
Holomorphic Maps Between Riemann Surfaces

Robert L. Bocchino Jr.

Revised March 2024

This paper develops the theory of holomorphic maps between Riemann surfaces. It assumes that you are familiar
with the material covered in my papers Calculus over the Complex Numbers, Complex Charts on Topological Sur-

faces, and The Inverse and Implicit Mapping Theorems.

1. General Properties

Recall that a Riemann surface R = (T , A) is a topological surface on which we can do complex calculus. It is a topo-
logical space T equipped with a maximal atlas A consisting of charts Ci = (Ui , φ i), where Ui is an open subset of T ,
and φ i is a homeomorphism from Ui to an open subset of C. We require that the charts be mutually compatible, in
the sense that for any pair of charts (Ui , φ i) and (U j , φ j), the transition function φ ij = φ j φ −1

i is holomorphic on its
domain of definition. If Ui and U j are disjoint, then the domain of definition is empty, and φ ij is trivially holomor-
phic.

Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces. Recall that a holomorphic map from R1 to R2 is a map-
ping f : T1 → T2 of the topological spaces such that for each pair (Ci , C j), where Ci is a chart of A1 and C j is a chart
of A2, the function fij = φ j f φ −1

i is holomorphic on its domain of definition. If Ui and U j are disjoint, then the
domain of definition is empty, and fij is trivially holomorphic.

In this section we develop some general properties of holomorphic maps between Riemann surfaces. Most of these
properties extend similar properties of holomorphic functions in the complex plane. In § 3, we will discuss addi-
tional properties specific to the case when the Riemann surface of the domain is compact.

1.1. The Inverse Image of a Point Under a Holomorphic Map

Connected open sets: Let T be a topological space, and let S be an open subset of T . Recall that S is connected if
it cannot be expressed as the disjoint union of two nonempty open sets. For example:

• The open subset (0, 1) of R is connected.

• The open subset (−1, 0) ∪ (0, 1) of R is not connected.

Note that we require the set S in the definition of a connected set to be open. Since a set must be open to be a union
of two open sets, this definition doesn’t make sense for sets that are not open (every such set is trivially “connected”
in this sense, even, for example, a set of isolated points).

By definition the topological space T of a Riemann surface R = (T , A) is open and connected.

Isolated points and discrete sets: Let S be a subset of a topological space T , and let s be a member of S. We say
that s is an isolated point of S if there exists an open neighborhood of s in T that contains no point of S except s.
We say that S is a discrete set if every point of S is isolated. For example:

• The set S = {2−n | n > 0} ⊆ R is discrete.

• The set S ∪ {0} is not discrete, because the point 0 is not isolated.

Locally constant maps: Let T be a topological space, let S be a set, and let f : T → S be a map. Let p be a point in
T . We say that f is locally constant at p if there is an open neighborhood U of p such that f is constant on U . We
now state and prove a useful lemma about locally constant maps.

Recall that a map f : T1 → T2 of topological spaces is continuous if, for every open set S ⊆ T2, f −1(S) is open in
T1, where f −1(S) is the set of all points a in T1 such that f (a) = b for some b in T2. Recall that a topological space
T is Hausdorff if, for any two points a and b in T , there exist open subsets A and B of T such that a ∈ A, b ∈ B,
and A ∩ B = ∅. For any Riemann surface R = (T , A), the space T is Hausdorff.
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Lemma 1: Let T1 and T2 be topological spaces, and let f : T1 → T2 be a continuous map. Assume that T1 is con-

nected and T2 is Hausdorff. Let p be any point of T1. If f is locally constant at p, then f is constant on T1.

Proof: Assume that f is locally constant at p, and that f ( p) = q. Let U be the set of elements u in T1 such that f is
locally constant at u with f (u) = q. Then U is nonempty, because it contains p; and it is open, because by assump-
tion any element u has an open neighborhood Uu in U , so U = ∪u ∈ UUu. Let V be T1 − U . Because T1 = U ∪ V ,
and U is open and nonempty, and U ∩ V = ∅, and T1 is connected, it will suffice to prove that V is open; for in this
case we will have V = T1 − U = ∅, i.e., U = T1 as required.

If V is empty, then it is open. Otherwise let v be an element of V . Since T2 is Hausdorff and f (v) ≠ q, we can find
an open neighborhood Wv of f (v) such that q ∉ Wv. Since f is continuous, f −1(Wv) is open. Further, f −1(Wv) con-
tains v and is contained in V . Therefore V = ∪v ∈ V Wv, so V is open.

Maps in the complex plane: Let U ⊆ C be open, and let f :U → C be a holomorphic map. Fix a point q ∈ f (U).
The theory of complex analysis tells us the following:

• Property 1: For each point p ∈ f −1(q), either (A) p is an isolated point of f −1(q), or (B) f is locally constant
at p. This result holds because f has a convergent power series expansion at every point of f −1(q). See Cal-

culus over the Complex Numbers, § 4.3.

• Property 2: If U is open and connected and f is nonconstant, then every point p ∈ f −1(q) is isolated, i.e.,
f −1(q) is discrete. This statement follows from Property 1 and from Lemma 1 above, treating U as a topologi-
cal space via the subset topology.

For example:

1. Let U be the open set (−1, 0) ∪ (0, 1), which is not connected. Let f :U → C be given by f (z) = 1/2 on
(−1, 0) and f (z) = z on (0, 1). Then the inverse image of 1/2 is f −1(1 / 2) = (−1, 0) ∪ {1 / 2}. The point 1/2 is
isolated in f −1(1 / 2), so it satisfies Property 1(A) stated above. The points in (0, 1) are not isolated in f −1(1 / 2),
and they satisfy Property 1(B) stated above. f −1(1 / 2) is not discrete.

2. Let f be the function z → z2 defined on U = C. Then U is connected, and f is nonconstant. For each point
q ∈ C, the set f −1(q) is discrete. For example, f −1(1) = {−1, 1}.

In real analysis, we can have a differentiable function that smoothly transitions from being constant to being non-
constant on a connected set. For example, the function given by f (x) = 0 for x < 0 and f (x) = x2 for x ≥ 0 is differ-
entiable everywhere on the connected set R with f ′(0) = 0. In complex analysis there are no such functions. Note
that f has no second derivative, and a complex differentiable function must have derivatives of all orders.

Nonconstant maps between Riemann surfaces: For nonconstant holomorphic maps between Riemann surfaces,
we have the following theorem:

Theorem: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a nonconstant holo-

morphic map. Fix a point q ∈ f (T1). Then f −1(q) is a discrete subset of T1.

To prove the theorem we need a lemma:

Lemma 2: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a holomorphic map.

Then the corresponding map f : T1 → T2 of the topological spaces is continuous.

Proof: Let V be an open subset of T2. We want to show that f −1(V ) is an open subset of T1. If f −1(V ) = ∅, then it
is open. Otherwise choose an element a of f −1(V ), and let b = f (a). We need to find an open set Xa such that
a ∈ Xa and Xa ⊆ f −1(V ). Then f −1(V ) will be the union

a ∈ f −1(V )
∪ Xa and will therefore be open.

Choose charts C1 = (U1, φ1) containing a and C2 = (U2, φ2) containing b, and let F = φ2 f φ −1
1 . Let

W = V ∩ U2. Then W is an open set of T2 that contains b. φ2(W ) is open, and F is continuous, so
F−1(φ2(W )) = φ1( f −1(W ) ∩ U1) is open. Let Xa = φ −1(F−1(φ2(W ))) = f −1(W ) ∩ U1. Because φ −1

1 is a homeomor-
phism, Xa is open. Further, Xa contains a and is contained in f −1(V ). Therefore Xa is the required open neighbor-
hood of a.

Proof of the theorem: It will suffice to prove, for f , Property 1 stated above for maps in the complex plane. The
result then follows from Lemmas 1 and 2.

To prove Property 1, fix a point p ∈ T1, and let q = f ( p). Choose a chart C1 = (U1, φ1) of A1 and a chart
C2 = (U2, φ2) of A2 such that p ∈ U1 and q ∈ U2. By composing with translation maps if necessary, we can ensure
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that U1 is centered at p and U2 is centered at q, so assume this is true, i.e., φ1( p) = 0 and φ2(q) = 0. Then
F = φ2 f φ −1

1 is holomorphic, so Property 1 holds for F at 0 ∈ F−1(0). Suppose Property 1(A) holds for F , i.e., 0
is an isolated point of F−1(0). Then there exists an open neighborhood V of 0 such that for no point v ∈ V except 0
we have F(v) = 0. In this case W = φ −1

1 (V ) is an open neighborhood of p such that for no point w ∈ W except p we
have f (w) = q. Therefore p is an isolated point of f −1(q), so Property 1(A) holds for f . Now suppose that Property
1(B) holds for F , i.e., there exists an open neighborhood V of 0 such that F is constant on V . Let W = V ∩ φ (U1).
If f (φ −1

1 (W )) contains more than one point, then φ2 cannot be a homeomorphism, because it maps all such points to
zero. Therefore f must be constant in the open neighborhood φ −1

1 (W ) of p, and Property 1(B) holds for f .

Because a homeomorphism is injective, we also have the following corollary:

Corollary: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a nonconstant holo-

morphic map. Fix a point p in T1, and let q = f ( p). Choose charts C1 = (U1, φ1) of A1 containing p and

C2 = (U2, φ2) of A2 containing q. Let F be the holomorphic function φ2 f φ −1
1 . Then for any point a in

F−1(φ2(q)), there exists a connected open neighborhood U of a in which F  is defined and nonconstant.

Proof: By the previous theorem, f −1(q) is a discrete subset of T1. b = φ −1
1 (a) is a member of this set. Choose an

open neighborhood V of b such that for no point v in v except b do we have f (b) = q. Let U be an open ball around
a in φ1(V ). This is the required connected open neighborhood of a.

This corollary will let us apply results for nonconstant holomorphic functions on connected open sets in C to holo-
morphic maps between Riemann surfaces.

1.2. The Inverse Mapping Theorem

Let f be a complex function that is defined and holomorphic on an open neighborhood U of a point a in C. From
Calculus over the Complex Numbers, we know that f has continuous derivatives of all orders at each point in U .
Suppose further that f ′(a) ≠ 0. Then Df (a) is inv ertible as a linear map. Therefore, by the inverse mapping theo-
rem, there exists an open set V ⊆ U containing a such that the function g: V → f (V ) giv en by g(z) = f (z) is bijec-
tive and has a differentiable inverse, i.e., is biholomorphic. When a function is biholomorphic, we also say that it is
an analytic isomorphism. Therefore we say that g is a local analytic isomorphism for f on V .

For a proof of the inverse mapping theorem in the general case of a finite-dimensional vector space over R or C, see
my paper The Inverse and Implicit Mapping Theorems. For an alternate proof that is specialized to the case of a
holomorphic function expressed as a convergent power series, see [Lang 1999], II, Theorem 6.1.

Conversely, if f has a local analytic isomorphism g in a neighborhood V of a, then we must have f ′(a) ≠ 0. Indeed,
g−1 g is the identity on V , so we must have (g−1)′(g(a))g′(a) = 1. Therefore f ′(a) = g′(a) ≠ 0.

1.3. The Multiplicity of a Holomorphic Mapping at a Point

Nonconstant functions on connected open sets in the complex plane: Suppose f is a complex function that is
defined and holomorphic on a connected open neighborhood U of a point a in C. Suppose further that f is noncon-
stant on U . We claim that there exist a biholomorphic function G, defined in an open neighborhood V of a, and an
integer m > 0  such that f (z) = f (a) + G(z)m on V . Notice that this statement extends the inverse mapping theorem
for a nonconstant functions on a connected open set: when f ′(a) ≠ 0, m = 1, and f (z) = f (a) + G(z) is biholomor-
phic in a neighborhood of a. When f ′(a) = 0, m > 1. In this case, G(z) is biholomorphic in a neighborhood of a,
but G(z)m is not (it is holomorphic, but not locally invertible). The integer m is unique and is called the multiplicity

of f at a.

To show that m and G exist, let h = z − a, and write

f (a + h) = f (a) + P(h),

where P is a power series expansion with P(0) = 0. Let m > 0  be the order of P, i.e., the index of the first nonzero
term in P. This order must be finite, because U is open and connected, and f is nonconstant, so by § 1.1, a is an
isolated point of f −1(a). Then we can write

f (a + h) = f (a) + hmQ(h)

where Q(0) ≠ 0. By continuity there exists an open neighborhood W of 0 such that Q(h) ≠ 0 on W . When z ≠ 0,
(zm)′ = mzm−1 is nonzero, so by the inverse mapping theorem z1/m exists. Therefore on W we can write
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f (a + h) = f (a) + (hQ(h)1/m)m.

Let G(z) = hQ(h)1/m = (z − a)Q(z − a)1/m. By the product rule,

G′(z) = Q(z − a)1/m + (z − a)(Q(z − a)1/m)′,

so G′(a) = Q(0)1/m ≠ 0. Therefore G is biholomorphic in some open neighborhood V of a, and f (z) = f (a) + G(z)m

on V , as was to be shown.

To show that m is unique, suppose there exist integers m1, m2 > 0  and power series P1(h) and P2(h), each biholo-
morphic in a neighborhood of zero, such that

f (a + h) − f (a) = P1(h)m1 = P2(h)m2

on the intersection V of the two neighborhoods. Then V is an open neighborhood of zero, and for each i we have

1. Pi(0) = 0, so ord Pi > 0.

2. Pi is biholomorphic on V , so P′i(0) ≠ 0. Therefore ord Pi < 2.

Statements (1) and (2) imply ord Pi = 1, i.e., Pi = zQi , with Qi(0) ≠ 0. Then (zQ1)m1 = (zQ2)m2 , and in a small
neighborhood of zero we have Q1(z)m1 /Q2(z)m2 = zm2−m1 . As z tends to zero, the norm of the left-hand side tends to
a finite positive number, and the norm of the right-hand side either tends to zero or grows arbitrarily large, unless
m1 = m2. Therefore we must have m1 = m2, as was to be shown.

As an example, consider the complex function f (z) = z2, which is holomorphic on all of C. At z = 0, f ′(0) = 0, and
f has multiplicity two. At a point a ≠ 0, f ′(a) ≠ 0, and we have the Taylor series expansion

f (z) = a2 + 2a(z − a) + (z − a)2.

Therefore f has multiplicity one.

Finally, the proof shows that the multiplicity of f at a is equal to the order at a of the function F(z) = f (z) − f (a),
because we have

f (z) − f (a) = G(z)m = (z − a)mQ(z − a),

with Q(0) ≠ 0. The multiplicity of f at a is also equal to one plus the order of f ′(z) at a, because the formal deriva-
tive of a power series deletes the constant term and reduces the exponent of each remaining term by one. See Calcu-

lus over the Complex Numbers, § 4.3.

Nonconstant maps between Riemann surfaces: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let
f : R1 → R2 be a nonconstant holomorphic map. Fix a point a of T1. Choose a chart C1 = (U1, φ1) of A1 centered at
a and a chart C2 = (U2, φ2) of A2 centered at f (a). By the definition of a holomorphic map between Riemann sur-
faces, the function F = φ2 f φ −1

1 is defined and holomorphic on φ1(U1) ⊆ C, and F(0) = 0.

By the corollary at the end of § 1.1, there exists a connected open neighborhood of zero in which F is defined and
nonconstant. Therefore, by the results presented above for holomorphic maps on connected open sets in the com-
plex plane, there exists a unique integer m > 0  such that for some open neighborhood V of zero and some biholo-
morphic function G on V , we hav e F(z) = G(z)m for all z ∈ V . Then

zm = F G−1

= (φ2 f φ −1
1 ) G−1

= φ2 f (φ −1
1 G−1)

= φ2 f (G φ1)−1.

Let ψ = G φ1. Then C = (ψ −1(V ),ψ ) is a chart of A1 centered at a, and φ2 f ψ = zm. Thus we have the follow-
ing result:

Theorem: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces. Let f : R1 → R2 be a nonconstant holomor-

phic map, and fix a point a of T1. For a unique integer m > 0, we can choose a chart C1 = (U1, φ1) of A1 centered

on a and a chart C2 = (U2, φ2) of A2 centered on f (a) such that F = φ2 f φ −1
1 = zm.

Proof: We hav e already shown all but the uniqueness of m. To show uniqueness, suppose we have a chart
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D1 = (V1,ψ1) of A1 centered on a and a chart D2 = (V2,ψ2) of A2 centered on f (a) and an integer n such that
ψ2 f ψ −1

1 = zn. Then on φ1(U1) ∩ ψ1(D1) we hav e

zn = ψ2 (φ −1
2 φ2) f (φ −1

1 φ1) ψ −1
1

= (ψ2 φ −1
2 ) F (φ1 ψ −1

1 ).

Therefore

F(z) = zm = (φ2 ψ −1
2 )([(ψ1 φ −1

1 )(z)]n) = g(h(z)n),

where g and h are biholomorphic and take zero to zero. Thus we have g−1(zm) = h(z)n, where g−1 is biholomorphic
and takes zero to zero. By the argument given above for complex functions, g−1 and h each have order one, so we
can write

zm P(z) = znQ(z),

where P(0) ≠ 0 and Q(0) ≠ 0 Then by the argument given for complex functions we have m = n.

Again the integer m is called the multiplicity of the map f at the point a. The function F(z) = zm is called the local

normal form of f at a.

Ramification points and branch points: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let
f : R1 → R2 be a holomorphic map. Let m f ( p) denote the multiplicity of f at p.

• A point p of T1 for which m f ( p) > 1 is called a ramification point of f .

• A point q of T2 such that f −1(q) contains a ramification point of f is called a branch point of f .

For example, let f = z2 + 1 be the holomorphic map from C to C, considering C as a Riemann surface. Then 0 is
ramification point, and 1 is a branch point.1

1.4. The Open Mapping Theorem

Nonconstant functions on connected open sets in the complex plane: We now use the results from § 1.2 and § 1.3
to show that a nonconstant holomorphic function on a connected open set in the complex plane is an open mapping:

Theorem 1: Let U ⊆ C be a connected open set, and let f :U → C be a nonconstant holomorphic function. Then

f is an open mapping, i.e., for all open sets V ⊆ U, f (V ) is an open set.

To prove the theorem, we need a lemma:

Lemma: For all integers n > 0, the function f (z) = zn is an open mapping.

Proof: Let U ⊆ C be an open set, let b be a point of f (U), and let a be a point of f −1(b). We need to show that there
is an open set containing b and contained in f (U). If b = 0, then a = 0. Because V is open, we may choose an open
ball B(0, r) ⊆ U . Then f (B(0, r)) = B(0, rn), so B(0, rn) ⊆ f (U), and the requirement is satisfied in this case. If
b ≠ 0, then a ≠ 0. In this case f ′(a) ≠ 0, and so by § 1.2, f is biholomorphic in an open neighborhood V ⊆ U . A
biholomorphic map is open, so f (V ) is open, and b ∈ f (V ) ⊆ f (U). So the requirement is satisfied in this case as
well.

Proof of the theorem: Let U ⊆ C be an open set, let b be a point of f (U), and let a be a point of f −1(b). By § 1.3,
there is an open neighborhood V ⊆ U of a on which f (z) = f (a) + G(z)m, for m > 0 and G biholomorphic. Then on
V , f is a composition of G, a power map, and a translation map, all of which are open. Therefore f (V ) is open, and
b ∈ f (V ) ⊆ f (U).

Nonconstant maps between Riemann surfaces: For Riemann surfaces, we have the following analogous result:

Theorem 2: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a nonconstant holo-

morphic map. Then f is an open mapping, i.e., for all open sets V ⊆ T1, f (V ) is an open set in T2.

Proof: Fix a point q in f (V ) and a point p in V such that f ( p) = q. We want to show the existence of an open
neighborhood of q contained in f (V ). Choose charts C1 centered at p and C2 centered at q, and let F be the holo-
morphic map between the charts. Per § 1.1, choose a connected open neighborhood around p in which f is defined

1 This use of the terms “ramification point” and “branch point” is standard but arbitrary, since ramification means branch in Latin. You just

have to remember that ramification points lie in R1 and branch points lie in R2.
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and non-constant, and intersect that neighborhood with V ∩ Ui . Call the resulting set W . By restricting to an open
ball around φ1( p) contained in φ1(W ) if necessary, we can assume that W and φ1(W ) are connected open sets. By
the theorem for nonconstant functions on connected open sets in the complex plane, F(φ1(W )) is open in C. Then
f (W ) = φ −1

2 (F(φ1(W ))) is open and is the required open neighborhood of q.

1.5. Meromorphic Functions

In the complex plane: Let U ⊆ C be an open set. Recall that a meromorphic function on U is a partial function f

on U with the following properties:

1. f is defined and holomorphic on a set U − P, where P is a discrete set of poles.

2. At each point b of U , f has a Laurent series expansion

f (z) =
∞

j=n
Σ a j(z − b) j ,

where n is an integer. For b ∉ P, we hav e n ≥ 0, and the Laurent series expansion is a power series expan-
sion. For b ∈ P, we hav e n < 0.

At each point b of U , we define the order of f at b, written ordb f , as follows:

1. If f is identically zero in an open ball around b, then ordb f = ∞.

2. Otherwise ordb f is the smallest index of any nonzero term in the Laurent expansion of f at b.

A finite order is one of −n, zero, or m, where n and m are positive integers. If the order is −n, then b lies in P, and
f has a pole of order n at b. If the order is zero, then b lies in U − P, and f (b) ≠ 0. If the order is m, then b lies in
U − P, f (b) = 0, and f has a zero of order m at b.

For example, the function f (z) = 1/z is a Laurent series expansion at zero. In this case U = C and P = {0}. The
function f has a pole of order one (also called a simple pole) at zero. At every point b ≠ 0 in C, f is holomorphic
and has the power series expansion given by the Taylor series

f (z) =
1

b
−

(z − b)

b2
+

(z − b)2

b3
− ⋅⋅⋅ =

1

b

∞

j=0
Σ g(z) j ,

where g(z) = −(z − b)/b. By the convergence of the geometric series, this series converges to

(1 /b)(1 / (1 − g(z))) = 1/z

for all z such that |z − b| < |b|. Thus the order of f is −1 at zero and zero at every other point of C.

Recall also the following facts:

1. ordb f = Resb f ′/ f , where Resb g denotes the residue of the meromorphic function g at b, i.e., the coefficient
of the 1/z term in the Laurent series expansion of g at b. See Calculus over the Complex Numbers, § 6.2. We
may also write ordb f = Resb df / f , where df is the meromorphic one form f ′ dz. By the definition of the
residue of a meromorphic one form, the two formulas are equivalent. See Calculus over the Complex Num-

bers, § 6.3.

2. Let U ⊆ C be an open set, let φ :U → φ (U) be a biholomorphic function, and let b be a point of φ (U). Sup-
pose that ω is a meromorphic one form on φ (U) (i.e., a one form f dz, where f is a meromorphic function).
Then Resb ω = Resφ −1(b) φ *ω , where φ * denotes the pullback with respect to φ . See Calculus over the Com-

plex Numbers, § 6.3.

On a Riemann surface: Let R = (T , A) be a Riemann surface. A meromorphic function on R is partial function
f : T → C, defined except on a discrete set of points of T (the poles of f ), such that for each chart Ci = (Ui , φ i) of A

the local partial function fi = f φ −1
i : φ i(U) → C is meromorphic.

Let R = (T , A) be a Riemann surface, and let f : R → C be a meromorphic function. Fix a point p in T , and choose
a chart Ci = (Ui , φ i) containing p. The order of f at p with respect to the chart Ci is the order at φ i( p) of the mero-
morphic function f φ −1

i . We now show that this order is independent of the choice of chart.

Let C1 = (U1, φ1) and C2 = (U2, φ2) be two charts containing p. For each i, let fi = f φ −1
i , and let ω i = dfi / fi .

Then from fact 1 stated above the order of f at p with respect to chart Ci is Resφ i(p) ω i . Let φ be the transition func-
tion φ1 φ −1

2 from C2 to C1. We claim that φ *ω1 = ω2. Indeed, we have



Holomorphic Maps Between Riemann Surfaces Page 7

(φ *ω1)(z) = (df1(φ (z)) dφ (z)) / f1(φ (z))

= d( f1 φ )(z)/( f1 φ )(z)

= df2(z)/ f2(z)

= ω2(z).

Now from fact 2 stated above we know

Resφ1(p) ω1 = Resφ −1(φ1(p)) φ *ω1 = Resφ2(p) ω2,

which was to be shown.2

Therefore the order of f at p is independent of the chart, and we can write ordp f , without specifying a chart.

The associated holomorphic map: Let f be a meromorphic function on a Riemann surface R, and let P be the
poles of f . By the argument we made in § 5.4 of Complex Charts on Topological Surfaces, f has an associated
holomorphic map g from R to the Riemann sphere C∞. For p ∉ P, this map is defined by g( p) = φ −1

1 ( f ( p)), where
φ1 maps U1 = C∞ − {∞} homeomorphically to C. For p ∉ P, we hav e g( p) = ∞. The following proposition
relates the multiplicity of g at p (§ 1.3) to the order of f at p.

Proposition: Let R = (T , A) be a Riemann surface, let P be a discrete subset of T ,  and let f : R − P → C be a non-

constant meromorphic function with P as its set of poles. Let g: R → C∞ be the associated holomorphic map.

Let p be a point of T .  Let mult p g denote the multiplicity of g at p.

1. If p ∈ P, then mult p g = −ord p f .

2. Otherwise mult p g = ord p ( f − f ( p)).

Proof: Let p be a point of T . Choose a chart C = (U , φ ) of A centered at p, and let F = f φ −1.

(1) Assume p ∈ P. Then in a punctured neighborhood of zero F has a Laurent series expansion

F(z) =
∞

j=−n
Σ a j z

j = z−n
∞

j=0
Σ a j−n z j = z−n H(z),

where n > 0, a−n ≠ 0, ordp f = −n, and H is holomorphic in a neighborhood of zero with H(0) ≠ 0. Let
C2 = (U2, φ2) be the chart on C∞ that maps C∞ − {0} homeomorphically to C, with φ12 = φ21 = 1/z. Let
G = φ2 g φ −1. Then G maps zero to zero, so the multiplicity at p of g is the order of G at zero. In a punctured
neighborhood of zero, we have

G = φ2 φ −1
1 f φ −1 = φ12 F = 1/F .

Therefore in a neighborhood of zero we have G(z) = zn(1 /H(z)) = zn P(z), where P(z) is a power series expansion
with a nonzero constant term. Therefore g has multiplicity n at p, as required.

(2) Assume p ∉ P. Let G = φ1 g φ −1. In a neighborhood of zero we have

G = φ1 φ −1
1 f φ −1 = f φ −1 = F .

By definition the multiplicity of the map g at p is the multiplicity of the function G at φ ( p) = 0 (§ 1.3). This multi-
plicity is equal to the order at zero of

G − G(0) = f φ −1 − ( f φ −1)(0) = f φ −1 − f ( p) = ( f − f ( p)) φ −1.

By definition this is the order at p of f − f ( p).

2. Compact Riemann Surfaces

Recall that a subset S of a topological space T is compact if every open cover of S in T has a finite subcover. A
topological space T is compact if the entire space is compact as a subset of itself. A Riemann surface R = (T , A) is
compact if T is compact.

2 Note we have in fact shown that the family ω = {ω i} of meromorphic one forms on charts Ci of A is a meromorphic one form on R. See

Complex Charts on Topological Surfaces, § 4.3.
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In this section, we present some basic properties of compact Riemann surfaces.

2.1. The Genus

From the theory of complex manifolds, we know the following:

1. A Riemann surface is an orientable manifold of real dimension two. Here “orientable” means that a local
choice of an “up” direction or a “clockwise” orientation of angles, if preserved at every increment along a path
on the manifold, is preserved along the entire path. For a non-orientable manifold, e.g., a Möbius strip, this
property does not hold.3

2. Up to homeomorphism, a compact orientable manifold of real dimension two is a sphere with g handles, or
equivalently a torus (donut) with g holes, for g ≥ 0. See [Massey 1991], I, Theorem 7.2.

Therefore every compact Riemann surface is equivalent to a g-holed torus, for g ≥ 0. The number g is called the
genus of the Riemann surface.

The Riemann sphere (see Complex Charts on Topological Surfaces, § 5) is a compact Riemann surface of genus
zero. One can construct a compact Riemann surface of genus one by specifying a lattice (parallelogram grid) in the
complex plane and identifying the pairs of opposite edges of each parallelogram in the lattice. This Riemann surface
is called the complex torus. See, e.g., [Miranda 1995].

2.2. The Euler Number

From the theory of topology, we know the following:

1. Every compact Riemann surface R = (T , A) has a triangulation, i.e., a decomposition of T into closed subsets
{Si}, in which

a. Each Si is homeomorphic to a triangle; and

b. For each i ≠ j, Si and S j are disjoint, or they meet at a single vertex, or they meet along a single edge.

2. The Euler number of a triangulated compact Riemann surface is defined as v − e + t, where v is the number
of vertices, e is the number of edges, and t is the number of triangles in the triangulation.

3. The Euler number of a compact Riemann surface R is a property of R, independent of the triangulation. See
[Miranda 1995] for a sketch of the proof.

With these facts in hand, we can establish the following fundamental result:

Theorem: Let R be a compact Riemann surface of genus g. Then the Euler number of R is 2 − 2g.

Proof: By induction it suffices to show that (1) a sphere (which has genus g = 0) has Euler number 2; and (2) the
Euler number decreases by two whenever we add a handle.

(1) We can triangulate a sphere with a tetrahedron, which has 4 vertices, 6 edges, and 4 triangles. So the Euler num-
ber is 4 − 6 + 4 = 2.

(2) We can add a handle by (a) deleting the faces of two triangles and (b) adding cylinder with triangular bases that
connects the two triangles. Step (a) removes two triangles. In step (b), by dividing each rectangular face of the
cylinder into two triangles, we can triangulate the faces of the cylinder with 6 new triangles and 6 new edges. So the
Euler number changes by −2 − 6 + 6 = −2 every time we add a handle.

2.3. Topological Properties

In this section, we establish some basic topological properties of compact Riemann surfaces.

The finite disjointness property: Let T be a topological space. We say that T has the finite disjointness property

if for every subset S of T and every open set V that contains at most finitely many points of S, every point v in V − S

has an open neighborhood Wv that is disjoint from S. The topological space C has the finite disjointness property,
because either (a) V ∩ S = ∅ or (b) we can let Wv be an open ball contained in V whose radius is smaller than the
smallest distance from v to a point of V ∩ S, which is finite. We now show that the topological space of a Riemann
surface has the finite disjointness property.

3 The orientability of a Riemann surface follows from fact that holomorphic maps preserve both the magnitude and the orientation of angles.

See [Lang 1999], I, § 7. In particular, the transition function between any pair of charts preserves orientation.
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Proposition 1: Let R = (T , A) be a Riemann surface. The topological space T has the finite disjointness property.

Proof: Let S be a subset of T , let V be an open set that contains at most finitely many points of S, and let v be a
point of V − S. Choose a chart C = (U , φ ) containing v, and let W = U ∩ V . If W contains no points of S, then let
Wv = W . Otherwise φ (W ) is open, φ (S ∩ W ) is finite, φ (v) ∈ φ (W ), and φ (v) ∉ φ (S ∩ W ). Since C has the finite
disjointness property, we can choose an open neighborhood X of φ (v) that is disjoint from φ (S ∩ W ). Then
Wv = φ −1(X ∩ φ (W )) is the required open neighborhood of v.

Sequential compactness: Let T be a topological space, let I be an infinite subset of the natural numbers, and let
S = {si}i ∈ I be a sequence of points in T (i.e., a set of points si ordered by the ordering of i in the natural numbers).

• We say that S converges to a point p in T if for any neighborhood U of p, there exists i in I such that for all
j ≥ i, s j ∈ U . It is clear from the definition that if T is Hausdorff, then S converges to at most one point (i.e.,
if S converges to p and to q, then p = q).

• We say that a sequence S2 is a subsequence of a sequence S1 if S2 may be obtained from S1 by deleting ele-
ments and preserving the order of the remaining elements. For example, 1, 1, 1, . . . is a subsequence of
1, 2, 1, 2, . . ..

• We say that a S has a convergent subsequence if some subsequence of S converges to a point p in T . For
example, the sequence 1, 2, 1, 2, . . . has a convergent subsequence 1, 1, 1, . . .. It also has a convergent
sequence 2, 2, 2, . . .. It also has many other convergent subsequences, consisting of alternating ones and twos
followed by all ones or all twos.

Let T be a compact topological space. We say that T is sequentially compact if every sequence S in T has a con-
vergent subsequence. We now show that the topological space of a compact Riemann surface is sequentially com-
pact.

Proposition 2: Let R = (T , A) be a compact Riemann surface. The topological space T is sequentially compact.

To prove this proposition, we need two lemmas.

Lemma 1: Let T be a compact topological space and S ⊆ T be a set. If S is closed and discrete, then S is finite.

Proof: Because S is closed, T − S is open. Because S is discrete, we can choose a family of open sets {Us}s ∈ S such
that (1) for each s in S we have s ∈ Us; and (2) for each s and t in S with s ≠ t we have Us ∩ Ut = ∅. Then
C = (T − S)

s ∈ S
∪ Us is an open cover of T ; since T is compact, it has a finite subcover. But if S is infinite, there is no

finite subcover: if we delete any set Us from C, then there is no way to cover s. Therefore S must be finite.

Note that Lemma 1 does not hold in general if S is not closed. For example, consider the set S = {2−n | n ≥ 0} ⊆ R.
S is a subset of the compact set [0, 1], but it is not closed. It is both infinite and discrete.

Lemma 2: Let T be a compact topological space with the finite disjointness property. Then T is sequentially com-

pact.

Proof: Let S be a sequence of elements in T , and let S also denote the set of points si in S. Either S has a conver-
gent subsequence containing infinitely many distinct points, or it does not. If it does, the statement of the lemma is
satisfied. Otherwise, we have the following:

1. Each point p in T − S has some neighborhood containing at most finitely many points of S, so by the finite
disjointness property, there is an open neighborhood of p contained in T − S. Therefore T − S is open, i.e., S

is closed.

2. Each point si in S has some neighborhood containing at most finitely many points of S, so by the finite dis-
jointness property, S is discrete.

Therefore by Lemma 1, S is finite as a set, and so as a sequence it must have at least one element repeated infinitely.
The subsequence consisting of just that element is then a convergent subsequence.

Proof of the proposition: The result follows from Proposition 1 and Lemma 2.

3. Holomorphic Maps on Compact Riemann Surfaces

Holomorphic maps on compact Riemann surfaces have sev eral special properties, which we develop in this section.
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3.1. Surjectivity and Compactness of the Image

Our first result says that a nonconstant holomorphic map from a compact Riemann surface is surjective, and that the
image is compact.

Theorem: Let R1 = (T1, A1) and R2 = (T2, A2) be Riemann surfaces, and let f : R1 → R2 be a nonconstant holo-

morphic map. Suppose that T1 ≠ ∅ and R1 is compact. Then (1) R2 is compact and (2) f is surjective.

To prove this theorem we will need two lemmas. First we need the standard result that a continuous image of a com-
pact set is compact:

Lemma 1: Let T1 and T2 be topological spaces, and let f : T1 → T2 be a continuous map. Let S ⊆ T1 be a com-

pact set. Then f (S) is compact.

Proof: Let C = {Ui}i ∈ I be an open cover of f (S). Then D = { f −1(Ui)}i ∈ I is an open cover of S. Because S is
compact, we can find a finite subcover { f −1(U j)} j ∈ J of D. Then {U j} j ∈ J is a finite subcover of C.

We also need the standard result that a compact subset of a Hausdorff space is closed:

Lemma 2: Let T be a Hausdorff topological space, and let S ⊆ T be a compact set. Then S is closed.

Proof: If S = T , then S is closed because T is closed. Otherwise by the definition of a closed set, we need to show
that T − S is open. Fix a point p ∈ T − S. It suffices to find an open set X p such that p ∈ X and X p ⊆ T − S. Since
T is Hausdorff, for each s ∈ S we can find open sets U p,s and V p,s such that p ∈ U p,s, s ∈ V p,s, and
U p,s ∩ V p,s = ∅. Then {V p,s}s ∈ S is an open cover of S, so it has a finite subcover {V p,i}i ∈ I for some finite set
I ⊆ S. Let X p =

i ∈ I
∩ U p,i . Then X p contains p, X p is open because it is a finite intersection of open sets, and X p is

disjoint from S because it is disjoint from
i ∈ I
∪ V p,i . Therefore X p is the required open neighborhood of p.

Proof of the theorem: (1) By § 1.1, Lemma 1, f : T1 → T2 is continuous; and by Lemma 1 above, f (T1) is compact.
(2) By § 1.4, f (T1) is open. By Lemma 2, f (T1) is closed, so T2 − f (T1) is open. By assumption T1 ≠ ∅, so
f (T1) ≠ ∅. T2 is connected and T2 = f (T1) ∪ (T2 − f (T1)), so T2 − f (T1) = ∅, i.e., f (T1) = T2.

3.2. Bounded Holomorphic Functions

Using the results from the previous section, we can show that if a function f is holomorphic and bounded on a com-
pact Riemann surface, then f is constant.

Theorem 1: Let R = (T , A) be a compact Riemann surface, and let f : R → C be a holomorphic function. If f is

bounded (i.e., there exists a real number r ≥ 0 such that for all p ∈ T we have | f ( p)| ≤ r), then f is constant.

Proof: Let g: R → C∞ be the associated holomorphic map to the Riemann sphere (§ 1.5). Then g is a holomorphic
map between compact Riemann surfaces. If g were nonconstant, then by § 3.1 it would be surjective. But g is not
surjective, because ∞ ∉ g(T ). Therefore g is constant, and so f is constant.

The analogous statement for holomorphic functions on C is the classic result in complex analysis called Liouville’s

theorem. The theory of holomorphic maps gives us a simple proof.

Theorem 2 (Liouville’s Theorem): Let f : C → C be a holomorphic function. If f is bounded, then f is constant.

Proof: We may interpret f as a holomorphic function on C∞ − {∞}, with an isolated singularity at ∞. On any chart
Ci = (Ui , φ i) containing ∞, the local function fi = f φ −1

i is bounded, so fi has a removable singularity at ∞. See
Calculus over the Complex Numbers, § 5.2. Therefore f has a removable singularity at ∞, i.e., there is a holomor-
phic function g: C∞ → C∞ such that g = f on C. By Theorem 1, g is constant. Therefore f is constant.

3.3. Finiteness of the Inverse Image of a Point

Our next result says that, for a nonconstant holomorphic map between compact Riemann surfaces, the inverse image
of a point is finite.

Theorem: Let R1 = (T1, A1) and R2 = (T2, A2) be compact Riemann surfaces, and let f : R1 → R2 be a noncon-

stant holomorphic map. Fix a point q ∈ T2. Then f −1(q) is a finite subset of T1.

We will need two lemmas.

Lemma 1: Let R = (T , A) be a Riemann surface, and let p be a point of T .  Then the set S = {p} is closed.
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Proof: Choose a chart C = (U , φ ) containing p. Then φ (S) contains a single point, so it is a closed set in C.
φ −1: φ (U) → U is a homeomorphism, which takes closed sets to closed sets, so S = φ −1(φ (S)) is closed.

Lemma 2: Let T1 and T2 be topological spaces, and let f : T1 → T2 be a continuous map. Let S ⊆ T2 be a closed

set. Then f −1(S) is closed.

Proof: Because S is closed, T2 − S is open. Because f is continuous, f −1(T2 − S) is open. Therefore
f −1(S) = T1 − f −1(T2 − S) is closed.

Proof of the theorem: By Lemma 1, {q} is closed in T2. By Lemma 2, f −1(q) is closed in T1. By § 1.1, f −1(q) is
discrete. By § 2.3, Lemma 1, f −1(q) is finite.

3.4. Finiteness of the Sets of Ramification and Branch Points

We now prove that, for a nonconstant holomorphic map between compact Riemann surfaces, the set of ramification
points is finite, as is the set of branch points.

Theorem: Let R1 = (T1, A1) and R2 = (T2, A2) be compact Riemann surfaces, and let f : R1 → R2 be a noncon-

stant holomorphic map. Then (1) the set of ramification points of f is finite; and (2) the set of branch points of f

is finite.

Proof: (1) Let S be the set of ramification points of f . Let p be a point of T1 which is not in S. f behaves like z in
an open neighborhood of p, so T1 − S is open. Therefore S is closed. On the other hand, S is discrete, because for
any branch point p, f locally behaves like zm, so there is a punctured neighborhood of p where f has multiplicity
one. Because S is closed and discrete and T1 is compact, S is finite by § 2.3, Lemma 1.

(2) Since each branch point is the image under f of a ramification point, (2) follows immediately from (1).

3.5. The Degree of a Holomorphic Map

Let R1 = (T1, A1) and R2 = (T2, A2) be compact Riemann surfaces, and let f : R1 → R2 be a holomorphic map. For
each point p in T1, let m f ( p) denote the multiplicity of f at p (§ 1.3). Define a function d f : T2 → N as follows:

d f (q) =
p ∈ f −1(q)

Σ m f ( p).

In English, d f (q) is the sum of the multiplicities of the points p such that f ( p) = q. By § 3.3, f −1(q) is finite, so
this function is well-defined. We call d f (q) the degree of the map f at the point q.

We claim that d f is a constant function on T2. To prove this claim, we need two lemmas.

Lemma 1: Let T1 and T2 be topological spaces, and let f : T1 → T2 be a continuous map. Let X = {xi}i ∈ I be a

sequence of points in T1 that converges to a point x. Then the sequence Y = {yi = f (xi)}i ∈ I in T2 converges to

f (x).

Proof: Let U be an open neighborhood of f (x). By continuity, f −1(U) is open in T1. By the convergence of X , for
some i in I , x j lies in f −1(U) for all j ≥ i. Therefore f (x j) lies in U for all j ≥ i.

Lemma 2: Let T be a topological space, let p be a point of T ,  and let S = {si}i ∈ I be a sequence that converges to

a point p. If a subsequence SJ = {s j} j ∈ J converges to q, then q = p.

Proof: Let U be an open neighborhood of p. By the convergence of S, there is an i in I such that for all k in I with
k ≥ i, sk lies in U as an element of S. But J ⊆ I . Thus for all k in J with k ≥ i, sk lies in U as an element of S j .

Theorem: Let R1 and R2 be compact Riemann surfaces, and let f : R1 → R2 be a holomorphic map. The function

d f (q) is constant on T2.

Proof: Choose a point q in T2, and let f −1(q) = {pi}i ∈ I . For each i let mi = m f ( pi); then by § 1.3 there exists a
chart Ci1 = (Ui1, φ i1) of A1 centered at pi and a chart Ci2 = (Ui2, φ i2) of A2 centered at q such that

Fi = φ i2 f φ −1
i1 = zmi .

Let U1 =
i ∈ I
∪ Ui1. It will suffice to find an open neighborhood Vq of q such that f −1(Vq) ⊆ U1, for in this case we

will know the following, for each v ∈ Vq and each i ∈ I :

1. If v = q, then f −1(v) ∩ Ui1 contains one point with multiplicity mi .
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2. If v ≠ q, then f −1(v) ∩ Ui1 contains mi points, each with multiplicity one.

In either case, for each i, the amount contributed to d f (v) by f −1(v) ∩ Ui1 is the constant value mi for all v in Vq.
Therefore the amount contributed by f −1(v) is constant on Vq. Because this is true for any q ∈ T2, d f is locally
constant. Now giv e N the Hausdorff topology in which every subset is open.4 Then d f is continuous, because for
ev ery natural number n, each point q in d−1

f (n) is contained in an open set Vq that is also contained in d−1
f (n).

Therefore d f is continuous and locally constant, so by § 1.1, Lemma 1, it is constant.

We will now show the existence of Vq. Let y be a point of T2 for which no open neighborhood V y exists; we will
show that y ≠ q. Fix an i in I , and for each j ∈ N, let B j ⊆ C be the open ball B(φ i2(y), 1/ j). Then for each j, we
have the following:

1. The open set f −1(φ −1
i2 (B j)) is not contained in U1. If it were, then φ −1

i2 (B j) would be an open neighborhood V y

that we assumed not to exist.

2. Therefore, there are points x j ∈ T1 − U1 and y j ∈ φ −1
i2 (B j) such that f (x j) = y j .

Let X = {x j} j ∈ N and Y = {y j} j ∈ N be sequences of points as described in item 2. Then we have the following:

1. Y ′ = {φ i2(y j)} converges to φ i2(y), so by Lemma 1, Y converges to y.

2. By § 2.3, Proposition 2, X has a convergent subsequence XK = {xk}k ∈ K .

Suppose that XK converges to x; we will show that x lies outside of U1. By Lemma 1, X ′K = {φ i1(xk)}k ∈ K con-
verges to φ i1(x). Let p be a point of φ i1(U1). Because φ i1(U1) is open in C, p is contained in an open ball B p that
lies inside inside φ i1(U1). Because xk ∉ U1 for all k, B p contains no point φ i1(xk). Therefore X ′K cannot converge
to p, and so φ i1(x) lies outside φ i1(U1). Therefore x lies outside U1, as claimed.

Now since U1 contains f −1(q), we must have f (x) ≠ q. By Lemma 1, YK = {yk = f (xk)}k ∈ K converges to
f (x) ≠ q. But Y converges to y, so by Lemma 2, YK converges to y, and therefore y ≠ q.

By the theorem, a holomorphic map f between compact Riemann surfaces has the same degree d f (q) at every point
q of T2. We call this number the degree of the map f and denote it deg f .

3.6. The Sum of the Orders of a Meromorphic Function

In this section we state and prove a basic result about the sum of the orders of a meromorphic function at the points
of a compact Riemann surface.

Let R = (T , A) be a compact Riemann surface, and let f be a meromorphic function on R. Then

p ∈ T
Σ ordp f = 0.

Proof: Let g: R → C∞ be the associated holomorphic map, and let p be a point of T . If p is neither a zero nor a
pole of f , then there is a chart C = (U , φ ) of A centered at p such that f φ −1 has a power series expansion at zero
with a nonzero constant term, so ordp f = 0. Therefore, writing 0 to denote φ −1

1 (0) ∈ C∞, we hav e

p ∈ T
Σ ordp f =

p ∈ g−1(0)
Σ ordp f +

p ∈ g−1(∞)
Σ ordp f .

Since f ( p) = 0 in the first term on the right-hand side, we have

p ∈ T
Σ ordp f =

p ∈ g−1(0)
Σ ordp ( f − f ( p)) +

p ∈ g−1(∞)
Σ ordp f .

=
p ∈ g−1(0)

Σ multp g −
p ∈ g−1(∞)

Σ multp g (by § 1. 5)

= deg f − deg f (by § 3. 5)

= 0.

4 Observe that this is the subset topology on N as a subset of R with the Euclidean topology. Indeed, for any point n in N, let Bn be the open

ball in R of radius 1/2 centered on n. Then no point of N except n lies in Bn. Thus for any set S ⊆ N, S is the intersection of N with the set

n ∈ S
∪ Bn, which is open in R.
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For example, let f be the meromorphic function 1/z on the Riemann sphere. Then f has a zero of order one at ∞, a
pole of order one at 0, and no other zeros or poles. Therefore the sum of the orders is 1 − 1 = 0. (Remember that
when f has a pole of order n at p, ordp f = −n).

3.7. Hurwitz’s Formula

In this section we present a fundamental result that ties together the topology of compact Riemann surfaces with the
theory of holomorphic maps.

Let R1 = (T1, A1) and R2 = (T2, A2) be compact Riemann surfaces, and let f : R1 → R2 be a nonconstant holomor-
phic map. By § 3.1, f is surjective. Let τ2 be a triangulation of T2 (§ 2.2). Assume that each branch point of T2 is a
vertex of τ2, and that each triangle in τ2 has at most one branch point as a vertex. The set of branch points is finite
(§ 3.4), so we can always satisfy these requirements by moving vertices around, and by subdividing triangles. Con-
sider τ2 as a set of points, and let τ1 = f −1(τ2).

We claim that τ1 is a triangulation of T1. Indeed, let p be a point of T1, and let m be its multiplicity. Let
C1 = (U1, φ1) be a chart centered on p, and let C2 = (U2, φ2) be a chart centered on f ( p), with φ2 f φ −1

1 = zm.
Let σ2 = τ2 ∩ U2, and let σ1 = f −1(σ2). If m = 1, then f is one-to-one and continuous on U1, so σ1 has the same
shape as σ2, up to moving lines around. If m > 1, then by assumption f ( p) is a vertex. Assume that e edges meet at
f ( p) in σ2. Then by the behavior of zm, σ1 is a subset of a triangulation in which me edges meet at p.

The triangulation τ1 is called the lifting of the triangulation τ2 via the map f . For example, let T1 and T2 be the Rie-
mann sphere C∞ = C ∪ {∞}, let f (z) = z2, and let τ2 be the triangulation of C∞ given by three great circles, two
that meet perpendicularly at 0 and at ∞, and one that meets the other two perpendicularly at each of the midpoints
between 0 and ∞. Then the lifting τ1 consists of τ2 plus two more great circles through 0 and ∞, such that the eight
edges meeting at each of 0 and ∞ are evenly spaced around those points.

In general, let d = deg f , and let m( p) be the multiplicity of f at each point p in T1. Observe the following:

1. Let ei be the number of edges in τ i . A point q in T2 with e radiating edges lifts to a set of points {pi}i ∈ I each
with m( pi)e radiating edges. The total number of radiating edges is de, because

i ∈ I
Σ m( pi) = d . Therefore

e1 = de2.

2. Let ti be the number of triangles in τ i . For a similar reason, t1 = dt2.

3. If m( p) = 1 at every point p in T1, then each vertex q of τ2 lifts to d points in T1, and v1 = dv2. For every
point p where m( p) > 1, p is a vertex of τ1, and this formula over-counts v1 by m( p) − 1. On the other hand,
where m( p) = 1, we have m( p) − 1 = 0. Therefore in the general case we have

v1 = dv2 −
p ∈ T1

Σ (m( p) − 1).

Now let Ei = vi − ei + ti be the Euler number of Ti . We hav e

E1 = v1 − e1 + t1

= (dv2 −
p ∈ T1

Σ (m( p) − 1)) − de2 + dt2

= d(v2 − e2 + t2) −
p ∈ T1

Σ (m( p) − 1)

= dE2 −
p ∈ T1

Σ (m( p) − 1). (1)

Finally, let gi be the genus of Ti . Then Ei = 2 − 2gi , so after negating both sides of (1) we can write

2g1 − 2 = d(2g2 − 2) +
p ∈ T1

Σ (m( p) − 1). (2)

Equation (2) is called Hurwitz’s formula.



Holomorphic Maps Between Riemann Surfaces Page 14

To continue the example of f (z) = z2 on the Riemann sphere, we have g1 = g2 = 0. The map f has degree 2 with
multiplicity 2 at zero and at ∞ and multiplicity one everywhere else. Thus the left-hand side of (2) evaluates to −2,
and the right-hand side evaluates to 2 ⋅ (−2) + (1 + 1) = −2.
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