσ (y) = 2dy2.

By definition we have

σ
∫ ω =

s

∫ σ *ω =
s

∫ σ *( f dx1∧dx2) =
s

∫ 4y1 y2 2dy1∧2dy2 = 16

s

∫ ω .

By the previous example, the result is
16

4
= 4.

Integrating k forms: We now extend the integration of two forms to higher dimensions. To integrate a simple k

form, we integrate over a rectangle s of dimension k. Let s = (s1, . . . , sk) = ([a1, b1], . . . , [ak , bk]). Then s specifies

a rectangular subset of Rk , consisting of all points (x1, . . . , xk) in Rk such that xi lies in the closed interval [ai , bi]
for each i.

Given a simple k form ω = f dx1∧⋅⋅⋅∧dxk and a rectangle s = (s1, . . . , sk) of dimension k > 2, we define the integral
of ω over s as follows:

s

∫ ω =
s

∫ f dx1∧⋅⋅⋅∧dxk =
sk

∫



(s1,...,sk−1)

∫ f dx1∧⋅⋅⋅∧dxk−1






dxk .

This notation means the following:

1. Interpret the differential form inside the brackets as an element fk−1(x1, . . . , xk−1) dx1∧. . . ∧dx x−1 of

∧k−1 L(Rk−1, V ), where V is the vector space of functions fk(xk): R → R.

2. Integrate the simple k − 1 form fk−1(x1, . . . , xk−1) dx1∧⋅⋅⋅∧dxk−1 over the rectangle (s1, . . . , sk−1) of dimension
k − 1, yielding a function fk(xk): R → R. We do this by induction. The base case is the integral of a simple
two form described in the previous subsection. When integrating fk− j(xk− j , . . . , xk) dxk− j , we treat all vari-
ables xi with i > k − j as constants.

3. Integrate the simple one form fk(xk) dxk over the closed interval sk , yielding a value in R.

This process is known as multiple integration. Again we integrate from the inside out, and the order of integration
is arbitrary.

To integrate a k form in Ωk(Rn), where n ≥ k, we fix a rectangle s of dimension k and construct a differentiable

mapping σ : s → Rn. We will call the mapping σ a k-dimensional region in Rn. The identity map σ : s → Rk
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makes a rectangle s of dimension k into a k-dimensional region in Rk .

Let ω be a k form. For k = 0 we define the pullback σ of a zero form ω = f as (σ * f )(y) = f (σ (y)). For k > 0, we
define the pullback σ *ω as follows:

1. If ω (x) =
k

i=1
∧ λ i(x) is a primitive k form, then (σ *ω )(y) =

k

i=1
∧ σ *(λ i(x)) =

k

i=1
∧ λ i(σ (y)) dσ (y).

2. For any k forms ω1 and ω2, σ *(ω1 + ω2) = σ *ω1 + σ *ω2.

From rule 1, it is clear that if ω1 and ω2 are primitive forms, then σ *(ω1∧ω2) = σ *ω1∧σ *ω2. Then by linearity, this
is true for all forms ω1 and ω2. We will use this fact later, when proving Stokes’ theorem.

When applied to combinations
i
Σ fi ei of the basis vectors ei , these rules yield

1. σ *( f dxi1
∧⋅⋅⋅∧dxik

)(y) = f (σ (y)) (dxi1
dσ (y))∧⋅⋅⋅∧(dxik

dσ (y)).

2. σ *

i
Σ fi ei =

i
Σσ *( fi ei).

The subscripts i1 and ik denote the fact that we have k distinct indices, but they may not lie in the range [1, k] if
n > k. For example, with n = 3 and k = 2, we could have dx1∧dx3, so i1 = 1 and i2 = 3. These rules extend the
rules given previously for the k = 2 case.

Because the pullback σ *ω is a simple k form defined on s, we can integrate it over s. We define

σ
∫ ω =

s

∫ σ *ω .

This is the same definition that we used for the k = 2 case.

3.3. Stokes’ Theorem

The boundary chain of a rectangle: Let s = (s1, . . . , sk) = ([a1, b1], . . . , [ak , bk]) be a rectangle of dimension
k > 0. We now define the boundary chain ∂s of s. It is a chain of dimension k − 1. This is the higher-dimensional
analog of the zero-dimensional boundary chain that we discussed in § 1.

For each i in [1, k], let s\si represent the (k − 1)-dimensional rectangle (s1, . . . , si−1, si+1, . . . , sk) obtained by deleting

si from s. For each t in the closed interval si = [ai , bi], let σ i(t): s\si → Rk be the region of dimension k − 1 that

takes each point (x1, . . . , xi−1, xi , . . . , xk−1) in s\si to the point (x1, . . . , xi−1, t, xi , . . . , xk−1) in Rk . Notice that for
each value of t in si , the region σ i(t) embeds the (k − 1)-dimensional rectangle s\si in the k-dimensional rectangle s

by inserting value t at the index i corresponding to the missing dimension.

We define the boundary chain ∂s as follows:

∂s =
k

i=1
Σ(−1)i(σ i(ai) − σ i(bi)). (9)

In other words, each of the k indices i in s contributes two (k − 1)-dimensional rectangles to the boundary chain,
with their signs adjusted as shown. The sign adjustment provides the orientation. We embed the (k − 1)-dimen-
sional rectangles in s by replacing the closed interval si = [ai , bi] at index i in s with each of its boundary values ai

and bi .

We may integrate k − 1 forms in Rk over this chain. For example, when k = 1 and s = [a, b], s\s1 is the rectangle of
dimension zero containing the single point Z = ( ), and σ1(t)(Z ) = t. We hav e

∂s = (−1)(σ1(a) − σ1(b)) = σ1(b) − σ1(a).

When we integrate a zero form f (x1) over the chain (9), we get

∂s

∫ f =
σ1(b)
∫ f −

σ1(a)
∫ f =

Z

∫ f (σ1(b)) −
Z

∫ f (σ1(a))

= f (σ1(b)(Z )) − f (σ1(a)(Z )) = f (b) − f (a),

which agrees with what we said in § 1.
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When k = 2 and s = ([a1, b1], [a2, b2]), we have

• s\s1 = [a2, b2] and σ1(t)(x2) = (t, x2) and dσ1(t)(x2) = (0, dx2).

• s\s2 = [a1, b1] and σ2(t)(x1) = (x1, t) and dσ2(t)(x1) = (dx1, 0).

Therefore

∂s = −(σ1(a1)) − σ1(b1) + (σ2(a2) − σ2(b2)) = −σ1(a1) + σ2(a2) + σ1(b1) − σ2(b2).

When we integrate a one form ω = f1 dx1 + f2 dx2 over the chain (9), we get

∂s

∫ ω = −
σ1(a1)
∫ ω +

σ2(a2)
∫ ω +

σ1(b1)
∫ ω +

σ2(b2)
∫ ω .

By the definition of path integration for one forms (§ 1 (8) and (9)), this yields

= −
s\s1

∫ ω (σ1(a1)) dσ1(a1) +
s\s2

∫ ω (σ2(a2)) dσ2(a2) +
s\s1

∫ ω (σ1(b1)) dσ1(b1) −
s\s2

∫ ω (σ2(b2)) dσ2(b2)

= −
b2

a2

∫ f2(a1, x2) dx2 +
b1

a1

∫ f1(x1, a2) dx1 +
b2

a2

∫ f2(b1, x2) dx2 −
b1

a1

∫ f1(x1, b2) dx1.

If we represent the rectangle s in the Cartesian plane, then this integration traverses the boundary of the rectangle in
a counterclockwise direction: for example, starting at the upper left hand corner (a1, b2) and moving down to
(a1, a2), then right to (b1, a2), then up to (b1, b2), then left to (a1, b2).

The boundary chain of a region: Now we define the boundary chain for a k-dimensional region in Rn. Let s be a
k-dimensional rectangle, and let σ : s → Rn be a k-dimensional region. For each i in [1, k], the maps σ i(ai) and
σ i(bi) embed s\si in s. Therefore we may compose σ with each σ i(ai) and σ i(bi); the composed maps are the
(k − 1) dimensional regions σ σ i(ai): s\si → Rn and σ σ i(bi): s\si → Rn. We may use these (k − 1)-dimensional
regions to define the boundary chain for σ as follows:

∂σ =
k

i=1
Σ(−1)i(σ σ i(ai) − σ σ i(bi)). (10)

We may integrate k − 1 forms in Rn over this chain.

Stokes’ theorem for rectangles: The general statement of Stokes’ theorem for a k − 1 form ω in Rk and a k-dimen-
sional rectangle s is

s

∫ dω =
∂s

∫ ω . (11)

This statement generalizes the corresponding statement that we made for closed intervals in § 1.

Proof: By the definition of a k − 1 form in Rk , we hav e ω =
k

j=1
Σ f j e j , where

e j = dx1∧⋅⋅⋅∧dx j−1∧dx j+1∧⋅⋅⋅∧dxk .

Because integration distributes over sums, it suffices to show the result when ω = f e j for any j.

First we study the boundary integral on the right-hand side of (11). For each i in [1, k] in the chain (9), we have
dσ i(t)(x) = (dx1, . . . , dxi−1, 0, dxi+1, . . . , dxk), where we have used x = (x1, . . . , x j−1, x j+1,. . . , xk) as the k − 1 coor-
dinates of s\si . Therefore σ i(t)

*( f e j) is f (σ (t)) e j when i = j and zero otherwise.3 Accordingly, when we integrate
over the chain (9), all the terms except the j term drop out, and we have

∂s

∫ ω = (−1) j

s\s j

∫ 


f (σ j(a j)) − f (σ j(b j))



e j . (12)

3 For example, with k = 3, we have σ1(t)*( f e1) = f (σ1(t)) (dx2 (0, dx2, dx3))∧(dx3 (0, dx2, dx3)) = f (σ1(t)) dx2∧dx3 = f (σ1(t)) e1 and

σ1(t)*( f e2) = f (σ1(t)) (dx1 (0, dx2, dx3))∧(dx3 (0, dx2, dx3)) = f (σ1(t)) 0∧dx3 = 0.
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The right-hand integration makes sense because f (σ j(t)) e j is a simple k − 1 form in the coordinates
x1, . . . , x j−1, x j+1, . . . , xk , so we can integrate it over the rectangle s\s j .

Now we examine the integral on the left-hand side of (11). By the definition of the exterior derivative, we hav e

dω = (
k

i=1
Σ Di f dxi)∧e j .

All the dxi terms except dx j are present in e j , so all the terms in the sum drop out except D j f dx j . Therefore

dω = D j f dx j∧e j .

By carrying out j − 1 transpositions, we can move dx j into the missing place in e j , yielding

dω = (−1) j−1 D j f dx1∧⋅⋅⋅∧dxk .

Because the order of integration does not matter (§ 3.2), we have

s

∫ dω = (−1) j−1

s\s j

∫



s j

∫ D j f dx j






dx1∧⋅⋅⋅∧dx j−1∧dx j+1⋅⋅⋅dxk = (−1) j−1

s\s j

∫



s j

∫ D j f dx j






e j .

By the fundamental theorem of calculus, this gives

∫s
dω = (−1) j−1

s\s j

∫ 


f (σ j(b j)) − f (σ j(a j))



e j . (13)

Putting (12) together with (13) yields the result.

Stokes’ theorem for regions: The general statement of Stokes’ theorem for a k − 1 form ω in Rn and a k-dimen-
sional region σ : s → Rn is

σ
∫ dω =

∂σ
∫ ω . (14)

This statement generalizes the corresponding statement that we made for paths in § 1.

Proof: First we prove

d(σ *ω ) = σ *(dω ). (15)

If ω is a zero form f , then (15) just restates the chain rule. Otherwise by linearity it suffices to prove (15) when
ω = f e for a basis vector e. On the right side of (15), we have

dω = df ∧e

and

(σ *(dω ))(y) = (df (σ (y)) dσ (y))∧(σ *(e))(y).

By the chain rule, this yields

σ *(dω ) = d( f σ )∧σ *(e). (16)

On the left side, by the definition of the pullback, we have

σ *ω = ( f σ )σ *(e). (17)

Observe that σ *(e) has the form dω0. In the base case,

σ *(dxi) = dxi dσ = d(xi σ ) = dσ *(xi).

By induction and by (4),

σ *(dxi∧e j) = σ *(dxi)∧σ *(e j) = d(σ *(xi)σ
*(e j)).

Therefore we may apply (4) to (17), yielding
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d(σ *ω ) = d( f σ )∧σ *(e). (18)

Putting (16) together with (18) yields (15).

Turning back to (14), using the definition of region integration and (15), we have

σ
∫ dω =

s

∫ σ *(dω ) =
s

∫ d(σ *ω ).

Then Stokes’ theorem for rectangles gives

σ
∫ dω =

∂s

∫ σ *ω . (19)

Comparing (19) with (14) and (9) with (10), we see it suffices to prove that for all i and for all t in [ai , bi],

σ i(t)
∫ σ *ω =

σ σ i(t)
∫ ω . (20)

The integration on both sides of (20) is over the same rectangle s\si , so (20) holds if and only if we have

(σ i(t)
* σ *)(ω )(y) = (σ σ i(t))

*(ω )(y). (21)

at all y. For a zero form ω (x) = f (x), (21) is true, because both sides evaluate to f (σ (σ i(t)(y))). Otherwise, by lin-
earity and because the pullback distributes over the wedge product of forms, it suffices to prove (21) for a primitive
one form ω (x) = λ(x). Then by the definition of the pullback, the right-hand side of (21) is

λ((σ σ i(t))(y)) d(σ σ i(t))(y).

By the chain rule, this is

λ((σ σ i(t))(y)) dσ (σ i(t)(y)) dσ i(t)(y). (22)

Meanwhile, on the left-hand side of (21), we have (σ *λ)(y) = λ(σ (y)) dσ (y). Applying σ i(t)
* to this last expres-

sion also yields (22). This establishes (21) and completes the proof.

Stokes’ theorem for chains: We extend the definition of the boundary operator to chains by linearity. That is, if

γ =
n

i=1
Σ miσ i is any k-dimensional chain, we define ∂γ to be the chain

n

i=1
Σ mi∂σ i of dimension k − 1. From this defini-

tion, from the linearity of the integral, and from Stokes’ theorem for regions, we obtain the following:

γ
∫ dω =

∂γ
∫ ω . (23)

Here ω is a k − 1 form in Rn, and γ is a k-dimensional chain in Rn.

Invariance of the exterior derivative under change of coordinates: Equation (15) shows that the exterior deriva-
tive as defined in § 3.1 is invariant under a change of coordinates. Let ω be a differential form in some coordinate
system C1 let dω be its exterior derivative in C1, and let λ be a linear map representing a transformation from a dif-
ferent coordinate system C2 to C1. Then the pullback λ*, defined exactly as we defined it for regions σ , lets us
express the change of coordinates. The form λ* ω is the form ω expressed in C2, and its derivative is d(λ*ω ). The
derivative of ω expressed in the coordinates of C2 is λ*(dω ). By (15), these two derivatives are the same.

4. General Vector Spaces

Up to this point we have studied mappings f : X → Y where X = Rn and Y = R. We now briefly consider more gen-
eral vector spaces X and Y .

Generialized regions: We hav e studied the integration of regions σ : s → Rn, where s is a rectangle in Rk . We car-
ried out this integration according to the formula

σ
∫ ω =

s

∫ σ *ω , (1)

where ω is an element of Ωk(Rn), i.e., a mapping Rn →
k

i=1
∧ L(Rn, R). We can easily generalize Ωk(Rn) to Ωk(V ),
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where V is a normed vector space of dimension n. An element ω of this space is a mapping V →
k

i=1
∧ L(V , R); we

may represent such an element as a sum of primitive k forms, just as we did for Ωk(Rn). Further, to carry out the

right-hand integral, we just need to integrate the simple k form σ *ω in Ωk(Rk) over the rectangle s; and nothing in
the definition of the pullback σ *ω depends on the coordinates in Rn. Therefore we may replace Rn with V in the

integration: that is, we may use the formula (1) to integrate ω in Ωk(V ) over the region σ : s → V . All of the previ-
ous results for region integration, e.g., Stokes’ theorem, go through identically in this case.

One can generalize regions even further. Instead of integrating over rectangles that are mapped into regions, one can
integrate over objects called manifolds. A real manifold locally “looks like” Rn (in a way that is made mathemati-
cally precise) but may have a different overall shape. For example, it may be shaped like a donut. Manifolds are
studied in a branch of mathematics called differential geometry. They also have close connections to other areas of
mathematics such as algebraic topology. The subject of Riemann surfaces, or complex manifolds of dimension
one, is a kind of nexus point within mathematics, sitting in the intersection of complex analysis, differential geome-
try, algebraic topology, and algebraic geometry.

Generalizing the vector space Y : The method of integration learned in first-year calculus is called Riemann inte-

gration, after the nineteenth-century mathematician Bernhard Riemann. The idea of Riemann integration is that if
we wish to integrate a function f (x): R → R over the closed interval s = [a, b], then we construct a sequence of par-
titions Pi(s) = { sij } of the interval s into smaller and smaller sub-intervals sij = [aij , bij], and we define

s

∫ f (x) dx =
i → ∞
lim

[aij ,bij] ∈ Pi(s)
Σ f (aij)(bij − aij).

That is, the Riemann integral is the limit of the sums of the rectangles lying under f (x) whose bases are the partition
intervals.

Nothing in this definition requires Y = R in the map f : R → Y . All we need is to take limits of sums of terms of the
form f (aij)(bij − aij), and we can do that if f takes values in any normed vector space Y . Then we can define a

space of k forms, where each form ω is a map ω : Rn →
k

i=1
∧ L(Rn, Y ).

For example, let Y = R2. We can represent each k form ω via the coordinate maps ω = (ω1, ω2). Then the theory of
integration (see, e.g., [Lang 1997]) tells us that we can integrate coordinate by coordinate, i.e., we have

∫ ω = ∫ (ω1, ω2) = (∫ ω1, ∫ ω2).

To take a concrete example:

∫ (x dx, x2 dx) = (
x2

2
,

x3

3
).

Generalized integration: We can generalize integration even further, by getting completely away from intervals and
rectangles in Rn. We can define a measure µ in a general normed vector space V . The measure maps some of the
subsets of V (called the measurable sets s) to nonnegative real numbers µ(s) (called the measure of s). This idea
generalizes what we do for Riemann integration, where the closed intervals sij = [aij , bij] are measurable sets with
measure µ(sij) = bij − aij .

Let W be a normed vector space and f : V → W be a map. To integrate f over a set s in V , we construct partitions
Pi(s) of s into measurable subsets sij . This generalizes what we did for Riemann integration, where the measurable
sets were the closed intervals [aij,bij]. Then we define a sequence of step maps fi: s → W such that at each i, and
for each sij , f is defined and attains the same value fi(x) = wij at every point x of sij , except possibly for a set of
points of measure zero. In one dimension, the picture is similar to the one for Riemann integration, except that
instead of a smooth map with steps underneath it, the map itself provides the steps.

We construct the vector space of maps from V to W , and we put a norm on that space so we can take limits in it. We
construct the sequence fi of step maps so that

i → ∞
lim fi = f

in that space, with that norm.
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For each step map fi , we define its integral analogously to what we did for Riemann integration:

s

∫ fi dµ =
sij ∈ Pi(s)

Σ wijµ(sij).

That is, we sum the value of the map times the measure of the base set over all the base sets in the partition. Then
we define

s

∫ f dµ =
i → ∞
lim

s

∫ fi dµ.

This idea generalizes Riemann integration in a powerful way. The measure µ that is often used is called Lebesgue

measure. You can learn more about this kind of integration theory in any book on graduate real analysis, e.g., [Lang
1993].
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