
The General Derivative

Robert L. Bocchino Jr.

Revised November 2023

In first-year calculus we learn how to compute the derivative of a function from real numbers to real numbers. This
derivative is a special case of a much more general construct: namely, the derivative of a map between normed vec-
tor spaces over the real numbers. Traditionally one learns about this more general derivative, if at all, after two years
of calculus (including a year of “multivariable calculus,” which covers only parts of the theory) and at least one se-
mester of undergraduate real analysis. The goal of this paper is to present the general derivative in a way that is
accessible with a minimum of technical background.

There are two prerequisites for reading this paper. The first is a good understanding of calculus in one real variable.
For that, a year of calculus at the advanced high school or beginning undergraduate level should suffice. The second
is a certain amount of “mathematical maturity.” Basically this means a willingness to (a) think abstractly and (b)
puzzle over something that doesn’t make sense until it does, possibly by trying examples on your own.

If you have not studied second-year calculus, don’t worry. No knowledge of that subject is assumed. If you have,
then this paper may help you mentally organize the ad-hoc computational rules involving gradients, partial deriva-
tives, dot products, matrices, etc., that you learned in that course. The ad-hoc rules are of course useful in applica-
tions such as physics and engineering. However, they obscure the simplicity and elegance of the underlying theory.

1. Real Numbers

We begin by examining the real numbers. These are ordinary numbers like 1, 1/8, 1.25, √2, and π . They are called
“real numbers” because they are the numbers that one encounters in day-to-day life for counting and measuring, and
because they exclude the square root of −1, which for historical reasons is called an “imaginary number.” We denote
the set of real numbers R. We recall some basic properties of R.

Addition: R has an operation called addition. According to this operation, we can add any two real numbers r1

and r2 to form a real number called the sum of r1 and r2 and denoted r1 + r2. For example, given real numbers 2
and 3, we can form the sum 2 + 3, which is the real number 5. We say that addition of real numbers is associative

because for any three real numbers, say 1, 2, and 3, we have (1 + 2) + 3 = 1 + (2 + 3). We say that addition of real
numbers is commutative because for any two real numbers, say 2 and 3, we have 2 + 3 = 3 + 2. There is a zero ele-

ment for addition, denoted zero or 0, with the property that for any real number, say 5, we have 5 + 0 = 0 + 5 = 5.

Subtraction: Every real number r has an additive inv erse denoted −r, such that r + (−r) = 0. For example, the
additive inv erse of 5 is −5, and 5 + (−5) = 0. The additive inv erse is unique. For example, if r is an additive inv erse
for 5, then 5 + r = 0 and 5 + (−5) = 0, so 5 + r = 5 + (−5). Adding −5 to both sides shows that r = −5.

When we add r1 and −r2, we also say that we subtract r2 from r1. For example, we may form the additive inv erse
of 2 and add it to 5, like this: 5 + (−2). Equivalently, we say that we are “subtracting 2 from 5” and write the opera-
tion like this: 5 − 2. The notation 5 − 2 is a shorthand for 5 + (−2). Note that subtraction consists of two operations:
forming the additive inv erse and adding. Also note that subtraction is not commutative: 5 − 2 ≠ 2 − 5. Nor is it asso-
ciative: (3 − 2) − 1 ≠ 3 − (2 − 1).

Multiplication: R has an operation called multiplication. According to this operation, we can multiply any two
real numbers r1 and r2 to form a real number called the product of r1 and r2 and denoted r1r2 or r1 ⋅ r2. (We usu-
ally use the dot when writing the product of concrete numbers, and omit it when writing products involving abstract
numbers denoted by letters.) Like addition, multiplication is associative and commutative. There is a unit element

for multiplication, denoted one or 1, such that for any real number, say 10, we have 10 ⋅ 1 = 1 ⋅ 10 = 10. Multiplica-
tion distributes over addition. For example, 2 ⋅ (3 + 5) = 2 ⋅ 3 + 2 ⋅ 5, and this relation holds for any real numbers in
place of 2, 3, and 5. Similarly, (3 + 5) ⋅ 2 = 3 ⋅ 2 + 5 ⋅ 2. (This fact follows from the previous one and commutativity,
because (3 + 5) ⋅ 2 = 2 ⋅ (3 + 5) = 2 ⋅ 3 + 2 ⋅ 5 = 3 ⋅ 2 + 5 ⋅ 2.) For any real number r, we hav e 0r = r0 = 0. (This fact
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follows from the unit element, distributivity, and the properties of addition and subtraction. For example,

5 = 5 ⋅ 1 = 5 ⋅ (1 + 0) = 5 ⋅ 1 + 5 ⋅ 0 = 5 + 5 ⋅ 0.

Adding −5 to both sides shows that 0 = 5 ⋅ 0.)

Division: Every real number r except zero has a multiplicative inv erse denoted r−1 or 1/r, such that r ⋅ r−1 = 1.
The multiplicative inv erse is unique, by a similar argument to the one that we made for the additive inv erse.

When we multiply r1 and r−1
2 , we also say that we divide r1 by r2. For example, we may form the multiplicative

inverse of 2 and multiply 5 by it, like this: 5 ⋅ (1 / 2). Equivalently, we say that we are “dividing 5 by 2” and write the
operation like this: 5/2. The notation 5/2 is a shorthand for 5 ⋅ (1 / 2) or 5 ⋅ 2−1. Note that division consists of two
operations: forming the multiplicative inv erse and multiplying. Also note that division is not commutative:
5/2 ≠ 2/5. Nor is it associative: (8/4)/2 ≠ 8/(4/2). Finally, remember that the multiplicative inv erse of zero (equiva-
lently, division by zero) is not defined. Expressions such as 0−1 and 10/0 hav e no meaning in the real number sys-
tem.

Norm or absolute value: Each real number r has a norm or absolute value written |r | and equal to r if r ≥ 0, other-
wise −r. The norm of a real number r measures the magnitude of r and disregards its sign. The norm has the fol-
lowing properties:

1. For any real number r, |r | ≥ 0, and |r | = 0 if and only if r = 0.

2. For any two real numbers r1 and r2, |r1r2| = |r1||r2|.

3. For any two real numbers r1 and r2, |r1 + r2| ≤ |r1| + |r2|.

The last inequality is called the triangle inequality.

It is straightforward to verify each of these properties. The only one that is not entirely obvious is the triangle
inequality. To verify that one, you can consider four cases: when neither r1 nor r2 is less than zero; when both are;
when only r1 is; and when only r2 is. By commutativity, the last two cases are identical, so you only have to prove
one of them.

2. Normed Vector Spaces

Now we turn our attention to normed vector spaces. These are the spaces in which we define the general derivative.
In this paper we will focus on normed vector spaces over the real numbers R. Other normed vector spaces (for
example, normed vector spaces over the complex numbers) are possible.

Vector spaces: A vector space V over R is a set of vectors satisfying the following rules.

1. Vector addition: We can add any two vectors v1 and v2 to form their sum, which is a vector denoted v1 + v2.
The addition behaves like addition in R: it is associative and commutative, there is a vector 0 such that
v + 0 = 0 + v = v for all vectors v, and every vector v has a unique additive inv erse −v such that v + (−v) = 0.

2. Scalar multiplication: The real numbers are called the scalars of V . Giv en any scalar r and any vector v, we
can form the product rv. We also write vr, and this has the same meaning as rv. This product satisfies the fol-
lowing rules:

a. For all vectors v, 1v = v.

b. Scalar multiplication is associative in the sense that if r1 and r2 are scalars and v is a vector, then
r1(r2v) = (r1r2)v.

c. Scalar multiplication distributes over addition of vectors in the sense that if r1 and r2 are scalars and v1

and v2 are vectors, then (r1 + r2)v = r1v + r2v and r(v1 + v2) = rv1 + rv2.

By the same argument we gav e in the previous section, we can derive the fact that 0v = 0 for all vectors v.

Normed vector spaces: We say that a vector space V is a normed vector space if each vector v in V has a norm |v|,
where |v| is a real number, and the norm satisfies the following properties:

1. For any vector v, |v| ≥ 0, and |v| = 0 if and only if v = 0.

2. For any scalar r and vector v, |rv| = |r ||v|.

3. For any two vectors v1 and v2, |v1 + v2| ≤ |v1| + |v2|.
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Notice the similarity to the properties stated in the previous section for the norm on R.

Here are some examples of normed vector spaces:

Example 1: R is a normed vector space over itself. Vector addition is addition in R. Scalar multiplication is multi-
plication in R. The vector norm is the norm on R (i.e., the absolute value).

Example 2: Let R2 denote the set of pairs of real numbers (x, y). It is a normed vector space over R. Vector addi-
tion is componentwise: (x, y) + (x′, y′) = (x + x′, y + y′). Scalar multiplication is componentwise: r(x, y) = (rx, ry).

The norm is the standard Euclidean norm: |(x, y)| = √ x2 + y2.

Example 3: Let Rn denote the set of n-tuples of real numbers x = (x1, . . . , xn). It is a normed vector space over R.

Vector addition and scalar multiplication are componentwise. The norm is the Euclidean norm |x| = √ x2
1+. . . +x2

n.

Example 4: Let R∞ denote the set of infinite sequences x = x1, x2, . . .  of real numbers such that all but finitely
many of the elements xi are zero. It is a normed vector space over R. Vector addition and scalar multiplication are
componentwise. The norm |x| is the square root of the sum of all the elements x2

i . This sum is finite because all but
finitely many of the xi are zero.

Example 5: Consider the set of bounded functions f from R to R, where bounded means that there is a fixed real
number r called a bound for f such that | f (x)| ≤ r as x ranges over R. This set is a normed vector space over R:

• Vector addition is given by f + g = x → f (x) + g(x). This notation says that the sum of the functions f and g

is the function that takes x to f (x) + g(x). For example, if f (x) = x2 and g(x) + x, then ( f + g)(x) = x2 + x.

• The zero element is the zero map x → 0.

• The additive inv erse of f is x → − f (x). For example, the additive inv erse of f = x → x2 is − f = x → − x2.
We also write f (x) = x2 and (− f )(x) = −x2.

• Scalar multiplication is given by rf = x → rf (x). For example, if f (x) = x2, then (3 f )(x) = 3x2.

• The norm | f | is giv en by the supremum of | f (x)|, written sup | f (x)|. This is the smallest number that is
greater than or equal to every | f (x)| for x in R. This value exists if f is bounded. For example, |sin| = 1.

Example 6: Let V be a normed vector space over R, and let V n denote the set of n-tuples of elements of V given by
v = (v1, . . . , vn). It is a normed vector space over R. Vector addition and multiplication are componentwise. The
norm is the sup norm |v| = sup(|v1|, . . . , |vn |). For example, let V = R2, and let n = 2. Then V n = (R2)2. One ele-

ment of V is v = ((1, 2), (3, 4)). Its norm is |v| = sup(|(1, 2)|, |(3, 4)|) = sup(√ 12 + 22, √ 32 + 42) = 5.

Finite and infinite dimensions: Examples 1 through 3 are called finite dimensional vector spaces, because in each
case, we can choose a finite number of vectors in the space and express every other vector as a sum of numbers
times those vectors. For example, we may write every vector (x, y) in R2 as x(1, 0) + y(0, 1). We say that (1, 0) and
(0, 1) are basis vectors for R2. On the other hand, examples 4 and 5 are infinite dimensional vector spaces, because
in each case there is no such finite set of basis vectors. Example 6 is finite dimensional if and only if V is.

It is possible to take derivatives in infinite dimensional vector spaces. However, the theory is a bit more complex
than in the finite dimensional case. We will discuss this issue a bit more in § 10. Otherwise, for the rest of this doc-
ument, we will assume that our vector spaces are finite dimensional. In fact, the theory of vector spaces tells us that
a finite dimensional vector space V over R is isomorphic to Rn for some n. This means that there is a one-to-one
structure-preserving map between V and Rn. (A map is like a function, except that it takes vectors to vectors instead
of numbers to numbers. In this case the structure-preserving map is a linear map; we will define this term in § 4.)
For example, (R2)2 is isomorphic to R4, via the mapping ((a, b), (c, d)) → (a, b, c, d). So in fact, “up to isomor-
phism,” as mathematicians like to say, for the rest of this document we will always work over Rn for some n. How-
ev er, we will still use letters such as V to denote vector spaces. That way we don’t hav e to give an an explicit iso-
morphism to Rn, even though we know there is one.

Multiple norms: In general, a vector space V may have more than one norm. For example, in examples 2, 3, and 4,
we could have used the sup norm instead of the Euclidean norm. Therefore, when working with a normed vector
space, we will need to specify which norm we mean.

3. Map, Limits, and Continuity

Maps: In first-year calculus, we take derivatives of functions f (x), where x and f (x) are numbers. Here we wish to
extend this idea to maps (or mappings) f (x) where x and f (x) are vectors. A map is an association between points
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x of a vector space X and points f (x) of a vector space Y . We write such a map f : X → Y . In this document we
will not require that f be defined on all points of X . Sometimes a map f : X → Y that is not defined on all points of
X is called a partial map. The subset of X on which f is defined is called the domain of f .

We do not require that the vectors x in X be explicitly given as tuples of the form (x1, . . . , xn) for numbers or vec-
tors x1, . . . , xn. Further, where we do have x = (x1, . . . , xn), the notation f (x) giv es us the flexibility to treat x as
one thing (a vector) or as a composition of several things (the elements xi , also called the coordinates of the vector
x). We treat the coordinates of Y similarly. We will explore this idea further in § 6 below.

To study maps of vector spaces, we need to define limits and continuity for these maps. This is not difficult. We
shall see that these concepts carry through almost identically from numbers to vectors.

Limits: To define limits, we just need a concept of the distance between points. In R that distance is given by the
absolute value |x| of real numbers x. Two numbers x1 and x2 are close together if the norm or absolute value of
their difference |x1 − x2| is small. In a normed vector space, just as in R, we hav e “subtraction” (really the addition
of an additive inv erse) and a norm, so we can do the same thing. We let the distance be given by |x1 − x2|, the norm
of the difference between the vectors x1 and x2. In § 2, we defined the norm in such a way that arguments based on
the absolute value (for example, the triangle inequality) carry through as arguments based on the norm.

Let X and Y be normed vector spaces. The limit of a map f (x): X → Y as x approaches x0, written
x → x0

lim f (x), is

defined in the analogous way as it is when X = Y = R. We say that the limit exists and is equal to y if the distance
from f (x) to y in Y can be made as small as desired by choosing x sufficiently close to x0. For vector spaces, the
distance is given by the norm. In symbols, we say

x → x0

lim f (x) = y if for all ε > 0  there exists δ > 0  such that

| f (x) − f (x0)| < ε whenever |x − x0| < δ . This is the same definition as in the case of a single real variable, after
replacing the absolute value with the more general concept of the norm. Just keep in mind that when we write
expressions such as |x − x0|, in general x and x0 refer to vectors, not numbers.

Continuity: As for a single real variable, we say that a mapping f (x): X → Y is continuous at x0 if

x → x0

lim f (x) = f (x0). We say that f is continuous on a set of points S of X if it is continuous at every point x0 in S.

We say that f is uniformly continuous on S if (a) it is continuous on S and (b) given ε in the definition of the conti-
nuity limit, we can choose a single δ that satisfies the definition at all points in S. In general this is not true. For
example, the function f (x) = 1/x is not uniformly continuous in the open interval (0, 1) because as x approaches
zero, the curve gets steeper and steeper, so for any fixed value of value of ε . we need to choose smaller and smaller
values of δ .

Note on terminology: We avoid the terms “single variable” and “multivariable” that are sometimes used to distin-
guish first-year from more advanced calculus. In fact, even in the most advanced and general form of calculus, a

map f (x) has one variable x. It is very important to keep this fact in mind, because it greatly simplifies the theory.
When generalizing calculus, we do not “add more variables.” Instead, (1) we let x be a vector instead of just a num-
ber; and (2) we may (but are not required to) represent a vector as a collection of numbers. We use the term “single
real variable” to refer to the first-year calculus case, in which the variable x refers to a single real number.

4. Linear Maps

In the general setting, the derivative is a special kind of map between vector spaces called a linear map. So next we
discuss linear maps.

Let V and W be vector spaces. A linear map λ : V → W is a map from V to W that satisfies the following rules:

1. For all real numbers r and all vectors v in V , we hav e λ(rv) = rλ(v).

2. For all vectors v1 and v2 in V , we hav e λ(v1 + v2) = λ(v1) + λ(v2).

The set of linear maps from V to W forms a vector space, by the same argument that we used for Example 5 in § 2.
We denote this vector space L(V , W ). It is a finite dimensional vector space over R.

4.1. Linear Products

In the special case of V = W = R, each linear map corresponds to multiplication by a real number. That is, every
element of L(R, R) is a function λ(x) = rx for some real number r. Indeed, for any real number r′, we hav e
λ(r′) = λ(r′1) = r′λ(1), so r = λ(1). Further, multiplication by a real number r is linear because it is associative and
it distributes over addition. Thus we see that the product of real numbers gives a one-to-one linear map from R to



The General Derivative Page 5

L(R, R).

In general, when V and W are normed vector spaces, and f : V → W is a one-to-one linear map, we call f an iso-

morphism. The word “isomorphism” comes from the Greek words meaning “equal shape.” If an isomorphism
exists between V and W , then V and W have the same shape, in the sense that we can transform one into the other by
a structure-preserving map.

Thus the product of numbers gives an isomorphism from R to L(R, R), the space of linear maps from R to R. To
characterize linear maps in vector spaces, we develop similar isomorphisms for suitably defined products of vectors.
Let U , V , and W be vector spaces. We define a linear product to be an isomorphism P from U to L(V , W ). By def-
inition, for each vector u in U , P associates linear map P(u): V → W . Therefore P provides a way to interpret the
vectors of U as linear maps from V to W . Equivalently, we may think of P as multiplying or combining a vector u

in U and a vector v in V , yielding a vector P(u)(v) in W . When the product P is clear from the context, we write
u ⋅ v or uv instead of P(u)(v).

For any vector space V , scalar multiplication is a linear product P: R → L(V , V ). In particular, multiplication in R

is a linear product P: R → L(R, R). We use M to denote multiplication of real numbers. That is, M(r1)(r2) = r1r2

means “multiply r1 by r2,” and M(r) means “multiplication by r.”

Given a linear product P:U → L(V , W ), we can use P to construct new linear products. There are three basic con-
structions. Each one is a kind of extended multiplication, in which one or both of the factors may have sev eral ele-
ments, and we use P to combine the individual elements. We continue to use the letter M for this extended multipli-
cation. We use subscripts to indicate the number of elements in each factor.

Multiplying one element by several elements: Let V n be the vector space consisting of tuples (v1, . . . , vn) of vec-
tors of V , as defined in Example 6 of § 2. For any n > 0, we define M1n(P):U → (V n, W n) to be the linear product
given by

u ⋅ (v1, . . . , vn) = (u ⋅ v1, . . . , u ⋅ vn),

where the dot on the left represents M1n(P), and the dots on the right represent P. In other words, we use P to mul-
tiply u by each element vi . Notice that when V = W = R, M1n(M) is scalar multiplication in Rn. More generally,
when P is scalar multiplication on the left in V , M1n(P) is scalar multiplication on the left in V n.

Multiplying several elements by one element: Let U n be the vector space consisting of tuples (u1, . . . , un) of vec-
tors of U . For any n > 0, we define Mn1(P):U n → L(V , W n) to be the linear product given by

(u1, . . . , un) ⋅ v = (u1 ⋅ v, . . . , un ⋅ v),

where the dot on the left represents Mn1(P), and the dots on the right represent P. In other words, we use P to mul-
tiply each element ui by v. Notice that when P is scalar multiplication on the right in U , M1n(P) is scalar multipli-
cation on the right in U n.

Multiplying several elements by several elements: For any n > 0, we define Mnn:U n → L(V n, W ) to be the linear
product given by

(u1, . . . , un) ⋅ (v1, . . . , vn) = u1 ⋅ v1 + ⋅⋅⋅ + un ⋅ vn,

where the dot on the left represents Mnn(P), the dots on the right represent P, and the plus signs represent addition
in W . In other words, we add n terms, each of which is P(ui)(vi).

Notice that the definitions overlap for M11(P), and they all agree in this case. Also, for any P, M11(P) = P. In par-
ticular, M11(M) = M .

It is a straightforward exercise to verify that each of the products Mij(P) is an isomorphism.

By starting with real multiplication M and iteratively applying the product constructors Mij , we can multiply differ-
ent kinds of vectors, and we can represent linear maps as vectors. To keep the notation tidy, we write Mab cd (P)
instead of Mab(Mcd (P)). Also, we omit the argument P when there is only one way to multiply the elements in
question. For example, in Rn we write Mnn instead of Mnn(M).

Example 1 (The dot product): In Rn, the linear product Mnn is called the scalar product or dot product. For
example, (1, 2) ⋅ (3, 4) = 1 ⋅ 3 + 2 ⋅ 4 = 11, where the dot between the vectors means M22, and the dot between the
numbers means M . Mnn interprets any vector in Rn as a linear map from Rn to R. Equivalently, it multiplies two
vectors in Rn, yielding a number in R.
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Example 2 (Multiplying matrices by vectors): Mn1 mm interprets vectors in (Rm)n as linear maps from Rm to Rn.
Equivalently, it multiplies vectors u in (Rm)n by vectors v in Rm, yielding vectors w in Rn. We can read these facts
from the notation Mn1 mm:

1. From the left elements in the subscripts, reading right to left, u is an element of (Rm)n.

2. From the right elements in the subscripts, again right to left, v is an element of (Rm)1 = Rm.

3. Combining m elements with m elements yields one element, and combining n elements with one element
yields n elements. So w is an element of (R1)n = Rn.

To illustrate, we use M21 33 to multiply the vector ((0, 1, 2), (1, 2, 3)) in (R3)2 by the vector (3, 4, 5) in R3, yielding a
vector in R2. We start with the product

((0, 1, 2), (1, 2, 3)) ⋅ (3, 4, 5),

where the dot means M21 33. In English, that says, “Treat the left factor as two elements, treat the right factor as one
element, and when multiplying elements, use M33.” By definition this is

((0, 1, 2) ⋅ (3, 4, 5), (1, 2, 3) ⋅ (3, 4, 5)),

where the dot means M33. By definition this is

(0 ⋅ 3 + 1 ⋅ 4 + 2 ⋅ 5, 1 ⋅ 3 + 2 ⋅ 4 + 3 ⋅ 5),

where the dot means M . So the answer is (14, 26).

It quickly becomes unwieldy to write out vectors of vectors using commas and parentheses. Therefore vectors in
(Rm)n are traditionally written as matrices or grids of numbers, with n rows of m columns each. For example, the
vector ((0, 1, 2), (1, 2, 3)) appearing as the left factor of a multiplication is usually written as a matrix





0

1

1

2

2

3




.

When multiplying matrices by vectors according to the formula uv = w, we interpret u as a column of row vectors
and each of v and w as a single column vector. So the product

((0, 1, 2), (1, 2, 3)) ⋅ (3, 4, 5) = (14, 26)

is usually written





0

1

1

2

2

3










3

4

5






=




14

26




.

Example 3 (Multiplying matrices by matrices): M1o n1 mm interprets vectors in (Rm)n as linear maps from (Rm)o

to (Rn)o, for o ≥ 1. As an example, let us use M12 21 33 to evaluate





0

1

1

2

2

3










3

4

5

5

6

7






.

M12 21 33 says that we treat the right factor as two elements and multiply the left factor by each one. According to
the conventions of matrix notation, the elements of the right factor are the columns. So this gives










0

1

1

2

2

3










3

4

5










0

1

1

2

2

3










5

6

7











.

At the outer level there are now two elements. Applying M21 33 at each element as we did in Example 2 yields





14

26

20

38




,



The General Derivative Page 7

This process is called matrix multiplication. In general, when carrying out a matrix multiplication uv = w,

1. We may represent u as a column of rows ui , where i is the row number.

2. We may represent v a row of columns v j , where j is the column number.

3. We may represent w as a collection of numbers wij , where i is the row number and j is the column number.

A handy rule for carrying out the multiplication is that each number wij is the dot product of the row vector ui and
the column vector v j . For example:





u1

u2




[v1 v2] =





u1 ⋅ v1

u2 ⋅ v1

u1 ⋅ v2

u2 ⋅ v2





=




w11

w21

w12

w22




.

Example 4 (Matrices of vectors): The product M21 22 22 multiplies vectors in ((R2)2)2 by vectors in (R2)2, yielding
vectors in R2. For example, let u be the matrix of row vectors

u =




(1, 2)

(5, 6)

(3, 4)

(7, 8)




.

To compute M21 22 22(u)(v), we use matrix multiplication as for M21 22, except that when multiplying each row of the
matrix u by the column v, we compute a sum of dot products. For example,





(1, 2)

(5, 6)

(3, 4)

(7, 8)









(9, 10)

(11, 12)





=




(1, 2) ⋅ (9, 10) + (3, 4) ⋅ (11, 12)

(5, 6) ⋅ (9, 10) + (7, 8) ⋅ (11, 12)





Similarly it is possible to construct matrices of matrices, etc., and interpret them as linear maps.

4.2. The Norm of L(V , W )

As observed above, L(V , W ) is a vector space. When V and W are normed vector spaces, we make L(V , W ) into a
normed vector space as follows.

First, consider L(R, R). As noted in § 4.1, a map λ in this space is a product M(r) by some real number r. In this
space, it is natural to use the norm |λ | = |M(r)| = |r |. For example, the norm of the linear map “multiplication by −5”
is 5.

In the more general context, we let |λ | be the supremum of all values |λ(x)| such that |x| ≤ 1. From the theory of real
vector spaces, we know that this norm is well-defined (i.e., finite) when working in finite dimensions over R. See,
e.g., [Lang 1993].

For example, let λ : R2 → R be the dot product with (1, 1). Then for any x = (x1, x2), we have λ(x) = x1 + x2. If we
use the sup norm on R2, then |λ | is the maximum value of |x1 + x2| subject to the constraint that |x1| ≤ 1 and |x2| ≤ 1.
Therefore |λ | = 2. (Notice that it is convenient to use the sup norm on R2 here. If we use the Euclidean norm, then
computing |λ | is a nontrivial calculus problem.)

Observe that this norm agrees with the norm discussed above for L(R, R), because |M(r)(x)| = |rx| = |r ||x| attains its
maximum value for |x| ≤ 1 when |x| = 1, so |M(r)| = |r |.

Observe also that for any linear map λ in L(V , W ) and any x in V , we hav e |λ(x)| = | λ(x/|x|) |x| | = |λ(x/|x|)| |x|.
Since |x/|x|| = |x|/|x| = 1, the first factor is bounded by |λ |. Therefore for any linear map λ we have

|λ(x)| ≤ |λ ||x|.

5. The Definition of the Derivative

Now we can define the general derivative.

Definition for one real variable: We recall the definition of the derivative from first-year calculus. Given a function

f : R → R, the derivative of f , denoted f ′(x) or
df

dx
, is a function that assigns to a point x the real number

f ′(x) =
h → 0
lim

f (x + h) − f (x)

h
(1)
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if f is defined for all points within some fixed distance of x (so we exclude isolated points in the domain of f ), and
the limit exists. At points x where these conditions are true, we say that f is differentiable.

It turns out that more or less the same definition works for an arbitrary normed vector space. However, to make it
work we need to revise it slightly. First, we rewrite equation (1) as follows:

h → 0
lim

f (x + h) − f (x) − f ′(x)h

|h|
= 0. (2)

It is clear that (2) holds if and only if (1) does. All we have done is rearranged terms and replaced h with |h|; in gen-
eral this alters the sign but does not affect the magnitude of the expression in the limit as h approaches zero. Next,
we define a differential operator D. Giv en a function f : R → R, we let Df : R → L(R, R) be the map
x → h → f ′(x)h, where f ′(x) is the ordinary one-variable derivative at x. In other words, for each f , x, and h,
Df (x)(h) = f ′(x)h. Notice that Df (x) = M( f ′(x)), where M is the linear product “multiply” defined in § 4.1.

With this definition, we can rewrite (2) as follows:

h → 0
lim

f (x + h) − f (x) − Df (x)(h)

|h|
= 0. (3)

Equivalently, we can write

f (x + h) = f (x) + Df (x)(h) + φ (h), (4)

where φ is a function that goes to zero faster than |h|, in the sense that
h → 0
lim

φ (h)

|h|
= 0. When this is true, we say that

φ is o(h), pronounced “little oh of h.” To convert (4) into (3), just move every term on the right but φ (h) to the left,
divide by |h|, and take the limit. Equation (3) emphasizes the connection with the definition from first-year calculus,
while equation (4) emphasizes that the derivative Df (x) is a linear map that approximates f (x) near x. Equation (4)
is the one we usually use in proofs.

General definition: Now we can generalize to maps f : X → Y , where X and Y are normed vector spaces. We gen-
eralize the one-variable differential operator D in an obvious way: we let Df (x) be an element of L(X , Y ). So in
general, for a map f : X → Y , if the derivative Df exists at x, then Df (x) is a linear map from X to Y , and Df is a
map from X to L(X , Y ).

In general we must represent Df (x) as a vector v instead of a number r. We can think of v = λ as an element of the
space L(X , Y ); or, if we can represent the map λ as a vector or matrix of numbers (or of vectors or matrices) as dis-
cussed in § 4.1, then we can think of v as an element of one of these spaces. Thus we generalize the derivative from
first-year calculus, in which we consider only Df (x) = M( f ′(x)) represented by a single number f ′(x) for each x.

Now in either form (3) or form (4), the definition of the derivative is valid for normed vector spaces X and Y . To
apply the definition, we let x and h be vectors in X instead of numbers in R. By § 2, we know how to take the norm
|h| of vectors h. By § 3, we know how to compute limits of expressions that take their values as vectors y in Y .

Uniqueness: If the derivative Df of a map f exists at a point x (i.e., a vector of X), then it is unique there. In other
words, there is at most one linear map that satisfies equations (3) and (4) at any point x.

To see this, suppose that linear maps λ1 and λ2 both satisfy (4) at a point x, and consider the difference map
λ = λ1 − λ2 = h → λ1(h) − λ2(h). We want to show that λ(h) = 0 for all h. Since λ is linear, we hav e
λ(0) = λ(0 ⋅ 0) = 0 ⋅ λ(0) = 0, so λ(0) = 0. Further, for any vector h ≠ 0, we have λ(h) = λ(|h|(h/|h|)) = |h|λ(h/|h|),
where h/|h| has norm 1. So it suffices to show that λ(h0) = 0 whenever h0 has norm 1.

Choose any vector h0 with norm 1, and let h = rh0 for a real variable r that goes to zero. Then h goes to zero. Each
of λ1 and λ2 satisfies (4), and subtracting the two equations shows that λ(h) is o(h). Now consider
φ (h) = |λ(h)| = |λ(rh0)| = |rλ(h0)| = |r ||λ(h0)|. Since φ (h) is o(h) and |r | = |h|, we have that φ (h)/|r | = |λ(h0)| goes to
zero as r goes to zero. But h0 is a constant. Therefore we must have λ(h0) = 0.

This argument shows that we are justified in speaking of “the” derivative of f at x. Also, if we can find a linear map
λ that satisfies the required properties at a point x, then we know that λ = Df (x).

Continuity: Taking the limit as h goes to zero in both sides of (4) yields

h → 0
lim f (x + h) = f (x) +

h →0
lim Df (x)(h) +

h → 0
lim φ (h).
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By definition, the second limit on the right-hand side is zero. As to the first limit, we have |Df (x)(h)| ≤ |Df (x)||h|,
so it too is zero. Therefore we have

h → 0
lim f (x + h) = f (x)

This equation shows that if f is differentiable at x, then it is continuous at x.

Notation: Some authors write f ′ interchangeably with Df . Here we reserve f ′ for the special case of a single real
variable, so it is clear when we are treating that case. Keep in mind that in the case of a single real variable, in our
notation we always have Df (x) = M( f ′(x)).

6. Coordinate Systems

If X1, . . . , Xn are normed vector spaces, then the vector space X = X1 × ⋅⋅⋅ × Xn consisting of tuples x = (x1, . . . , xn)
with each xi in Xi is also a normed vector space. This construction is a straightforward generalization of the vector
space V n = V × ⋅⋅⋅ × V (n times) that we discussed in Example 6 of § 2. The only difference is that X may be com-
posed of several different vector spaces, instead of several copies of the same vector space.

If X = X1, . . . , Xn with n > 1, then we say that X is a coordinate system, and we call the vectors xi the coordinates

of a point x in X . In particular, Rn = R × ⋅⋅⋅ × R (n times) for n > 1 is a coordinate system in which each coordinate
xi of a point x is a number. Howev er, we are not limited to considering Rn. For example, we can let X = (R2)2,
consisting of all vectors ((x11, x12), (x21, x22)), where the elements xij are real numbers.

In this section, we show how to compute derivatives in coordinate systems. We will assume that our coordinate sys-
tems use either the Euclidean norm (on Rn) or the sup norm. These norms give us the following important fact. If h

is a vector and h = (h1, . . . , hn), and for some hi φ (hi) is o(hi), then φ (hi) is o(h). The reason is that |h| ≥ |hi |, so if
φ (hi)/|hi | tends to zero, then so does φ (hi)/|h|, because the values of the second expression are at least as small as the
values of the first expression.

In the rest of this section, we let X and Y be normed vector spaces, and we let f be a map from X to Y . We consider
three cases: when Y is a coordinate system, when X is a coordinate system, and when both X and Y are coordinate
systems.

6.1. When Y Is a Coordinate System

We let Y be a two-dimensional coordinate system, i.e., we consider maps f : X → Y1 × Y2 for normed vector spaces
X , Y1, and Y2. Once we have worked out the two-dimensional case, it will be obvious how to proceed in any num-
ber of dimensions. Working in two dimensions simplifies the notation.

The first step is to break f into two maps, one for each of the coordinates in Y . By definition, f assigns to each vec-
tor x in X a value f (x) = y = (y1, y2). If we look at just the first y coordinate, we get a map f1(x) = y1; and if we
look at just the second y coordinate, we get a map f2(x) = y2. We call f1 and f2 the coordinate maps of f . Then
by definition, for all x we may write

f (x) = ( f1(x), f2(x)).

If f1 and f2 are differentiable at x, then by the definition of the derivative, we hav e

f (x + h) = ( f1(x + h), f2(x + h) ) = ( f1(x) + Df1(x)(h) + φ1(h), f2(x) + Df2(x)(h) + φ2(h) )

= ( f1(x), f2(x) ) + ( Df1(x)(h), Df2(x)(h) ) + ( φ1(h), φ2(h) ),

where each φ i is o(h). Setting φ (h) = (φ1(h), φ2(h)), we can write

f (x + h) = f (x) + ( Df1(x)(h), Df2(x)(h) ) + φ (h),

where φ is o(h) because the φ i are. Applying the definition of the derivative again, we see that Df (x) is the linear
map from X to Y1 × Y2 whose ith coordinate map is Dfi(x). In other words,

Df (x)(h) = (Df1(x)(h), Df2(x)(h)).

Conversely, a map is linear if and only if its coordinate maps are linear. Therefore if f is differentiable at x, then we
have



The General Derivative Page 10

Df (x)(h) = (λ1(h), λ2(h))

for linear coordinate maps λ1 and λ2; by the argument we just made and the uniqueness of the derivative (§ 5), we
have λ1 = Df1(x) and λ2 = Df2(x).

By the discussion above, when Y is an n-dimensional coordinate system, we can represent Df (x) as the linear prod-
uct

Df (x) = Mn1(Df1(x), . . . , Dfn(x)), (1)

where Mn1(λ1, . . . , λ n)(h) = (λ1(h), . . . , λ n(h)). In § 4.1, we required that the elements in the left factor of Mn1 all
be in the same vector space. However, that restriction was not necessary, and now we drop it.

Example: Let X = R, Y = R3, and f (x) = (x, x2, x3). Then Df1(x) = M(1), Df2(x) = M(2x), and Df3(x) = M(3x2).
So

Df (x)(h) = (M(1)(h), M(2x)(h), M(3x2)(h)) = (h, 2xh, 3x2h).

In second-year calculus, we are taught that for a function from numbers to vectors, we may compute the derivative
coordinate by coordinate, so the derivative is (1, 2x, 3x2). Thus our derivative Df (x) is the linear map that takes the
number h to h times the vector representing the derivative from second-year calculus.

6.2. When X Is a Coordinate System

We let X = X1 × X2 and consider maps f : X1 × X2 → Y , for normed vector spaces X1, X2, and Y . Again, once we
cover the two-dimensional case, the generalization to n dimensions will be obvious. Each point x in X may be
expressed in coordinates as x = (x1, x2). We write f (x1, x2) to denote f (x) = f ((x1, x2)).

First, assume that f is differentiable at x. Then there exists a linear map Df (x) such that for all h = (h1, h2), we
have

Df (x)(h) = Df (x)(h1, h2) = Df (x)(h1, 0) + Df (x)(0, h2) (2)

because Df (x) is linear. We define D1 f (x)(h1) = Df (x)(h1, 0) and D2 f (x)(h2) = Df (x)(0, h2). For each i, the map

Di f is called the ith partial derivative of f . An alternate notation for the ith partial derivative of f is
∂ f

∂xi

.

Equation (2) shows that

Df (x)(h) = D1 f (x)(h1) + D2 f (x)(h2).

Therefore, to compute Df (x), it suffices to compute the partial derivatives Di f (x). Further, if we let f(−,x2): X1 → Y

be the mapping that fixes the second coordinate at x2 and takes x1 to f (x1, x2) and we let h = (h1, 0), then we can
rewrite

f (x + h) = f (x) + Df (x)(h) + φ (h)

where φ is o(h) as

f(−,x2)(x1 + h1) = f(−,x2)(x1) + D1 f (x)(h1) + φ1(h1), (3)

where φ1 is o(h1). Equation (3) shows that D1 f (x) is the derivative of f(−,x2). Similarly, D2 f (x) is the derivative of
f(x1,−). When Xi = Y = R, these derivatives are in one real variable, and we can use first-year calculus techniques to
compute the partial derivatives. We giv e an example below.

Conversely, we show that if the partial derivatives Di f (x) exist, and all but possibly one are continuous for all points
x + h for small enough |h|, then f is differentiable at x. To see this, assume that both partial derivatives exist and
D1 f is continuous near x, and look at the difference

d(h) = f (x1 + h1, x2 + h2) − f (x1, x2) = f (x1 + h1, x2 + h2) − f (x1, x2 + h2) + f (x1, x2 + h2) − f (x1, x2).

By the definition of the derivative, we want d(h) to be equal to Df (x) plus a term that is o(h). For small enough h2

that the partial derivatives exist, we have

d(h) = D1 f (x1, x2 + h2)(h1) + φ1(h1) + D2(x)(h2) + φ2(h2),

where each φ i is o(hi). To get what we want, we just need to show that the difference between the first term on the
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right and D1 f (x)(h1) is o(h). Let λ(h2) = D1 f (x1, x2 + h2) − D1(x). Then it will suffice to show that |λ(h2)(h1)| is
o(h). By the argument given in § 4.2, we have |λ(h2)(h1)| ≤ |λ(h2)||h1|. Because D1 f is continuous,

h2 → 0
lim |λ(h2)| = |λ(0)| = 0. Therefore λ(h2)(h1) is o(h), as was to be shown.

By the discussion above, when X is an n-dimensional coordinate system, we can represent Df (x) as the linear prod-
uct

Df (x) = Mnn(D1 f (x), . . . , Dn f (x)), (4)

where Mnn(λ1, . . . , λ n)(h1, . . . , hn) = λ1(h1) + . . . + λ n(hn).

Example: Let f (x1, x2) = x2
1 x2. Then D1 f (x1, x2) = M(2x1 x2) and D2 f (x1, x2) = M(x2

1). In this case,

Df (x1, x2)(h1, h2) = M(2x1 x2)(h1) + M(x2
1)(h2) = 2x1 x2h1 + x2

1h2.

In second-year calculus, we are taught that for a function from vectors to numbers, the gradient of f , written grad f

or ∇ f , is equal to



∂ f

∂x1

,
∂ f

∂x2




= (2x1 x2, x2
1). Thus our derivative Df (x) is the map that takes the vector h to the

number ∇ f ⋅ h.

6.3. When X and Y Are Coordinate Systems

We consider maps f : X1 × X2 → Y1 × Y2. To handle this case, we just compose the two cases we have already con-
sidered. There are two orders in which one can do this.

Order 1: We can treat f as a map X → Y1 × Y2, ignoring the fact that X = X1 × X2 is a coordinate system. By
§ 6.1, we have

Df (x) = M21(Df1(x), Df2(x)), (5)

Next we apply § 6.2 to each of the coordinate map f1: X1 × X2 → Y1 and f2: X1 × X2 → Y2 to obtain

Df1(x) = M22(D1 f1(x), D2 f1(x)) (6)

Df2(x) = M22(D1 f2(x), D2 f2(x)),

Putting together equations (5) and (6) yields

Df (x) = M21(M22(D1 f1(x), D2 f1(x)), M22(D1 f2(x), D2 f2(x))). (7)

Writing (7) in matrix form yields





D1 f1(x)

D1 f2(x)

D2 f1(x)

D2 f2(x)




. (8)

Note that using matrix multiplication to apply (8) agrees with the way that we evaluate the linear products in (7).

In the case where X = Rm and Y = Rn, so the linear maps Di f j(x) are real numbers, (8) is called the Jacobian

matrix corresponding to the derivative of f at x. Using the alternate notion for partial derivatives, it is written this
way:







∂ f1

∂x1

∂ f2

∂x1

∂ f1

∂x2

∂ f2

∂x2







Extending this computation to higher dimensions is straightforward. In general we get an m × n matrix of partial de-
rivatives. The only real difficulty is to remember which are the rows and which are the columns. You just have to
remember that the partial derivatives vary within a row, and the coordinate maps vary within a column.

Order 2: Alternatively, we can also go in the reverse order, treating f first as a map X1 × X2 → Y . In this case we
get

Df (x) = M22(D1 f (x), D2 f (x)).
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Computing each partial derivative yields

Df (x) = M22(M21(D1 f1(x), D1 f2(x)), M21(D2 f1(x), D2 f2(x))).

Writing this in matrix form as a column of rows yields the transpose of the matrix (8). In general, the transpose of a
matrix A is A with the rows and columns interchanged. The order of M22 and M21 are also swapped compared to
(8), indicating that if we want to apply this vector by standard matrix multiplication, we need to take its transpose
first.

In practice, we use order 1 because it works better given the conventions of matrix multiplication. Either way is fine
in principle, though, as long as one is careful about translating vectors into linear maps.

Example 1: Let f : R2 → R2 be the map f (x1, x2) = (x2
1 + x2, x1 x2). Computing the Jacobian matrix and applying

it to h = (h1, h2) yields





2x1

x2

1

x1









h1

h2





=




2x1h1 + h2

x2h1 + x1h2




.

Thus Df (x) is the linear map h → (2x1h1 + h2, x2h1 + x1h2). We can also write the product as





∇ f1(x)

∇ f2(x)




[ h ] =





∇ f1(x) ⋅ h

∇ f2(x) ⋅ h




.

Example 2: Let f : (R2)2 → (R2)2 be the map ((a, b), (c, d)) → ((ab, bc), (cd , da)). Then Df (x) at a point
x = (a, b, c, d) is a 2 × 2 matrix of 2 × 2 matrices. At the outer level, the leftmost, topmost matrix element is the de-
rivative of f(−,(b,c)) = (a, b) → (ab, bc), treating b and c as constants. This derivative is





b

0

a

c





As an exercise, you can work out the rest.

Example 3: (R2)2 is isomorphic to R4 via the isomorphism ((a, b), (c, d) → (a, b, c, d). Work out Df (x) at
x = (a, b, c, d) for the map f : R4 → R4 given by (a, b, c, d) → (ab, bc, cd , da). It is a 4 × 4 matrix of numbers.
Compare this matrix to the (2 × 2) × (2 × 2) matrix that you got for Example 3.

7. Properties of the Derivative

We now establish some basic properties of the derivative in the general setting. Each one generalizes a property
from first-year calculus in a straightforward way. In this section, X , Y , and Z are normed vector spaces.

7.1. The Derivative of a Constant Map

Let f : X → Y be the constant map f (x) = y. Then for all values of x and h we have

f (x + h) = f (x)

Therefore Df (x)(h) = 0, so Df (x) is the zero map h → 0:

Df = 0

7.2. The Derivative of a Linear Map

Let λ : X → Y be a linear map. We assert

Dλ = λ .

In other words, for all x and h in X , we assert Dλ(x)(h) = λ(h); in particular the map Dλ(x) does not depend on x.

This rule generalizes the rule from first-year calculus that (rx)′ = r.

Proof: The assertion follows immediately from the definition of the derivative, because

λ(x + h) − λ(x) = λ(x + h − x) = λ(h).
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Therefore the Df (x)(h) term in the definition is λ(h), and the φ (h) term is zero.

7.3. The Derivative of a Sum

For any maps f : X → Y and g: X → Y , we assert

D( f + g) = Df + Dg

at all points x where Df (x) and Dg(x) exist. As usual,

f + g = x → f (x) + g(x)

and

Df + Dg = x → h → (Df (x) + Dg(x))(h) = x → h → Df (x)(h) + Dg(x)(h).

This rule generalizes the rule from first-year calculus that ( f + g)′(x) = f ′(x) + g′(x).

Proof: To justify the assertion, we start with the difference ( f + g)(x + h) − ( f + g)(x). By the definition of f + g

and by rearranging terms, we can write this as

f (x + h) − f (x) + g(x + h) − g(x).

If the derivatives of f and g exist at x, then we can rewrite the difference as

Df (x)(h) + Dg(x)(h) + φ (h),

where φ (h) is o(h). By the definition of Df (x) + Dg(x), this gives

( f + g)(x + h) − ( f + g)(x) = (Df (x) + Dg(x))(h) + φ (h).

After rearranging terms, this gives us what we want.

7.4. The Derivative of a Product

Let X , Y1, Y2, and Y be normed vector spaces. We define a bilinear map m: Y1 × Y2 → Y to be a map such that

1. For all y2 in Y2, the map y1 → m(y1, y2) is linear in y1; and

2. For all y1 in Y1, the map y2 → m(y1, y2) is linear in y2.

Note that a linear product P: Y1 → L(Y2, Y ) induces a bilinear map m: Y1 × Y2 → Y given by m(y1, y2) = P(y1)(y2).

Fix a bilinear map m and maps f : X → Y1 and g: X → Y2. Let m( f , g) denote the map x → m( f (x), g(x)). Then
we assert the following rule for all x where Df (x) and Dg(x) exist:

D(m( f , g))(x)(h) = m(Df (x)(h), g(x)) + m( f (x), Dg(x)(h)). (1)

If we interpret g(x) as the constant map h → g(x) and f (x) as the constant map h → f (x), then we can write the
rule as follows:

D(m( f , g))(x)(h) = m(Df (x), g(x))(h) + m( f (x), Dg(x))(h)

Using the rule for a sum of maps, we can then write

D(m( f , g))(x)(h) = (m(Df (x), g(x)) + m( f (x), Dg(x)))(h)

or

D(m( f , g))(x) = m(Df (x), g(x)) + m( f (x), Dg(x)).

If we write m( f , g) as the product fg and m(y1, y2) as the product y1 y2, then the rule becomes

D( fg)(x) = Df (x)g(x) + f (x)Dg(x).

According to our notation for sums and products of functions, this is

D( fg)(x) = (Dfg + fDg)(x)

or
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D( fg) = (Df )g + f (Dg), (2)

where as discussed above we interpret (2) to mean (1). In form (2), the rule generalizes the rule from first-year cal-
culus that

( fg)′(x) = f ′(x)g(x) + f (x)g′(x).

Proof: To justify the rule, consider the expression

( fg)(x + h) = f (x + h)g(x + h).

If the derivatives exist at x, then this expands into

( f (x) + Df (x)(h) + φ1(h))(g(x) + Dg(x)(h) + φ2(h)).

where φ1 and φ2 are o(h). Because the product is bilinear, we can multiply the factors term by term. Doing this gen-
erates the following terms:

1. ( fg)(x) + (Df (x)(h))g(x) + f (x)(Dg(x)(h))

2. f (x)φ2(h) + Df (x)(h)φ2(h) + φ1(h)φ2(h) + φ1(h)g(x) + φ1(h)Dg(x)(h) + φ1(h)φ2(h)

3. (Df (x)(h))(Dg(x)(h))

The terms in (1) are the initial terms in the definition of the derivative. We just need to show that each of the terms
in (2) and (3) is o(h).

As to (2), we observe that each term is a product ψ1(h)ψ2(h), where each factor ψ i is a mapping X → Yi , each |ψ i(h)|
is bounded by a constant Ci for small |h|, and at least one of the ψ i is o(h). This statement is clear for the factors
involving f , g, and φ i . For the factor Df (x)(h) we hav e |Df (x)(h)| ≤ |Df (x)||h|, so the factor is bounded by the con-
stant |Df (x)| for |h| ≤ 1; and similarly for the factor Dg(x)(h).

Assume that ψ2(h) is o(h). Then, writing m for the linear map Y1 → L(Y2, Y ) giv en by y1 → (y2 → m(y1, y2)), we
have

ψ1(h)ψ2(h) = m(ψ1(h))(ψ2(h))

≤ |m(ψ1(h))||ψ2(h)|

≤ |m||ψ1(h)||ψ2(h)|

≤ |m|C1|ψ2(h)|

This expression is o(h) because ψ2(h) is. The symmetric argument goes through when ψ1 is o(h).

As to (3), we have

(Df (x)(h))(Dg(x)(h)) = m(Df (x)(h))(Dg(x)(h))

≤ |m||Df (x)(h)||Dg(x)(h)|

≤ |m||Df (x)||h||Dg(x)||h|

When we divide by |h|, one of the |h| factors cancels, but the other one remains. So after dividing by |h| the expres-
sion tends to zero.

7.5. The Chain Rule

Composition of functions: Let f : X → Y and g: Y → Z be maps. We write g f to denote the map x → g( f (x)).
This map is called the composition of g and f . A handy way to read (g f )(x) is “apply f to x and then apply g to
the result.”

The derivative of a composition: Suppose that Df (x) exists and Dg( f (x)) exists. Then we assert the following
rule:
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D(g f )(x) = Dg( f (x)) Df (x)

In other words, D(g f )(x) is the map h → (Dg( f (x)) Df (x))(h) = Dg( f (x))(Df (x)(h)). This rule generalizes
the rule from first-year calculus that (g f )′(x) = g′( f (x)) f ′(x).

Proof: To justify the assertion, we start with the equation

g(y + k) − g(y) = Dg(y)(k) + |k |ψ1(k) (3)

We obtain (3) from the definition of the derivative by relabeling and by letting ψ1(k) = φ (k)/|k |, so that

k → 0
lim ψ1(k) = 0. Now let y = f (x) and k = k(h) = f (x + h) − f (x). Since f is continuous at x, k(h) goes to zero as

h goes to zero. Plugging these formulas into (3) yields

g( f (x + h)) − g( f (x)) = Dg( f (x))(k(h)) + |k(h)|ψ1(k(h)). (4)

Since f is differentiable at x, by the definition of k and the definition of the derivative we hav e

k(h) = Df (x)(h) + |h|ψ2(h), (5)

where
h → 0
lim ψ2(h) = 0. Plugging (5) into (4) yields

g( f (x + h)) − g( f (x)) = Dg( f (x))(Df (x)(h)) + Dg( f (x))(|k(h)|ψ2(k(h))) + |k(h)|ψ1(k(h)). (6)

We just need to show that each of the last two terms in (6) is o(h). The first term is bounded by
|k(h)||Dg( f (x))||ψ2(k(h))|, so each term is equal to |k(h)| times a factor that goes to zero as h goes to zero. Thus it
suffices to show that |k(h)| / |h| is bounded. To do this we use the triangle inequality and (5) to obtain

|k(h)| = |Df (x)(h) + |h||ψ2(h)|

≤ |Df (x)(h)| + |h||ψ2(h)|

≤ |Df (x)||h| + |h||ψ2(h)|

Dividing the right-hand side by |h| yields |Df (x)| + |ψ2(h)|, which is a constant plus a term going to zero, and there-
fore bounded.

Example 1: Let f : R → R2 be the map f (x) = (x, x2). Let g: R2 → R be the map g(y1, y2) = y2
1 + y2

2. Then

• Df (x)(h) = (1, 2x)h.

• Dg(y1, y2)(h) = (2y1,2y2) ⋅ h, where the dot represents the dot product.

• Dg( f (x))(h) = Dg(x, x2)(h) = (2x, 2x2) ⋅ h.

• Dg( f (x))(Df (x)(h)) = (2x, 2x2) ⋅ (1, 2x)h = (2x + 4x3)h.

Therefore, by the chain rule, D(g f )(x)(h) = (2x + 4x3)h.

Example 2: Let X and Y be normed vector spaces. Let f1: X → Y and f2: X → Y be differentiable maps, let
F : X → Y 2 be the map x → ( f1(x), f2(x)), and let G: Y 2 → Y be the map (y1, y2) → y1 + y2. Then G F is the
map f1 + f2. Applying the chain rule, we find

D( f1 + f2)(x) = D(G F)(x) = (DG F)(x) DF(x). (7)

Taking derivatives, we find

DG(y)(h1, h2) = D1G(y)(h1) + D2G(y)(h2) = h1 + h2 (8)

and

DF(x)(h) = (Df1(x)(h), Df2(x)(h)). (9)

Plugging (8) and (9) into (7) yields

D( f1 + f2) = Df1 + Df2

Notice that we have used the chain rule to prove the sum rule (§ 7.3). As an exercise, use the chain rule to prove the
product rule (§ 7.4).
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7.6. Composition with a Linear Map

Let f : X → Y be a map, and let λ : Y → Z be a linear map. By the chain rule, at all x where the derivatives on the
right-hand side exist, we have

D(λ f )(x) = Dλ( f (x)) Df (x).

By the rule for the derivative of a linear map, we have Dλ( f (x)) = λ . Therefore

D(λ f ) = λ Df

wherever Df (x) exists. In particular, where M(r) means “multiply by r,” we hav e

D(M(r) f ) = M(r) Df .

In other words,

D(y → rf (y))(x) = h → rDf (x)(h).

By the rule for multiplying functions by numbers, we can also write

D(rf )(x) = rDf (x).

This rule generalizes the rule from first-year calculus that (rf (x))′ = r f ′(x).

7.7. The Fundamental Theorem of Calculus

Single real variable case: In first-year calculus, we learn that if f : R → R is a function defined on an interval [a, b],
and if f is integrable on [a, b], and if

F(x) =
x

a

∫ f (t)dt, (10)

Then F ′(x) = f (x) at all points x in [a, b] where f (x) is continuous. In the notation of the general derivative, which
is a linear map and not a number, we hav e that DF(x)(h) = f (x)h, so

DF(x)(1) = f (x) (11)

at all points where f (x) is continuous. This theorem is called the fundamental theorem of calculus. It establishes
the basic relationship between the integral and the derivative, the two main areas of study in calculus.

Proof: Here is a proof of the fundamental theorem in one real variable that uses the definition of the general deriva-
tive. Let

φ (h) =
x+h

x

∫ ( f (t) − f (x))dt. (12)

From the rules for integration, we have

φ (h) =
x+h

x

∫ f (t)dt −
x+h

x

∫ f (x)dt = F(x + h) − F(x) − f (x)h.

Therefore

F(x + h) = F(x) + f (x)h + φ (h). (13)

On the other hand, by estimating the integral in (12), we get

|φ (h)| ≤ |h| sup | f (t) − f (x)|

for x ≤ t ≤ x + h. Because f is continuous at x, the supremum goes to zero as h goes to zero. Therefore φ (h) is
o(h). Putting this result together with (13) establishes the theorem.

The general case: In the general case, we have maps f and F from R to Y , where Y is a normed vector space. The
general theorem again says that if (10) holds, then (11) holds at all points x in [a, b] where f (x) is continuous. The
only difference is that DF(x)(1) = f (x) is a vector in Y instead of a number.
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The same proof goes through in this case. f (x)h represents scalar multiplication of the vector f (x) by the number
h. We just need to extend the theory of integration to cover maps from numbers to vectors. For an elementary treat-
ment of this theory, see [Lang 1997]. For a more advanced treatment based on measure theory, see [Lang 1993].

Going in the other direction, if we are given a map F : R → Y with a continuous derivative, then by the definition of
the derivative we know that (11) holds for some map f : R → Y ; and by the theorem we know that there is a constant

C such that

x

a

∫ DF(t)(1) dt = F(x) + C. Therefore we have

b

a

∫ DF(t)(1) dt = F(b) − F(a).

In the case of a single real variable, DF(t)(1) = M(F ′(t))(1) = F ′(t), so this becomes the usual formula

b

a

∫ F ′(t) dt = F(b) − F(a).

7.8. The Mean Value Theorem

Single real variable case: In first-year calculus, we learn that if f (x): R → R is differentiable on the interval [a, b],
then for some c between a and b we have f ′(c) = ( f (b) − f (a)) / (b − a). This statement is called the mean value

theorem. It says that for some c in [a, b] the instantaneous rate of change f ′(c) agrees with the average or mean
rate of change between a and b.

When f ′(x) is continuous on [a, b], the mean value theorem follows from the fundamental theorem of calculus and
from the intermediate value theorem for continuous functions. From the fundamental theorem, we have

f (b) − f (a) =
b

a

∫ f ′(x)dx.

Let m = ( f (b) − f (a)) / (b − a). If f ′(x) < m on all of [a, b], then the integral is less than m(b − a) so less than
f (b) − f (a). So for some value c1 in [a, b], we must have f ′(c1) ≥ m. Similarly, if f ′(x) > m on all of [a, b], then
the integral is greater than f (b) − f (a). So for some value c2 in [a, b], we must have f ′(c2) ≤ m. Then by the inter-
mediate value theorem, we must have f ′(c) = m for some c between c1 and c2.

The general case: In the general setting, we cannot integrate a map from vectors to vectors with respect to one real
variable dx. We can do one of the following:

1. Integrate a map f (x): R → Y from numbers to vectors with respect to dx, as discussed in the previous section.

2. Integrate a map f (x): X → Y from vectors to vectors by resolving X into coordinates x1, . . . , xn and using
either a multiple integral or an area or volume element called a differential form with respect to
dx1, . . . , dxn.

Here we want to stick with case (1). So in the general setting we revise the theorem slightly.

By the fundamental theorem, still in one real variable, we can write

f (x + h) − f (x) =
x+h

x

∫ f ′(y)dy.

Let y(t) = x + th and dy = h dt. Then when t = 0, we have y(t) = x, and when t = 1, we have y(t) = x + h. There-
fore by a standard change of variables, using the chain rule from first-year calculus, we can write

f (x + h) − f (x) =
1

0
∫ f ′(x + th)h dt

Then passing to the notation of the general derivative Df , still in one real variable, we can write
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f (x + h) − f (x) =
1

0
∫ Df (x + th)(h) dt (14)

In this form, we can let x and h be vectors. The variable t is a real number that scales the magnitude of the vector
th, and we integrate with respect to t. When Df is continuous, the statement is valid, because by the generalized
fundamental theorem (§ 7.7), we have

f (x + h) − f (x) = ( f y)(1) − ( f y)(0) =
1

0
∫ D( f y)(t)(1) dt,

and by the generalized chain rule

D( f y)(t)(k) = (Df (y(t)) Dy(t))(k) = Df (x + th)(hk),

so D( f y)(t)(1) = Df (x + th)(h). We call (14) the generalized mean value theorem.

8. Second and Higher Derivatives

The second derivative: Let X and Y be normed vector spaces, and let f : X → Y be a map. At points x where f is
differentiable, the derivative Df (x) is a linear map from X to Y . Therefore Df is a map from X to L(X , Y ). As dis-
cussed in § 4.2, L(X , Y ) is a normed vector space. Therefore we can take the derivative D(Df ) of the map Df at
points x where the definition of D(Df ) is satisfied. The derivative D(Df ) is called the second derivative of f . We
usually write D2 f instead of D(Df ). Note that if D2 f (x) exists, then by the definition of the derivative, Df (x)
exists as well.

Comparing D2 f to Df at each point where D2 f (x) exists, we see the following:

1. Df (x) is a linear map h → Df (x)(h). For small h, Df (x)(h) approximates f (x + h) − f (x).

2. D2 f (x) is a linear map k → D(Df (x))(k). For small k, D2 f (x)(k) approximates Df (x + k) − Df (x). But
Df (x + k) itself is a linear map h → Df (x + k)(h). Similarly, Df (x) is a  linear map h → Df (x)(h). Therefore
for small k and all h, D2 f (x)(k)(h) approximates (Df (x + k) − Df (x))(h) = Df (x + k)(h) − Df (x)(h).

When working with second derivatives, it is useful to keep the following facts in mind:

1. D2 f = x → k → h →D2 f (x)(k)(h) is a map from X to L(X , L(X , Y )).

2. If each of x, k, and h is an element of X , then

a. D2 f (x) is a linear map from X to L(X , Y ).

b. D2 f (x)(k) is a linear map from X to Y . It approximates the map Df (x + k) − Df (x), which in general
is not linear.

c. D2 f (x)(k)(h) is an element of Y .

Example 1 (Functions from R to R): Let f : R → R be a function. Assume that f ′(x) and f ′′(x) exist at x, where
f ′ and f ′′ are the first and second derivatives from first-year calculus. By § 5, we know that Df (x) = M( f ′(x)) for
all x, so Df = M f ′. By the rule for composition with a linear map (§ 7.6), we have

D2 f = D(M f ′) = M D f ′ = M (M f ′′).

Therefore

D2 f (x)(k)(h) = f ′′(x)kh.

For example, if f (x) = x3, then f ′(x) = 3x2, f ′′(x) = 6x, and D2 f (x)(k)(h) = 6xkh.

Example 2 (Maps from R2 to R): Let f : R2 → R be a map, and assume that D2 f exists at x. By § 6.2, we have
Df = M22 v, where v(x) = (D1 f (x), D2 f (x)). By the rule for composition with a linear map, we have
D2 f = M22 Dv. By § 6.3, Dv(x)(k) = A(x)k, where

A(x) =




D1 D1 f (x)

D1 D2 f (x)

D2 D1 f (x)

D2 D2 f (x)




. (1)
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The notation Di D j f (x) says to take the partial derivative D j of f (x) and then to take the partial derivative Di of
D j f (x). Therefore we have

D2 f (x)(k)(h) = (A(x)k) ⋅ h,

where the dot denotes M22. The matrix of double partial derivatives in (1) is called the Hessian matrix.

Example 3 (Maps from R2 to R2): Let f : R2 → R2 be a map, and assume that D2 f exists at x. By § 6.3, we have
Df (x)(h) = A(x)h, where

A(x) =




a1(x)

a2(x)





=




D1 f1(x)

D1 f2(x)

D2 f1(x)

D2 f2(x)




.

By the rule for composition with a linear map, we have D2 f (k)(h) = (DA(x)k)h. By § 6.3 again, we have that
DA(x)(k) = B(x)k, where

B(x) =




b11(x)

b21(x)

b12(x)

b22(x)





=




D1a1(x)

D1a2(x)

D2a1(x)

D2a2(x)





=




(D1 D1 f1(x), D1 D2 f1(x))

(D1 D1 f2(x), D1 D2 f2(x))

(D2 D1 f1(x), D2 D2 f2(x))

(D2 D1 f2(x), D2 D2 f2(x))





and B(x)k = M21 22 21(B(x))(k). This product operates as follows, where k = (k1, k2):

1. The answer has one column and two rows. Row i is bi1(x)k1 + bi2(x)k2.

2. Each element bij(x)k j is a vector in R2 times a number, yielding a vector in R2. So the answer is a single col-
umn of two vectors in R2, i.e., a 2 × 2 matrix.

Therefore we have

D2 f (x)(k)(h) = (B(x)k)h.

The second derivative as a bilinear map: Given a second derivative D2 f evaluated at x, we may think of it in
either of two ways:

1. As a map D2 f (x): L(X → L(X , Y )) given by k → h → D2 f (x)(k)(h).

2. As a map D2 f (x): X × X → Y given by (k, h) → D2 f (x)(k)(h).

Both ways are valid. The map (2) is bilinear in the variables k and h. We write it D2 f (x)(k, h).

The symmetry of the second derivative: Suppose that D2 f (x) exists and is continuous at x. Then D2 f (x) is sym-

metric, i.e., D2 f (x)(k, h) = D2 f (x)(h, k) for all k and h in X .

To prove this assertion, we can use the generalized mean value theorem to estimate the difference

d(k, h) = D2 f (x)(k, h) − D2 f (x)(h, k).

Then we can make an argument similar to the one for the uniqueness of the derivative, giv en in § 5, to show that
d(k, h) = 0 for all k and h. See [Lang 1993] for the details.

Together with Example 2 above, this result shows that when the second derivative is continuous, the Hessian matrix
(1) is symmetric, and therefore we have Dij f (x) = D ji f (x) for all i and j.

Higher derivatives: We can iterate the process of taking derivatives indefinitely. For each n > 1, we get an nth de-
rivative Dn f = D(Dn−1 f ). As with the second derivative, we can think of Dn f (x) in either of two ways:

1. As a map hn → ⋅⋅⋅ → h1 →Dn f (x)(hn)⋅⋅⋅(h1).

2. As a map (hn, . . . , h1) → Dn f (x)(hn)⋅⋅⋅(h1).

In the second form, Dn f (x) is symmetric and linear in each of the variables hi . See [Lang 1993] for the proofs.
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9. Taylor’s Formula

In this section, we derive Taylor’s formula in the general setting. As in the case of one real variable, Taylor’s for-
mula lets us approximate a function as a sum of derivatives.

9.1. Integration by Parts

We begin by generalizing the technique of integration by parts learned in first-year calculus. To simplify the dis-
cussion, we will focus on the specific case that we need to derive Taylor’s formula. It is not hard to generalize the
result.

Fix the following:

1. A normed vector space Y .

2. A map u(t): R → Y defined on the interval [0, 1].

3. A function v(t): R → R defined on the interval [0, 1].

Then (uv)(t) = u(t)v(t) represents scalar multiplication on the right of the vector u(t) in Y by the real number v(t).
Assume that D(uv) exists and is continuous everywhere on [0, 1]. By the fundamental theorem of calculus (§ 7.7),
we have

1

0
∫ D(uv)(t)(1) dt = (uv)(1) − (uv)(0). (1)

By the product rule for differentiation (§ 7.4) and the rules of integration, the left-hand side of (1) is

1

0
∫ u(t)v′(t) dt +

1

0
∫ Du(t)(1)v(t) dt. (2)

Putting (1) together with (2) and rearranging terms yields

1

0
∫ u(t)v′(t) dt = u(1)v(1) − u(0)v(0) −

1

0
∫ Du(t)(1)v(t) dt. (3)

9.2. The Error Term in the Derivative

Now we use the generalized mean value theorem together with integration by parts to compute the error term φ (h) in
the definition of the derivative. Let X and Y be normed vector spaces, and let f : X → Y be a map. Assume that f

has a continuous derivative Df at x. Let h be a vector in X , and assume that f (x + th) and D2 f (x + th) are defined
for all t in the interval [0, 1]. Then we assert that

f (x + h) = f (x) + Df (x)(h) +
1

0
∫ (1 − t)D2 f (x + th)(h)(h) dt. (4)

When x is a single real variable, this is

f (x + h) = f (x) + f ′(x)h +
1

0
∫ (1 − t) f ′′(x + th)h2 dt.

Proof: By the generalized mean value theorem (§ 7.8), we have

f (x + h) = f (x) +
1

0
∫ Df (x + th)(h) dt (5)

Set u(t) = Df (x + th)(h) and v(t) = −(1 − t). Then the integral in (5) is

1

0
∫ u(t)v′(t) dt, and we can apply integration

by parts. We hav e u(1)v(1) = 0 and u(0)v(0) = −Df (x)(h). Write u = (λ g), where λ is the linear map y → y(h),
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and g(t) = Df (x + th). By the rule for composition with a linear map, we have Du = λ Dg. By the chain rule,
Dg(t)(k) = D2 f (x + th)(hk). Therefore

Du(t)(1)v(t) = −(1 − t)D2 f (x + th)(h)(h).

(4) then follows from (5) by substituting these terms into the right-hand side of (3).

Equation (4) gives us an explicit formula for the error term φ (h) in the definition of the derivative. We hav e

φ (h) =
1

0
∫ (1 − t)D2 f (x + th)(h)(h) dt.

Indeed φ (h) is o(h), because

|φ (h)| ≤
1

0
∫ |(1 − t)D2 f (x + th)(h)(h)| dt

≤
1

0
∫ |D2 f (x + th)||h||h| dt

≤ C |h||h|

where C is the supremum of |D2 f (x + th)| for t in [0, 1]. Then |φ (h)| / |h| = C |h| which goes to zero as h goes to zero.

9.3. Higher Terms

We can continue integrating by parts. Doing this gives us Taylor’s formula.

Starting with (4), let u(t) = (1 − t)D2 f (x + th)(h)(h) and v(t) = −(1 − t)2/2. Then integration by parts yields

f (x + h) = f (x) + Df (x)(h) +
D2 f (x)(h)(h)

2
+

1

0
∫ (1 − t)2

2
D3 f (x + th)(h)(h)(h) dt. (6)

This is gives the degree two term in Taylor’s formula.

Let us write (h) ⋅⋅⋅ (h) (n times) as (h)n. Then by induction we get the following:

f (x + h) = f (x) + Df (x)(h) + ⋅⋅⋅ +
Dn f (x)(h)n

n!
+

1

0
∫ (1 − t)n

n!
Dn+1(x + th)(h)n+1 dt. (7)

Formula (7) is the generalized Taylor formula of degree n. It is a kind of extended polynomial. When f (x) is a map
from R to R, it is the familiar polynomial formula

f (x + h) = f (x) + f ′(x)h + ⋅⋅⋅ + f (n)(x)hn +
1

0
∫ (1 − t)n

n!
f (n+1)(x + th)hn+1 dt,

where f (n) means the nth derivative of f as a function of one real variable. By an argument similar to the one given
in the previous section, we can see that the integral remainder is o(|h|n). Also, for 2 ≤ i ≤ n, the degree i term is
o(|h|i−1).

10. Infinite Dimensions

As discussed in § 2, the theory developed above is for finite-dimensional normed vector spaces over R. It is not dif-
ficult to extend the theory infinite-dimensional vector spaces. When working in infinite dimensions, the main issues
are as follows:

1. We must define the concept of a complete normed vector space, and we must assert that our vector spaces are
complete. In finite dimensions over R, we get completeness for free.
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2. We must assert that our linear maps λ are continuous; or, equivalently, that the norm |λ | as we defined it in
§ 4.2 is finite. In finite dimensions over R, all linear maps satisfy this condition.

See [Lang 1993] for the details.
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