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This paper sketches the theory of differentiation and integration over the complex numbers. It can serve as a com-
plement to a standard textbook on complex analysis, e.g., [Lang 1999]. The textbooks provide more detail; this doc-
ument hits the highlights and shows how they fit together. It also shows how complex analysis builds naturally on
real analysis.

This document assumes that you are familiar with the material covered in my papers The General Derivative and
Integration in Real Vector Spaces. It dev elops calculus over the complex numbers as a special case of calculus in
general vector spaces with real norms. I find this approach more satisfactory than the typical approach, which devel-
ops complex analysis as an ad-hoc extension of calculus in two real variables.

1. The Complex Numbers

There is no real number r such that r2 = −1. Intuitively, the complex numbers C are the smallest extension of the
real numbers R that contains such a number and that preserves the operations of addition, subtraction, multiplica-
tion, and division. In this section we make this idea precise.

1.1. The Algebraic Definition

We begin with an algebraic definition of the complex numbers. This definition is the most general because it doesn’t
depend on a choice of real coordinates. For computation, real coordinates are often useful; we discuss these in the
next section.

First we define the algebraic concept of a field. A field F is an algebraic construct that generalizes the real numbers.
It is a set together with two binary operations o: F × F → F :

1. Addition, written a + b. Addition is associative and commutative. It has an additive identity, i.e., an element
0 or zero such that for all elements a in F , a + 0 = 0 + a = a. For every element a in F , there is an additive
inverse of a, i.e., a unique element −a in F such that a + (−a) = (−a) + a = 0.

2. Multiplication, written ab or a ⋅ b. Multiplication is associative and commutative. It has a multiplicative
identity, i.e., an element 1 or one such that for all elements a in F , a ⋅ 1 = 1 ⋅ a = a. For every element a in F

except zero, there is a multiplicative inv erse of a, i.e., a unique element a−1 or 1/a in F such that
a ⋅ a−1 = a−1 ⋅ a = 1. Multiplication distributes over addition, i.e., for every elements a, b, and c in F , we hav e
a(b + c) = ab + ac.

It is clear that the real numbers R are a field.

With this definition in hand, we may define the complex numbers C as follows:

C1. C is a field.

C2. C contains R as a subfield. That is, (a) every element of R is an element of C; and (b) the operations,
identities, and inverses of R as a subset of C are identical to those of R.

C3. C contains an element i such that i2 = −1.1

C4. C is minimal in the sense that no subset of C, except C itself, satisfies properties C1 through C3.

This definition specifies C algebraically as an extension field of R (i.e., a field that has R as a subfield). For more
on the properties of extension fields, see my paper Definitions for Commutative Algebra.

1 The letter i stands for “imaginary.” There is a long tradition of calling the square root of negative one an “imaginary number,” even though it

is no more imaginary than any other mathematical abstraction.
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We now show how C may be regarded as a vector space. In The General Derivative, we defined a vector space as a
set of vectors satisfying the rules of vector addition and scalar multiplication by elements of R. We now generalize
this definition. We say that a vector space as defined in The General Derivative is a real vector space or a vector

space over the real numbers. Analogously, we can define a vector space V over any field F . It is a set of vectors
satisfying the rules of vector addition and scalar multiplication by elements of F . The definition is identical to the
one given in The General Derivative, after replacing R with F as the field of scalars.

Any field F is a vector space over itself. In particular, C is a vector space over itself, just as R is a vector space over
itself. C is also a vector space over R.

In the more general setting, we define a normed vector space as follows. Let F be a field of scalars s. An absolute

value on F is a function that assigns to each scalar s a real number |s| and that has the same properties as the abso-
lute value of a real number, namely:

1. For any scalar s, |s| ≥ 0, and |s| = 0 if and only if s = 0.

2. For any two scalars s1 and s2, |s1s2| = |s1||s2|.

3. For any two scalars s1 and s2, |s1 + s2| ≤ |s1| + |s2|.

Let |s| be an absolute value on F , and let V be a vector space over F . A norm on V is a function that assigns to each
vector v in V a real number |v|, and that has the properties of the norm stated in § 2 of The General Derivative,
namely:

1. For any vector v, |v| ≥ 0, and |v| = 0 if and only if v = 0.

2. For any scalar s and vector v, |sv| = |s||v|.

3. For any two vectors v1 and v2, |v1 + v2| ≤ |v1| + |v2|.

Notice that the norm is always a real number, even when V is a vector space over a field F ≠ R. As stated in The

General Derivative, R is a normed vector space over itself, with the norm of r given by the absolute value |r |. In
§ 1.3, we shall see that C is a normed vector space as well.

1.2. Real Coordinates

It is often useful to represent complex numbers as pairs of real numbers. There are two standard ways to do this:
rectangular coordinates and polar coordinates.

1.2.1. Rectangular Coordinates

To dev elop rectangular coordinates for complex numbers, we observe the following:

1. By property C3, i is a complex number.

2. By properties C1 and C2, for any real numbers x and y, x + iy is a complex number.

Thus it is natural to define the rectangular coordinate map R: R2 → C given by (x, y) → z = x + iy. Note that if
we restrict the scalar multiplication of C to real numbers we get a real vector space. Further, R is a linear map to
this real vector space, because

R(r(x, y)) = R(rx, ry) = rx + iry = r(x + iy) = r R(x, y).

We now show that C is equal to R(R2), i.e., the set of all x + iy such that x and y are members of R. In fact it suf-
fices to show that R(R2) is a field; then the other properties are clear.

We make R(R2) into a field as follows:

1. We define addition componentwise, i.e., (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2). The additive identity
is 0 = 0 + i 0, and the additive inv erse of x + iy is −x + i(−y) = −x + (−iy). The last equality is justified
because iy + i(−y) = i(y + −y) = i 0 = 0. As usual, we write −x + (−iy) as −x − iy.

2. We define multiplication by standard polynomial multiplication, and by collecting terms. That is,

(x1 + iy1)(x2 + iy2) = x1 x2 + iy1 x2 + x1 iy2 + i2 y1 y2

= x1 x2 + i(y1 x2 + x1 y2) − y1 y2
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= (x1 x2 − y1 y2) + i(y1 x2 + x1 y2).

The multiplicative identity is 1 = 1 + i 0. To form the inverse z−1 of z = x + iy, we define the complex conju-

gate
_
z = x − iy. Then for any complex number z, z

_
z = (x + iy)(x − iy) = x2 + y2, so if z ≠ 0, then the complex

number
_
z/(x2 + y2) is a multiplicative inv erse for z.

Every complex number z has a unique representation in rectangular coordinates as x + iy. Therefore the rectangular
coordinate map R has an inverse map R−1: C → R2. This map is given by

z → 


z + _
z

2
,

z − _
z

2i



.

You can see this by plugging in x + iy for z and x − iy for
_
z and simplifying the right-hand side to (x, y). Given a

complex number z = x + iy, we say that x = (z + _
z)/2 is the real part of z and y = (z − _

z)/2i is the imaginary part

of z.

Because R is a bijection (it covers all of C and is one-to-one), we may identify the set of complex numbers
z = x + iy with the set of ordered pairs (x, y) in the real Cartesian plane. Under this identification,

• The complex numbers C are called the complex plane.

• The x axis is called the real axis.

• The y axis is called the imaginary axis.

A complex number x = x + 0 i is called (as in real analysis) a real number. A complex number iy = 0 + iy is called
an imaginary number or pure imaginary number.

1.2.2. Polar Coordinates

To dev elop polar coordinates for complex numbers, we do the following:

1. Observe that any ordered pair (x, y) in the real Cartesian plane may be written (r cos θ , r sin θ ), where

r = √ x2 + y2, and θ is (a) an arbitrary value (if r = 0) or (b) an angle in radians from the x axis to the line seg-
ment connecting the origin (0, 0) to (x, y), in the counterclockwise direction.

2. Conclude that any complex number x + iy has a representation r cos θ + ir sin θ = r(cos θ + i sin θ ), where r

and θ are real numbers.

3. Define the function eiθ : R → C as eiθ = cos θ + i sin θ . Because ex : R → R already denotes the real exponen-
tial function, this notation must be justified. The justification is that ex and eiθ are special cases of a function
ez: C → C, with z = x (i.e., z a real number) and z = iθ (i.e., z a pure imaginary number), respectively. We
will define ez in § 4.4 below.

It is easy to use the trigonometric addition formulas to establish that eiθ1 eiθ2 = ei(θ1+θ2). Multiplying a complex num-
ber z by eiθ displaces z by the angle θ around the origin. Positive angles correspond to counterclockwise displace-
ment, and negative angles correspond to clockwise displacement.

With these observations and definitions in hand, we can define the polar coordinate map P: R2 → C given by
(r,θ ) → z = reiθ = r cos θ + ir sin θ = R(r cos θ , r sin θ ), where R is the rectangular coordinate map. Notice that
P does not have a well-defined inverse, because (1) when z = 0, the value of θ is not specified at all; and (2) when
z ≠ 0, the value of r is specified only up to its sign, and the value of θ is specified only up to a multiple of 2π .

For a complex number z = reiθ expressed in polar coordinates, we define the complex conjugate
_
z = re−iθ . Trans-

forming z to rectangular coordinates, we see that z = r cos θ + ir sin θ and
_
z = r cos θ − ir sin θ , because changing

the sign of θ leaves cos θ unchanged and reverses the sign of sin θ . Therefore
_
z has the same value when z is

expressed in rectangular or polar coordinates.

1.3. The Absolute Value

Fix a complex number z. We define the absolute value of z, written |z|, as follows:

1. If z is expressed in rectangular coordinates z = x + iy, with x and y in R, then |z| = √ z _
z = √ x2 + y2. Note that

|z| = |R(z)|, where R is the real coordinate map (§ 1.2), and the vertical bars on the right represent the
Euclidean norm on R2.
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2. If z is expressed in polar coordinates z = reiθ , with r and θ in R, then z = |r |, where |r | denotes the absolute
value of the real number r.

The two definitions are equivalent, because if z = reiθ , then according to the first definition,

|z| = |r cos θ + i r sin θ |

= √ (r cos θ )2 + (r sin θ )2

= √ r2(cos2 θ + sin2 θ )

= √ r2 ⋅ 1 = √ r2 = |r |.

Notice that when z = x is a real number, the absolute value of x as a member of C agrees with the absolute value of
x as a member of R. Thus the complex absolute value extends the real absolute value in a natural way.

It is easy to show that the absolute value |z| has the properties required for a norm on the vector space C (§ 1.1).
Indeed, properties 1 and 3 follow directly from the representation of R(z) of a complex number z in real coordinates,
and the analogous properties of the norm in R2. As to property 2, for any two complex numbers z1 = r1eiθ1 and
z2 = r2eiθ2 , we hav e

|z1z2| = |r1eiθ1r2eiθ2 | = |r1r2ei(θ1+θ2)| = |r1r2| = |z1||z2|.

Therefore, the complex absolute value makes C into a normed vector space over itself.

1.4. The Topology of the Complex Plane

The complex plane has a natural structure as a topological space in two real dimensions. In this section we briefly
investigate this structure.

Given a set S, a topology on S is a set O of subsets of S, called the open sets of S, satisfying certain axioms. The
pair (S, O) is called a topological space. For more information on topological spaces, see § 23 of my paper Defini-

tions for Commutative Algebra.

For any n > 0, the real vector space Rn has the following standard topology, called the Euclidean topology:

1. Fix a point p = (x1, . . . , xn) in Rn and a real number r > 0. The open ball B( p, r) is the set of all points q in

Rn such that | p − q| < r, where | p| denotes the Euclidean norm |(x1, . . . , xn)| = √ x2
1 + ⋅⋅⋅ + x2

n. In R, the

Euclidean norm of a real number r is √ x2 = |x|, and an open ball is an open interval ( p − r, p + r). In R2, an
open ball is a disc.

2. A set U of points in Rn is open if, for every point p in U , there exists a positive real number r such that
B( p, r) is contained in U .

For example, the set U = {p: | p| < 1} is open in R2, while V = {p: | p| ≤ 1} is not.

Fix a topological space (S, O) and a subset T of S.

1. The complement of T , written S − T , is the set of all points p in S such that p is not an element of T .

2. T is closed if its complement is open.

With reference to the example above,

1. V is closed.

2. The complement of U , i.e., {p: | p| ≥ 1}, is closed.

The complex plane C inherits the Euclidean topology via its identification with the real plane R2.

1. Fix a complex number a and a real number r > 0. The open ball B(a, r) is the set of all points z in C such that
|z − a| < r.

2. A set U of points in C is open if, for every point a in U , there exists a positive real number r such that B(a, r)
is contained in U .
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2. Complex Differentiation

In The General Derivative, we dev eloped the theory of differentiation for maps f : X → Y , where X and Y are finite-
dimensional normed vector spaces over R. This theory carries over identically to the case where X or Y are finite-
dimensional normed vector spaces over C. So in a very strong sense, we already have all the theory we need for
complex differentiation. We just have to work out the details of applying the theory to particular cases. We do that
in this section.

2.1. Complex-Valued Functions

In this section we discuss the derivative of a complex-valued function, i.e., a function that attains its values in C.

A complex-valued function of one complex variable is a function f :U → C, where U is a subset of C.2 For short,
we will call this kind of function a complex function. Fix a complex function f . From The General Derivative, we
know that the derivative Df exists at a point z in U if and only if there exists a linear map Df (z): C → C such that
for all complex numbers h with |h| sufficiently small,

f (z + h) = f (z) + Df (z)(h) + φ (h),

where φ is o(h), i.e.,
h → 0
lim

φ (h)

|h|
= 0. Let V ⊆ U be the set of points z where Df (z) is defined. Then Df is a function

from V to L(C, C), the vector space of linear maps from C to C.

A linear map λ : C → C corresponds to multiplication by a complex number, just as a linear map λ : R → R corre-
sponds to multiplication by a real number. As in the case of a single real variable, we refer to the number associated

with the linear map Df (z) as f ′(z) or
df

dz
, and we write

Df (z) = M( f ′(z)) = h → f ′(z)h,

where

f ′(z) =
h → 0
lim

f (z + h) − f (z)

h
.

When a function f : C → C is differentiable at a point z, we say that f is holomorphic at z. When f is holomor-
phic at every point z in a subset U of C, we say that f is holomorphic on U .

A complex-valued function of a real vector space is a function f :U → C, where U is a subset of a real vector
space X , for example R or R2. In this case we define the derivative of f as described in The General Derivative.
All the theory described there goes through when we set Y = C in the derivative of a function f : X → Y . We may
also write f = R F , where R is the rectangular coordinate map (§ 1.2.1), and F = R−1 f . Then f is differen-
tiable if and only F is a differentiable map from U to R2.

When X = R, we say that f is a complex-valued function of one real variable. In this case everything stated
above for a complex function holds, after replacing the complex number z by the real number t, the complex number
h by the real number h, and “holomorphic” by “differentiable.”

2.2. Properties of the Derivative

All of the properties of the derivative stated in § 7 of The General Derivative hold for complex-valued functions. As

an example, let us prove that
d

dθ
eiθ = ieiθ . Notice that eiθ : R → C is a complex-valued function of one real vari-

able (§ 2.1). We hav e

d

dθ
eiθ =

d

dθ
(cos θ + i sin θ ) (definition of eiθ )

=
d

dθ
cos θ +

d

dθ
i sin θ (sum rule)

2 In Integration in Real Vector Spaces, we wrote f : V → W to mean a partial map between vector spaces V and W , defined on some subset

U ⊆ V . This way of writing maps simplifies the notation, but it loses precision. From now on we will be more precise and write f :U → W to

mean a map from U ⊆ V to W , defined everywhere on U .
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=
d

dθ
cos θ + i

d

dθ
sin θ (composition with a linear map)

= −sin θ + i cos θ (derivative of sin and cos)

= i (i sin θ + cos θ ) (definition of i)

= ieiθ (definition of eiθ ).

As another example, we can use the product rule and induction to prove that
d

dz
zn = nzn−1, where z is a complex

number, n > 0 is an integer, and zn: C → C is the function z → z ⋅⋅⋅ z (n times). Try this as an exercise.

The proof of the quotient rule goes through for complex-valued functions in the same way as for real-valued func-
tions. Using the quotient rule, we can extend the result in the previous paragraph to all integers n, where z0 = 1 and
z−n = 1/zn for n > 0.

2.3. Complex One Forms

We extend the notation of one forms to complex-valued functions. In Integration in Real Vector Spaces, we said that
a one form is a map ω :U ⊆ Rn → L(Rn, R). We now define a complex one form (one form for short when the con-
text is clear) to be a map ω :U ⊆ X → L(X , C), where X is a real vector space or C.

Fix a complex function f . In this case, X = C. As before, in the notation of complex one forms,

1. We write df instead of Df .

2. We write dz to denote the linear map h → h.

3. We write f (z) dz or f dz to denote the map z → (h → f (z)h).

When f is holomorphic on U , we say that f dz is holomorphic on U . When f is holomorphic at z, item 3 lets us

write df = f ′ dz, or equivalently df =
df

dz
dz. In the second form, the two occurrences of dz appear to “cancel.”

This apparent “canceling” is a useful mnemonic, but one must not take it too seriously, because there are no well-
defined rules for multiplying and dividing the symbols df and dz. To think rigorously about these concepts, one
must go back to the definition of the derivative as a linear map.

Now fix a complex-valued function f of a real vector space. In this case, X is a real vector space, usually R or R2.
The notation for a complex one form is the same as for a real one form with the corresponding structure. The only
difference is that the functions appearing in the one form are complex-valued. For example, with X = R2, we may
write ω = f x dx + f y dy, where f x and f y are complex-valued functions of R2. This technique is useful for express-
ing a complex one form in real coordinates; we take up this idea further in § 3.3.

The concepts of a closed and exact one form are the same as in the real case. A one form ω is closed if dω = 0. It is
exact if there exists a complex-valued function f such that df = ω . For example, f x dx + f y dy is an exact one form

on a subset U of R2 if and only if there exists a function f :U → C such that Dx f =
∂ f

∂x
= f x and Dy f =

∂ f

∂y
= f y.

2.4. Real Vector Fields

In some applications it is useful to apply the calculus of maps from R2 to R2 to functions from C to C. In this sec-
tion we briefly explore this idea.

Fix a subset U of C and a holomorphic function f :U → C. Let R: R2 → C be the rectangular coordinate map
(§ 1.2.1), and let V = R−1(U), i.e., the set of all points p = (x, y) in R2 such that R( p) = x + iy lies in U . Let
F : V → R2 = R−1 f R. F is called the real vector field associated with f . It converts the function
f :U ⊆ C → C into a corresponding function F : V ⊆ R2 → R2.

Using the chain rule to take the derivative of f R, we find

D( f R)( p) = Df (R( p)) dR( p) = M( f ′(R( p))) M22(Dx R( p), Dy R( p)).

Here we use the notation from The General Derivative that specifies how to interpret vectors as linear maps. M(a)
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denotes multiplication by the real number a, and M22(a, b) denotes the dot product with the vector (a, b). Because
R( p) = x + iy, we hav e Dx R( p) = 1 and Dy R( p) = i. Therefore

D( f R)( p) = M(( f ′ R)( p)) M22(1, i) = M22(( f ′ R)( p), i ( f ′ R)( p)). (1)

Notice that R F = R R−1 f R = f R. Let (F x , F y) be the coordinate functions of F . Using the chain rule to
take the derivative of R F , we find

D(R F)( p) = DR(F( p)) dF( p) = [ 1 i ]




Dx F x( p)

Dx F y( p)

Dy F x( p)

Dy F y( p)





(2)

= M22(Dx F x( p) + iDx F y( p), Dy F x( p) + iDy F y( p)).

Because R F = f R, the right-hand sides of (1) and (2) must be equal. Therefore

f ′ R = Dx F x + iDx F y = Dy F y − iDy F x . (3)

Comparing the real and imaginary parts on the left- and right-hand sides of (3), we find

Dx F x = Dy F y Dx F y = −Dy F x . (4)

Equations (4) are called the Cauchy-Riemann equations associated with the real vector field F of a holomorphic
function f .

3. Complex Integration

Now we turn our attention to complex integration. Integration over the complex numbers builds naturally on inte-
gration in real vector spaces. However, there are some surprising differences between the two theories, due to the
differing structure of the complex numbers.

3.1. Paths

First we define the concept of a path. We also define the related concepts of homotopic paths, pathwise connected
sets, and simply connected sets. We will need these concepts to carry out complex integration. Throughout this sec-
tion, X denotes the real plane R2 or the complex plane C.

The definition of a path: A path is a differentiable map σ : s → X , where s = [a, b] is an interval of the real line.
This is the same definition that we used in Integration in Real Vector Spaces. When X = C, “differentiable” means
differentiable as a complex-valued function (§ 2.1). We call the ordered pair of points E = (σ (a), σ (b)) the end-

points of the path σ . We call σ (a) the initial point of σ , and we call σ (b) the terminal point of σ .

A path σ : [a, b] → U is closed if σ (a) = σ (b). For example, the path σ : [0, 2π ] → C given by σ (t) = eit is closed,
because σ (0) = σ (2π ) = 1.

Let U be a subset of X . A path in U is a path σ : [a, b] → U , i.e., a path σ : [a, b] → X such that for all t in [a, b],
σ (t) is an element of U .

Homotopic paths: Fix a set U ⊆ X , an interval s = [a, b], and a pair E = ( p, q) of points in U . Let Ss,E be the set of
paths σ : [a, b] → U with endpoints E. Fix paths σ0 and σ1 in Ss,E . A homotopy from σ0 to σ1 in U is a map
H : [0, 1] → Ss,E such that H(0) = σ0, H(1) = σ1, and (u, v) → H(u)(v) is a continuous map from [0, 1] × [a, b] to
U . A homotopy in U defines a continuous transformation from σ0 to σ1 of paths in U , such that each path in the
transformation has endpoints E. If there is a homotopy H from σ0 to σ1 in U , then there is a homotopy
u → H(1 − u) from σ1 to σ0 in U . In this case we say that the paths σ0 and σ1 are homotopic in U .

Pathwise connected sets: Let U be a subset of X . we say that U is pathwise connected if, for any two points p

and q in U , there exists a path σ : [a, b] → U such that σ (a) = p and σ (b) = q. For example, the open ball of radius
1 about the origin in C is pathwise connected. The union of the open balls of radius 1 about 2 and −2 is not path-
wise connected; for example, there is no path from 2 to −2 contained in the union.

Simply connected sets: Let U be a pathwise connected subset of X . We say that U is simply connected if any
closed path in U is homotopic to a point in U . Intuitively, U has no holes, so a closed path never winds around a
hole and can therefore be continuously transformed into a point while keeping the endpoints fixed. As an example,
the complex plane C is simply connected, while C with the origin deleted is not. When we delete the origin, there
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are paths that cannot be continuously transformed to a point while keeping the endpoints fixed. One such path starts
at 1 and winds once counterclockwise around the unit circle centered on zero. The endpoints of the path are (1, 1).3

The simply connected closed subsets of R are the intervals [a, b].

3.2. One Forms of One Real Variable

Next we show how to integrate a complex one form of one real variable, i.e., a form f dt, where f :U ⊆ R → C is a
complex-valued function of one real variable. As we shall see in the next section, complex integration generally
proceeds by pulling back to one of these forms and integrating it over a real interval [a, b].

We know how to integrate f dt where f is a function from R to R2; see, e.g., § 4 of Integration in Real Vector Spa-

ces. Recall that we integrate each coordinate separately, i.e., we let f1 and f2 be the real-valued functions such that
f (t) = ( f1(t), f2(t)), and we write

b

a

∫ f dt = (

b

a

∫ f1 dt,

b

a

∫ f2 dt).

We extend this integration to complex-valued functions f as follows. Let f (t): [a, b] → C be a function defined and
continuous on the real interval [a, b]. We define

b

a

∫ f (t) dt = R






b

a

∫ (R−1 f )(t) dt






, (1)

where R is the rectangular coordinate map (§ 1.2.1). The integral on the right-hand side of equation (1) is well-
defined, because it is the integral of the continuous function R−1 f : [a, b] → R2. Equation (1) says that to integrate
a complex-valued function f (t), we let f1 and f2 be the real-valued functions such that f (t) = f1(t) + i f2(t), and we
write

b

a

∫ f dt =
b

a

∫ f1 dt + i

b

a

∫ f2 dt.

Note that f1 = ( f +
_

f )/2, and f2 = ( f −
_

f )/2i, where
_

fi is the function t →
____

fi(t).

Because R and R−1 are linear maps, we have the standard linearity property of the integral, i.e.,

b

a

∫ (cf + dg) dt = c

b

a

∫ f dt + d

b

a

∫ g dt.

Here a and b are real numbers, and c and d are complex numbers.

The fundamental theorem of calculus holds, because we have

D(x →
x

a

∫ f (t) dt) = D(x → R




x

a

∫ (R−1 f )(t) dt



)

= D(R (x →
x

a

∫ (R−1 f )(t) dt))

= R D(x →
x

a

∫ (R−1 f )(t) dt) (linearity of R)

= R (x → R−1 f (x)) (fundamental theorem of calculus)

= f (x).

3 Note that if we don’t fix the endpoints, then any path can be continuously transformed to a point, regardless of holes in U . For example, we

can continuously retract the terminal point along the path to the initial point. By fixing the endpoints, we disallow this retraction.
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Because |R( p)| = |p| and |R−1(z)| = |z|, we have the following estimate for the absolute value of the integral:






b

a

∫ f (t) dt






=





R






b

a

∫ (R−1 f )(t) dt











=





b

a

∫ (R−1 f )(t) dt






≤
b

a

∫ 

(R−1 f )(t)


dt (property of the real integral)

=
b

a

∫ | f (t)| dt.

3.3. General One Forms

Paths: We use the techniques discussed in Integration in Real Vector Spaces to integrate a general one form over a
path. The only difference is that here our one forms are complex-valued.

Let X be R2 or C. Fix a complex one form ω : X → L(X , C) and a path σ : [a, b] → X . We define the pullback

σ *ω of ω with respect to the path σ to be

(σ *ω )(t) = ω (σ (t)) dσ (t).

We define the integral of ω over the path σ to be

σ
∫ ω =

b

a

∫ σ *ω . (2)

σ *ω is a map from [a, b] to L(R, C), so it has the form f dt, for f : [a, b] → C. By § 3.2, the right-hand integral in
(2) is well-defined whenever σ *ω is exact, i.e., there exists F : [a, b] → C such that dF = σ *ω . In this case, the inte-
gral in (2) evaluates to F(b) − F(a). Further, when ω is exact, i.e., there exists F : X → C such that dF = ω , then the
integral in (1) evaluates to F(σ (b)) − F(σ (a)), and the integral is independent of the path. This is Stokes’ theorem
for path integrals, which we proved in § 1 of Integration in Real Vector Spaces; the same proof goes through in the
complex case.

When X = C, we hav e ω = f dz and σ *ω = f (σ (t))σ ′(t) dt, so

σ
∫ f dz =

b

a

∫ f (σ (t))σ ′(t) dt.

We will treat the case of X = R2 below, when we discuss real coordinates.

As an example of complex path integration, see § 1 of Integration in Real Vector Spaces. There we showed that the

integral of the complex one form
1

z
dz: C − {0} → L(C, C) over the path σ : [0, 2π ] → C given by σ (t) = eit evalu-

ates to 2π i. Here is the computation again, in the more general case of σ : [a, b] → C = t → eit :

σ
∫ 1

z
dz =

b

a

∫ 1

σ (t)
σ ′(t) dt =

b

a

∫ 1

eit
ieit dt =

b

a

∫ i dt = i(b − a).

Thus integrating 1/z over the path σ computes i times the angular displacement from σ (a) to σ (b). This computa-
tion is a special case of integration using polar coordinates, which we will discuss in more detail in § 3.5 below.
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Notice that the integral depends on the path σ, not just the endpoints of σ : for example, a path that starts at a point p

and winds back to p once counterclockwise around the unit circle has an integral of 2π i; whereas a path with the
same endpoints that winds twice counterclockwise around the unit circle has an integral of 4π i.

Chains: As in Integration in Real Vector Spaces, we define a chain γ to be an integer-weighted formal sum of paths.
For example, γ = 2σ1 − σ2. We define an integral over a chain to be the weighted sum of the integrals over the
paths. For example,

2σ1ω −σ2

∫ ω = 2

σ1

∫ ω −
σ2

∫ ω .

A chain is closed if it is a sum of closed paths.

3.4. Exact One Forms

We now turn to the question of when a one form is exact. First we review the situation for a real one form f (x) dx.
If f is continuous on an interval s = [a, b], then it is integrable on s, and

F(x) =
x

a

∫ f (t) dt

is defined on s. Therefore f dx is exact on s, because by the fundamental theorem of calculus, we have dF = f dx.
So we find that if f is continuous on an interval s = [a, b], then f dx is exact on s. Further, a differentiable function
is continuous. Therefore if f is differentiable on s, then f dx is exact on s.

The analogous situation for a complex one form f (z) dz is that f is holomorphic on a simply connected subset U of
C (§ 3.1). One can do the following:

1. Show that f is holomorphic on an open ball B ⊆ C, then f dz is exact on B. The proof proceeds by integrat-
ing along the boundaries of rectangles.

2. Use (1) to show that if f is holomorphic on an open subset U of C, then for any pair of homotopic paths
(§ 3.1) σ0 and σ1 in U , we hav e

σ0

∫ f dz =
σ1

∫ f dz.

This result is called Cauchy’s integral theorem.

3. Use (2) to show that for any points a and z in a simply connected open subset U of C, and for a holomorphic
function f on U , the integral of f (ζ ) dζ along any path in U from a to z yields the same value. Therefore the
following function is well-defined, where σ is any path from a to z:

F(z) =
z

a

∫ f (ζ ) dζ =
σ
∫ f (ζ ) dζ .

4. Use (1) and (3) to show that dF(z) = f (z) dz on U , so that f (z) dz is exact on U .

See, e.g., [Lang 1999] for the complete proofs.

In summary, we hav e the following results, for a function f that is holomorphic on a simply connected open subset
U of C:

1. The one form f dz is exact on U , i.e., there exists a holomorphic function F on U such that df = F dz.

2. For any points a and b in C, the integral of f dz over any path in U from a to b has the same value
F(b) − F(a).

3. The integral of f dz over any closed path in U is zero.

These results are analogous to the results stated in Integration in Real Vector Spaces for a real one form f (x) dx,
where U is a simply connected set in R (i.e., an interval).

Note that a one form f dz may be holomorphic everywhere on an open set U ⊆ C, but if U is not simply connected,
then f dz may not be exact on U . For example, in § 3.3, we saw that 1/z is holomorphic everywhere on the open set
C − {0}, but the integral of 1/z dz around the unit circle is not zero, and the integral depends on the path. Therefore
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1/z dz is not exact on U . It is exact on a simply connected set that does not intersect the origin. This result has no
direct analog in R, because every pathwise connected set in R is also simply connected.

Note also that a one form f dz may be holomorphic and exact on an open set U that is not simply connected. For
example, the one form 1/z2 dz = z−2 dz is holomorphic and exact on C − {0}, because d(−z−1) = z−2 dz. In fact,
zn dz is exact on C − {0} for all values of n except −1, because in all those cases we have the antiderivative rule

∫ zn dz =
zn+1

n + 1
. In this sense z−1 dz is special among all the one forms zn dz for integers n: it is the only one that

fails to be exact on C − {0}.

3.5. Real Coordinates

It is often useful to integrate a complex one form with respect to real coordinates, i.e., coordinates p = (x, y) in R2.
Let µ: R2 → C be a differentiable function, which we will call a coordinate map. Let σ : [a, b] → R2 be a path in
R2 (i.e., a differentiable function). Then the composite function µ σ : [a, b] → C is a path, and we may use it to
integrate a complex one form ω (z) = f dz as described in § 3.3. From § 3.3 of Integration in Real Vector Spaces,
we know that

µ σ
∫ ω =

σ
∫ µ*ω (3)

when ω is a k-form; we can also give an easy proof in the case where ω is a one form f (z) dz, as follows:

µ σ
∫ ω =

b

a

∫ (µ σ )*ω (definition of path integration)

=
b

a

∫ ω ((µ σ )(t)) d(µ σ )(t) (definition of (µ σ )* for a one form) (4)

=
b

a

∫ ω ((µ σ )(t)) dµ(σ (t)) dσ (t) (chain rule)

=
b

a

∫ ω (µ(σ (t))) dµ(σ (t)) dσ (t) (definition of composition)

=
σ
∫ ω (µ( p)) dµ( p) (definition of path integration) (5)

=
σ
∫ µ*ω (definition of µ*)

Equation (3) says that to integrate over a composite path µ σ , we may use the coordinate map µ: R2 → C to pull
back to R2 and then integrate over σ : [a, b] → R2.

Rectangular coordinates: Let µ = R, the rectangular coordinate map of § 1.2.1. We hav e σ (t) = (x(t), y(t)),
R(x, y) = x + iy, and (R σ )(t) = x(t) + iy(t). Because dR(x, y) = Dx R dx + Dy R dy = dx + i dy, equation (5) says
that

R σ
∫ f dz =

σ
∫ f (x + iy)(dx + i dy). (6)

Equation (6) is the justification for the familiar formula dz = dx + i dy.4 On the other hand, because
d(R σ )(t) = (x′(t) + i y′(t)) dt, equation (4) says that

4 This formula is a useful mnemonic. However, it can be misleading: the replacement of dz by dx + i dy in an integral is justified not by alge-

braic identity, but by the rules of path integration, as explained in the text.
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R σ
∫ f dz =

b

a

∫ f (x(t) + iy(t))(x′(t) + y′(t)) dt. (7)

Equation (7) is the one we use for computation. We can also go from (6) to (7) by applying the definition of integra-
tion over the path σ . Notice also that the following two operations give the same result:

1. Using the chain rule to compute

d(R σ )(t) = dR(σ (x(t), y(t))) dσ (t) = (dx + i dy) (x′(t) dt, y′(t) dt) = (x′(t) + i y′(t)) dt.

2. Using the sum rule to compute d(x(t) + iy(t)) = (x′(t) + i y′(t)) dt.

More generally, one can use the chain rule to prove the sum rule.

Polar coordinates: Let µ = P, the polar coordinate map of § 1.2.2. We hav e σ (t) = (r(t),θ (t)), P(r,θ ) = reiθ , and
(P σ )(t) = r(t)eiθ (t). Because dP(r,θ ) = Dr P dr + Dθ P dθ = eiθ dr + ireiθ dθ , equation (5) says that

P σ
∫ f dz =

σ
∫ f (reiθ )(eiθ dr + ireiθ dθ ). (8)

Equation (8) is the justification for the formula dz = eiθ dr + ireiθ dθ .5 On the other hand, because
d(P σ )(t) = (r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt, equation (4) says that

P σ
∫ f dz =

b

a

∫ f (r(t)eiθ (t))(r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt. (9)

Equation (9) is the one we use for computation. We can also go from (8) to (9) by applying the definition of integra-
tion over the path σ . Notice also that the following two operations give the same result:

1. Using the chain rule to compute

d(P σ )(t) = dP(σ (x(t), y(t))) dσ (t) = (eiθ (t) dr + ir(t)eiθ (t) dθ ) (r′(t) dt,θ ′(t) dt)

= (r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt.

2. Using the product rule to compute d(r(t)eiθ (t)) = (r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt.

More generally, one can use the chain rule to prove the product rule.

Translated coordinates: It is useful to define coordinate maps centered away from the origin. We define the fol-
lowing, for a point c in C:

1. Rc(x, y) = x + iy + c. Rc is the rectangular coordinate map centered at c.

2. Pc(r,θ ) = reiθ + c. Pc is the polar coordinate map centered at c.

Translation does not change the derivative. Therefore

1. When integrating over a path σ : [a, b] → R2 = t → (x(t), y(t)), we have

Rc σ
∫ f dz =

σ
∫ f (x + iy + c)(dx + i dy)

=
b

a

∫ f (x(t) + iy(t) + c)(x′(t) + y′(t)) dt. (10)

2. When integrating over a path σ : [a, b] → R2 = t → (r(t),θ (t)), we have

Pc σ
∫ f dz =

σ
∫ f (reiθ + c)(eiθ dr + ireiθ dθ )

5 This formula can be misleading, for the reasons stated in the previous note.
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=
b

a

∫ f (r(t)eiθ (t) + c)(r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt. (11)

Complex paths: It is useful to start with a complex path σ : [a, b] → C and construct either or both of the following:

1. A path σ Rc
: [a, b] → R2 such that σ = Rc σ Rc

.

2. A path σ Pc
: [a, b] → R2 such that σ = Pc σ Pc

.

That way we can use rectangular coordinates to integrate over Rc σ Rc
or polar coordinates to integrate over

Pc σ Pc
.

In the case of rectangular coordinates, this construction is straightforward. The coordinate map Rc has an inverse
R−1

c given by

z →




(z − c) +
_______

(z − c)

2
,

(z − c) −
_______

(z − c)

2i




.

Therefore we can let σ Rc
= R−1

c σ . Then it is clear that Rc σ Rc
= Rc R−1

c σ = σ , as desired.

In the case of polar coordinates, the situation is more complicated, because the coordinate map Pc does not have a
well-defined global inverse. In particular, for any point z = reiθ + c in the image of a path σ , there are many choices
for the angle θ . Therefore, we make the following construction:

1. Fix the angle of the initial point of σ in a canonical way.

2. Partition σ into a sequence of sub-paths σ i . Make each sub-path short enough that, for any point z in σ i , there
is an obvious choice for the angular displacement around c from the initial point of si to z.

3. Argue inductively that steps 1 and 2 provide a unique angle for each point in σ .

For example, consider the path σ : [0, 2] → C that starts at the point 1 on the real axis and winds once counterclock-
wise around the unit circle. Choose a small nonnegative number ε (e.g., choose ε = 0. 1), and partition the interval
[0, 2] into the sequence of sub-intervals [0, 1 − ε ], [1 − ε , 1 + ε ], and [1 + ε , 2]. The obvious choice for θ (0) is zero.
For each interval, once we have assigned an angle to the initial point, there is an obvious choice for how the angle
increases as we move through the interval. Under this choice, θ (1 − ε ) is a  little less than π , θ (1) is π , θ (1 + ε ) is a
little more than π , and θ (2) is 2π .

We now formalize this construction. For any point z ≠ 0 in C, define the angles at z, written Az , to be the set of all
angles θ such that z/|z| = eiθ . Define the canonical angle at z, written θ z , to be the smallest nonnegative angle in
Az . Observe the following:

1. 0 ≤ θ z < 2π .

2. Az is the set of all elements θ z + 2π n, where n is an integer.

As usual, positive angles represent counterclockwise displacement, and negative angles represent clockwise dis-
placement.

Let σ : [a, b] → C be a complex path that does not pass through c, i.e., such that σ (t) ≠ c for all t in [a, b]. We want
to construct σ Pc

(t) = (r(t),θ (t)) such that

σ (t) = (Pc σ Pc
)(t) = r(t)eiθ (t) + c = r(t)(cos θ (t) + i sin θ (t)) + c.

Let σ c: [a, b] → C = t → σ (t) − c. Then σ c does not pass through the origin. Partition the interval s = [a, b] into a
sequence of n sub-intervals {si = [ai , bi]} for 1 ≤ i ≤ n such that the image of each si under σ c is contained in an
open ball Bi that does not intersect the origin. See, e.g., [Lang 1999], III, § 4 for the formal argument that we can do
this. Fix an open ball Bi and real numbers t0 and t in si with t > t0. Assume that θ (t0) is a fixed member of Aσ c(t0).
Since Bi does not intersect the origin, there is a unique angle −π < δ < π such that θ (t0) + δ is a member of Aσ c

(t).
Let τ (t) = σ c(t)/|σ c(t)|. This function is well-defined, because by assumption σ c(t) ≠ 0 on s. Also, we have

δ = −i

τ (t)

τ (t0)
∫ 1

z
dz.
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The function 1/z is holomorphic on the simply connected set Bi , so by Cauchy’s integral theorem (§ 3.4), we can
integrate along any path from τ (t0) to τ (t) in Bi and get the same result. By construction all the points τ (t) hav e
norm one, so they all lie on the unit circle, i.e., τ (t) = eiθ (t) for some θ (t). By the computation we did in § 3.3, the
integral along the unit circle eiθ evaluates to i times the angular displacement δ from τ (t0) to τ (t). Define

θ (t) = θ (t0) + δ .

This construction uniquely determines θ (t) for all t in si with t > t0.

Now construct r(t) and θ (t) as follows:

1. r(t) = |σ c(t)| for all t in [a, b].

2. θ (a) = θσ c(a).

By the argument in the previous paragraph, θ (t) is determined for all t such that σ c(t) lies in B1. Further, because
the Bi are open, each Bi overlaps with Bi+1 on the smallest values of t in si+1. Therefore by induction θ (t) is deter-
mined for all t such that θ (t) lies in any Bi , i.e., for all t in [a, b].

From the definition, it is clear that σ = Pc σ Pc
. Because σ is a path, σ c(t) is differentiable on s, and r(t) ≠ 0 for t

in s. The norm function z → |z| or x + iy → √ x2 + y2 is differentiable away from zero, so r(t) is differentiable on s.

It remains to be shown that θ (t) is differentiable on s. Fix a point t1 in s. Then t1 lies in some interval si , and we
may choose t0 in si with t0 < t1. Let

F(z) = θ (t0) − i

z

τ (t0)
∫ 1

ζ
dζ .

Then by Cauchy’s integral theorem, F(z) is differentiable at τ (t1). Further, τ (t) = σ c(t)/|σ c(t)| is differentiable on s.
Therefore θ (t) = F(τ (t)) is differentiable at t1.

In the rest of this document we will use the symbols σ Rc
and σ Pc

to denote the constructions given above. We will
call σ Rc

the rectangular coordinate path and σ Pc
the polar coordinate path centered at c and associated with the

path σ .

3.6. The Winding Number

We now consider integrals along closed paths in open subsets U of C. An important topological property of such a
path σ is the number of times σ “winds around” a point not in U . For example:

• A closed path that traverses the unit circle counterclockwise twice winds around the origin with multiplicity 2.

• A closed path that traverses the unit circle clockwise once winds around the origin with multiplicity −1.

• Let σ be a closed path that winds around the origin once counterclockwise, then turns around and winds
around the origin once clockwise. σ winds around the origin with multiplicity 1 + (−1) = 0.

Notice that if a path σ winds around a point not in U , then U is not simply connected: it must have a hole inside σ ,
so that σ cannot be continuously deformed to a point in U .

We hav e already seen (§ 3.3) that the integral of 1/z dz around a closed path σ (t) = eit computes 2π i times the num-
ber of times the path winds around the unit circle. We now extend this computation to general closed paths winding
around general points.

Definition of the winding number: Fix an open subset U of C, a path σ : [a, b] → U , and a point c in C such that σ
does not pass through c. We define the following:

W (σ , c) =
1

2π i
σ
∫ 1

z − c
dz.

By § 3.5, we can construct the polar coordinate path σ Pc
such that σ = Pc σ Pc

, and we can write

W (σ , c) =
1

2π i
Pc σ Pc

∫ 1

z − c
dz.

By equation (11), we have
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W (σ , c) =
1

2π i

b

a

∫ 1

r(t)eiθ (t) + c − c
(r′(t)eiθ (t) + ir(t)eiθ (t)θ ′(t)) dt

=
1

2π i

b

a

∫ r′(t)
r(t)

dt +
b

a

∫ iθ ′(t) dt

=
1

2π i
(

b

a

∫ d(ln r) +
b

a

∫ i dθ )

=
1

2π i
(ln(r(b)) − ln(r(a) + i(θ (b) − θ (a))).

Since σ is a closed path, r(b) = r(a), so the ln terms cancel. Further, by the way we defined σ Pc
in § 3.5,

θ (b) − θ (a) is 2π times the number of times that σ Pc
winds around the origin, which is the same as the number of

times that σ winds around c. Thus W (σ , c) computes the number of times that σ winds around c. We call W (σ , c)
the winding number of the path σ with respect to the point c.

We extend the winding number to closed chains, by integrating over chains as described in § 3.3:

W (γ , c) =
1

2π i
γ
∫ 1

z − c
dz.

Then the winding number for a chain is the sum of the weights times the winding numbers for each path in the
chain. For example, W (2σ1 − σ2, c) = 2W (σ1, c) − W (σ2, c).

Homologous chains: Fix an open set U ⊆ C and closed chains γ1 and γ2 in U . We say that γ1 and γ2 are homolo-

gous if, for every point c in C − U , we hav e W (γ1, c) = W (γ2, c). For example:

1. Let U be the complex plane minus the origin, and let c be the origin. Then any two paths that wind once
counterclockwise around the origin are homologous.

2. Let U be the complex plane with points c1 and c2 deleted. Let γ1 = σ1 + σ2, where each σ i winds once coun-
terclockwise around ci . Let γ2 be a single path that winds once counterclockwise around both c1 and c2.
Then γ1 and γ2 are homologous.

We say that a closed chain γ in an open set U ⊆ C is homologous to zero if W (γ , c) = 0 for every point in C − U .
For example, let U be the complex plane with the origin deleted. Then

1. Any closed path that does not wind around the origin is homologous to zero in U .

2. A chain consisting of two paths, one that winds once counterclockwise around the origin and one that winds
once clockwise around the origin, is homologous to zero in U .

If two closed paths σ1 and σ2 are homotopic on an open set U , then they are homologous. Indeed, for c in the com-
plement of U , 1/(z − c) is holomorphic on U ; so by Cauchy’s integral theorem (§ 3.4), the integrals that compute the
winding number for σ1 and σ2 are equal.

The homology form of Cauchy’s integral theorem: The following is a fundamental result in complex integration
theory:

Fix an open set U ⊆ C, a closed chain γ in U, and a holomorphic function f :U → C. If γ is homologous to zero

in U, then

γ
∫ f dz = 0.

For a detailed proof of this theorem, see, e.g., [Lang 1999], IV, § 3.

It follows immediately from the theorem that if closed chains γ1 and γ2 are homologous in U , then

γ1

∫ f dz =
γ2

∫ f dz,
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because we may apply the theorem to the closed chain γ1 − γ2.

Because homotopic pairs of closed paths are homologous, the boxed theorem implies Cauchy’s integral theorem as
stated in § 3.4, applied to closed paths. The boxed theorem is sometimes called Cauchy’s integral theorem as well.
Henceforth we will call the statement in § 3.4 the homotopy form of Cauchy’s integral theorem. We will call the
boxed statement the homology form of Cauchy’s integral theorem.

The homology form of Cauchy’s integral theorem tells us that when integrating a holomorphic function f on a
closed chain γ in an open set U , the precise shape of γ does not matter: all that matters is how γ winds around points
in C outside of U where f is not holomorphic. We will use this fact in § 6, when we show how to compute path
integrals for complex functions expressed as power series.

3.7. Cauchy’s Integral Formula

The following theorem relates the value f (c) of a holomorphic function f at a point c to the integral of f along a
closed chain that winds around c:

Fix a closed chain γ in U, homologous to zero in U. Let f be holomorphic on U, and let c be a point in U that

does not lie on γ . Then

1

2π i
γ
∫ f (z)

z − c
dz = W (γ , c) f (c).

This statement is called Cauchy’s integral formula. There is an easy proof if we assume that f has a continuous
third derivative in an open ball B centered on c and contained in U . Indeed, by the estimate of the error term in the
derivative giv en in § 9.2 of The General Derivative, with x = c and h = z − c, we hav e

f (z) = f (c) + Df (c)(z − c) +
1

0
∫ D2 f (c + t(z − c))(z − c)2 dt

for z in B. Because of the continuity assumption, we may differentiate with respect to z under the integral sign, so
we have

f (z) = f (c) + (z − c)g(z),

where g is holomorphic in B. Let C be a circular path contained in B that winds once around c. Then γ is homolo-
gous to W (γ , c)C in U − {c}, so by the homology form of Cauchy’s integral theorem (§ 3.6), we have

1

2π i
γ
∫ f (z)

z − c
dz =

1

2π i
W (γ , c)

C

∫ f (z)

z − c
dz

=
1

2π i
W (γ , c)



C

∫ f (c)

z − c
dz +

C

∫ g(z) dz




=
1

2π i
W (γ , c)(2π i f (c) + 0)

= W (γ , c) f (c).

It is a remarkable fact of complex analysis that if a function f is holomorphic at a point c, then it is in fact infinitely
differentiable in a neighborhood of c. We shall discuss this issue further in § 4.3 below. So in fact the continuity
assumption holds for all holomorphic functions f . The only catch is that some form of Cauchy’s integral formula is
typically used to prove this property of holomorphic functions. So in practice, we need to prove Cauchy’s integral
formula in some other way. See, e.g., [Lang 1999], III, § 7 (proof in the special case that γ is a circular path); [Lang
1999], IV, § 2 (proof in the general case).
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4. Power Series

A power series P over C is an infinite sum of terms, each of which is a complex number times a distinct nonnega-
tive power of a variable z. In this section we develop the theory of formal power series (i.e., power series consid-
ered as algebraic objects) and complex power series (i.e., power series considered as complex functions). Then we
investigate analytic functions, i.e., complex functions f (z) expressible as complex power series. We explore the
relationship between analytic functions and holomorphic functions. Using power series, we define the exponential
and trigonometric functions over the complex numbers.

4.1. Formal Power Series

Consider a polynomial p(x) in one variable x with coefficients in C. We may write such a polynomial as follows:

p(x) = a0 + a1 x + a2 x2 + ⋅⋅⋅ + an xn =
n

j=0
Σ a j x

j .

The coefficients a j are complex numbers. The variable x is a formal variable, not necessarily standing in for any
number.

A formal power series P(x) over the complex numbers extends this idea by letting j range over all the natural num-
bers, instead of stopping at some number n:

P(x) = a0 + a1 x + a2 x2 + ⋅⋅⋅ =
∞

j=0
Σ a j x

j .

Notice that we may represent any polynomial as a formal power series, by taking all the coefficients a j to be zero for
j > n.

There are at least two reasons to study formal power series:

1. They are interesting algebraic objects in their own right.

2. They hav e many applications, including the theory of analytic functions in complex analysis.

In this section, we will briefly discuss the algebraic aspects of formal power series. We will take up the theory of
analytic functions in the following sections.

The formal power series ring: The set of all formal power series over the complex numbers forms an algebraic
structure called a ring. A ring is similar to a field in that it supports addition, subtraction, and multiplication. How-
ev er, unlike a  field, not every nonzero element must be invertible with respect to multiplication For example, the
integers are a ring; the only invertible integers are 1 and −1 (and for this reason, invertible elements in general rings
are called units, even though this name really doesn’t make sense outside of the integers).

Let us write Pi to denote the coefficient ai in the formal power series P(x) =
∞

j=0
Σ a j x

j . Here is how we make the set

of formal power series over C into a ring:

1. Addition and construction of additive inv erses operate term by term. That is, (P + Q) j = P j + Q j and
(−P) j = −(P j).

2. Multiplication of P by Q operates term by term on the result. Each coefficient (PQ)l is given by summing all
the products P j Pk such that j + k = l:

(PQ)l =
j+k=l
Σ P jQk .

This multiplication rule is called the Cauchy product. It is well-defined because the sum on the right-hand
side is finite.

These rules agree with addition and multiplication of polynomials in the case that all but finitely many of the coeffi-
cients of P and Q are zero.

By definition, a formal power series P has a multiplicative inv erse if and only if there exists a formal power series
P−1 such that P ⋅ P−1 = 1 according to the Cauchy product. For example, the formal power series P(x) = 1 − x (with
P j = 0 for j > 1) has the multiplicative inv erse P−1(x) = G(x), where G(x) is the geometric series

G(x) = 1 + x + x2 + ⋅⋅⋅.
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By applying the Cauchy product as described above, you will easily see that P(x) ⋅ P−1(x) = 1. In general, P(x) has
a multiplicative inv erse if and only if P0 ≠ 0. For the justification of this statement, see § 16 of my paper Definitions

for Commutative Algebra.

Let P and Q be formal power series, and assume Q0 = 0. By the rule for multiplying power series, we know how to

compute Q j for any j ≥ 0; for example, Q3 = QQQ. Further, because Q0 = 0, each of the k factors in Qk contributes

at least one power of x to each nonzero term of the result. Therefore (Qk) j = 0 for k > j. With this observation, we
define the composition of the formal power series P and Q, written P(Q(x)) or (P Q)(x), by the following rule:

(P Q) j = (
∞

k=0
Σ PkQk) j =

∞

k=0
Σ Pk(Qk) j =

j

k=0
Σ Pk(Qk) j .

The finite sum on the right is well-defined, because Qk is defined at each term.

The order of a formal power series: We define the order of a nonzero formal power series P to be the smallest
natural number j such that P j ≠ 0, if such a number exists. We define the order of the zero power series to be ∞.
We write the order of P as ord P. For example, ord G = 0, where G is the geometric series. From the definition of
the Cauchy product, it is clear that for any two formal power series P and Q with finite order we have

ord PQ = ord P + ord Q.

4.2. Complex Po wer Series

We wish to use power series to represent complex functions. To do this, we must define the concept of convergence
for infinite sums.

Sequences: Let V a vector space. A sequence in V assigns one element v j of V to each natural number j ≥ 0. We
write {v j} to denote a sequence.

Let V be a normed vector space, s = {v j} be a sequence in V , ε > 0  be a real number, and N ≥ 0 be a natural num-
ber. We say that s is ε-convergent after N if |v j − v| < ε for all j ≥ N . We say that s converges to an element v in
V if, for any ε , there exists N such that s is ε -convergent after N . It is straightforward to show that if a sequence s

converges to vectors a and b, then |a − b| = 0, so a = b.

We say that s is ε-Cauchy after N if |v j − vk | < ε for all j, k ≥ N . We say that s is Cauchy if, for any ε , there exists
N such that s is ε -Cauchy after N . A normed vector space V is complete if every Cauchy sequence in V converges
in V . The real numbers R and the complex numbers C are complete, as is any finite-dimensional normed vector
space over R or C.

Series: Fix a vector space V . A series of elements of V is an infinite sum

S =
∞

j=0
Σ v j ,

where each vi is an element of V . For each n ≥ 0, we define the nth partial sum to be the finite sum

Sn =
n

j=0
Σ v j .

We say that the series S converges if the sequence {S j} converges in V . We say that S converges absolutely if the

series of real numbers
∞

j=0
Σ |v j | converges in R. If S converges absolutely, then (a) S converges to a vector v; and (b)

any reordering of the terms of S converges absolutely and converges to v. The proof of (a) relies on the triangle
inequality and is given in [Lang 1999], II, § 2.

Complex power series: A complex power series P(z) is a formal power series (§ 4.1) in which we replace the for-
mal variable x by a variable z that stands in for a complex number. A complex power series P(z) thus maps each
complex number a to a series

P(a) =
∞

j=0
Σ P j a

j

of complex numbers, which may or may not converge.
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Let P be a complex power series and a be a complex number. We say that P converges at a if the series P(a) con-
verges absolutely. Equivalently, P converges at a if the series

∞

j=0
Σ |P j a

j | =
∞

j=0
Σ |P j ||a| j

of real numbers converges. By the remarks above, absolute convergence of P(a) implies convergence of P(a).6 If P

does not converge at a, then we say that it diverges at a. If a complex power series P converges at all points a in a
set U ⊆ C, then we say that P converges on U .

The radius of convergence: Fix a complex power series P. We will show that exactly one of the following is true:

1. P converges only at a = 0.

2. There exists a real number r > 0 such that P converges at a if |a| < r and diverges at a if |a| > r.

3. P converges at all complex numbers.

Note that case 2 says nothing about what happens when |a| = r. P may converge for some such numbers a and
diverge for other such numbers.

Proof: Certainly P converges at a = 0. If condition 1 or condition 3 holds, then there is nothing more to prove. So
assume neither condition 1 nor condition 3 holds, i.e., there exists a complex number a with |a| > 0  such that P(a)
converges and a complex number b with |b| > 0  such that P(b) div erges. Then the set T of all real numbers t > 0

such that
∞

j=0
Σ |P j |t

j converges is non-empty and does not contain all real numbers greater than zero. Therefore, by a

basic property of the real numbers, T has a least upper bound r > 0. Then by definition P(a) div erges if |a| > r. Fix

a with |a| < r, and let Si be the ith partial sum of the series S =
∞

j=0
Σ |P j ||a| j . For any indices j and k with k ≥ j ≥ 0,

we have

|Sk − S j | = |
k

l= j+1
Σ |Pl ||a|l | =

k

l= j+1
Σ |Pl ||a|l <

∞

l= j+1
Σ |Pl |r

l . (1)

By assumption, the series
∞

l=0
Σ |Pl |r

l converges, so we can make the right-hand sum as small as desired by taking l

large enough. Therefore the sequence {S j} is Cauchy, so it converges, i.e., the series S converges.

Based on this statement, we define the radius of convergence of the complex power series P as follows:

1. In case 1, the radius of convergence is zero.

2. In case 2, the radius of convergence is r.

3. In case 3, the radius of convergence is infinite.

We will say that the radius of convergence is at least r if (1) the radius of convergence is a real number s ≥ r or (2)
the radius of convergence is infinite. A radius of convergence at least r > 0 for a power series P defines an open set
B(0, r) on which P(z) defines a complex function. In the next section we will extend this idea to convergence on an
open ball centered away from zero.

Uniform convergence: Fix a set U ⊆ C, and let V be the vector space of bounded complex functions on U , i.e.,
functions f :U → C such that | f (z)| ≤ r for some real number r and all z in U . We may put the sup norm on V ,
i.e., we may assign to each f in V the norm || f || equal to the supremum, or least upper bound, of all the real numbers
| f (z)| as z ranges over U .

Now let V be the vector space of all complex functions on U , not necessarily bounded. The sup norm is not defined
on V . Howev er, for Cauchy and convergent sequences, we just need the norms of the difference vectors || f − f j ||
and || f j − fk || to be defined and bounded for large values of j and k. Therefore, we say that a sequence s = { fi} of
functions in V is uniformly Cauchy if it satisfies the definition of a Cauchy sequence given above with respect to
the sup norm. The term “uniform” reflects the fact that for any ε > 0, we may choose one N ≥ 0 such that all the
complex sequences { f j(a)}, for all a in U , are ε -Cauchy after N . Similarly, we say that s is uniformly convergent

if it satisfies the definition of convergence to a function f in V with respect to the sup norm. The term “uniform”

6 Note, however, that ordinary convergence of the series P(a) does not imply that P converges at a; absolute convergence of P(a) is required.

This inconsistency in the terminology is unfortunate but standard.
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reflects the fact that for any ε > 0, we may choose one N ≥ 0 such that all the complex sequences sequences
{ f j(a)}, for all a in U , are ε -convergent. If a sequence of functions { f j} is uniformly Cauchy on U , then it con-
verges uniformly to the function f (z) =

j → ∞
lim f j(z) on U . See [Lang 1999], II, § 2, Theorem 2.1.

Now let P be a power series with radius of convergence at least r > 0. Let S be the sequence of partial sum func-

tions S j : B(0, r) → C given by S j(z) =
j

k=0
Σ Pk zk . Equation (1) shows that for each a in B(0, r), the complex

sequence {S j(a)} is Cauchy. Further, because the bound on the right-hand side depends only on r, and not on a, (1)
shows that the sequence S is uniformly Cauchy on B(0, r). Therefore S converges uniformly to the function P(z) on
B(0, r).

The geometric series: From § 4.1, we know that the geometric series G(x) = 1 + x + x2 + ⋅⋅⋅ is the formal inverse of
1 − x. When r is a real number with 0 ≤ r < 1, G(r) also converges to 1/(1 − r). Indeed, let Sn be the nth partial
sum

Sn = 1 + r + r2 + ⋅⋅⋅ + rn.

By multiplying polynomials we see that for each n ≥ 0, Sn ⋅ (1 − r) = 1 − rn+1. Therefore

n → ∞
lim Sn =

n → ∞
lim

1 − rn+1

1 − r
=

1

1 − r
,

since rn+1 goes to zero for 0 ≤ r < 1. This convergence for real r shows that G(z) converges absolutely and uni-
formly on the set of complex numbers z such that |z| < 1.

Formal and complex power series: Let P and Q be power series. The formal power series P(x) and Q(x) and the
complex power series P(z) and Q(z) are related in the following ways:

1. Assume that P and Q converge on an open set U ⊆ C containing zero, and P(a) = Q(a) for all points a in U .
Then P(x) = Q(x) as formal power series. See [Lang 1999], II, § 3, Theorem 3.2.

2. Assume that P and Q converge on an open ball B centered on zero. Then at all points a of B,

a. The power series P + Q converges at a, and (P + Q)(a) = P(a) + Q(a).

b. The complex power series PQ converges at a, and (PQ)(a) = P(a)Q(a).

See [Lang 1999], II, § 3, Theorem 3.1.

3. Suppose that P converges on an open ball B1 centered on zero, and P0 ≠ 0. Then P−1 converges on an open
ball B2 centered on zero. See [Lang 1999], II, § 3, Theorem 3.3. Then by item 2, for all a in B1 ∩ B2, we
have P(a)P−1(a) = (P ⋅ P1)(a) = 1.

4. Assume that Q0 = 0, and assume the existence of a real number r > 0  such that P converges at a whenever

|a| ≤ r. Then for all a such that
∞

j=0
Σ |Q j ||a| j ≤ r, P Q converges, and (P Q)(a) = P(Q(a)). See [Lang 1999],

II, § 3, Theorem 3.4.

4.3. Analytic Functions

Po wer series expansions: Fix a complex power series P with radius of convergence at least r > 0. Then P defines a
complex function f : B(0, r) → C given by f (a) = P(a) for all a in B(0, r). We can turn this observation around:
starting with the function f , we can say that P is a power series expansion of f . Because the ball of convergence
is centered on zero, we say that P is a power series expansion at zero.

We wish to develop power series expansions at other points in C. To do this, we compose a complex power series P

with a translation map Tb = z → z − b, where b is a complex number. That is, we define a power series expansion

at b to be

(P Tb)(z) =
∞

j=0
Σ P j(z − b) j .

We say that P Tb converges at a if and only if P converges at a − b; in this case we have (P Tb)(a) = P(a − b).
We say that the radius of convergence of P Tb is the radius of convergence of P. If the radius of convergence of P

is infinite, then both P and P Tb converge on the entire complex plane. If the radius of convergence of P is zero,
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then P converges only at zero, and P Tb converges only at b. If the radius of convergence of P is r > 0, then
P Tb converges at a if |a − b| < r and diverges at a if |a − b| > r. In other words, the set of points where P Tb

defines a complex function is B(b, r), the open ball of radius r around b.

Let f :U ⊆ C → C be a complex function, and fix a point b in U . We say that f has a power series expansion at b

if there exists a real number r > 0 and a complex power series P such that for all a in B(b, r), P Tb converges at a,
and (P Tb)(a) = f (a). By the uniqueness theorem for complex power series (§ 4.2), P is uniquely determined.

Analytic functions: If a complex function f has a power series expansion at b, then we say that f is analytic at b.
We say that f is analytic on U ⊆ C if U is open, and f is analytic at every point of U .

If f is analytic at b, then it has a power series expansion P Tb with radius of convergence at least r. Let c be a
point in B(b, r). Then we can derive a power series expansion Q Tc for f , where

Q j =
∞

k= j
Σ Pk



k

j



ck− j .

See [Lang 1999], II, § 4, Theorem 4.1. This formula provides a power series expansion for f at every point c in
B(b, r). Therefore f is analytic on B(b, r).

The order of an analytic function: Fix a complex function f with a power series expansion P Tb. We define the
order of f at b , written ordb f , to be ord P (§ 4.1). By the definition of the power series expansion, if f is not
identically zero, then f (b) = 0 if and only if ordb f = n > 0. In this case we say that f has a zero of order n at b.

Differentiation: Let P be a formal power series. We define the formal derived series P′ of P according to the rule

P′j = ( j + 1)P j+1.

This is ordinary term-by-term differentiation, with each term a j z
j in P yielding the term ja j z

j−1 in P′.
Let f be a function analytic at b, whose power series expansion P Tb has radius of convergence at least r. Then

1. The power series expansion P′ Tb has radius of convergence at least r.

2. f (z) is holomorphic on B(b, r), with derivative f ′(z) = (P′ Tb)(z).

See [Lang 1999], II, § 5, Theorem 5.1. This theorem shows that if a function f is analytic at a point b, then it is in-
finitely differentiable at b.

Integration: Let f be a function analytic at b, whose power series expansion P Tb has radius of convergence at
least r, and let σ be a path in B(b, r). Then we may integrate the one form f dz term by term on the power series
expansion, i.e.,

σ
∫ f dz =

∞

j=0
Σ

σ
∫ P j z

j dz.

See [Lang 1999], III, § 2, Theorem 2.4.

Holomorphic and analytic functions: The following result relates holomorphic functions to analytic functions in a
very close way:

Fix an open set U ⊆ C, and let f :U → C be holomorphic. Then f is analytic on U. Let b be a point in U and

r > 0 be a real number such that the closed disc D of radius r centered on b is contained in U. Let ∂D be the cir-

cle bounding D, oriented counterclockwise. Then f has a power series expansion P Tb given by

P j =
1

2π i
∂D

∫ f (ζ )

(ζ − b) j+1
dζ ,

with radius of convergence at least r.

Proof: Let f0(z) = f (z + b). Then f has the expansion P Tb if and only if f0 = f T −1
b has the expansion

(P Tb) T −1
b = P given by

P j =
1

2π i
∂D0

∫ f0(ζ )

ζ j+1
dζ ,

where ∂D0 is the circle of radius r around 0. By Cauchy’s integral formula (§ 3.7), putting ζ for z and z for c, we
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have

f0(z) =
1

2π i
∂D0

∫ f0(ζ )

ζ − z
dζ .

By the rules for taking inverses of power series (§ 4.1), we also have

f0(ζ )

ζ − z
=

f0(ζ )

ζ






1

1 −
z

ζ






=
f0(ζ )

ζ
G(z/ζ ),

where G(z) is the geometric series (§ 4.2). Because ζ lies on ∂D0, we hav e |ζ | = r. Therefore when |z| < r, we hav e
|z/ζ | < 1, so G(z/ζ ) converges absolutely and uniformly, and the formal inverse agrees with the convergent inverse
(§ 4.2). Thus we have

f0(z) =
1

2π i
∂D0

∫ f0(ζ )
G(z/ζ )

ζ
dζ =

1

2π i
∂D0

∫ f0(ζ )




∞

j=0
Σ z j

ζ j+1





dζ .

From the theory of topological spaces we know that the image of a closed, bounded set under a continuous function
is closed and bounded. Therefore f0(ζ ) is bounded on ∂D0, and we may integrate the infinite sum term by term.
Doing this yields

f0(z) =
∞

j=0
Σ





1

2π i
∂D0

∫ f0(ζ )

ζ j+1
dζ




z j ,

which is the result we wanted.

This theorem implies the following facts:

1. If a function f is holomorphic at a point b, then f is infinitely differentiable at b.

2. f is holomorphic at a point b if and only if it is analytic at b.

Note also that P j is the jth coefficient of the Taylor series expansion at b, so we must have

P j =
f ( j)(b)

j!

for each j ≥ 0, where f ( j) denotes the jth derivative of f . Indeed, we can integrate the Taylor series term by term to
compute each coefficient P j :

P j =
1

2π i
∂D

∫
∞

k=0
Σ f (k)(b)(ζ − b)k

k!

(ζ − b) j+1
dζ =

∞

k=0
Σ t jk ,

where

t jk =
1

2π i
∂D

∫ f (k)(b)(ζ − b)k

k!(ζ − b) j+1
dζ .

When k = j, we hav e

t jj =
1

2π
∂D

∫ f ( j)(b)

j!(ζ − b)
dz =

1

2π i



2π i

f ( j)(b)

j!




=
f ( j)(b)

j!
.

When k ≠ j, the one form in the integral is exact on ∂D (§ 3.4). Therefore t jk = 0 for k ≠ j.

Isolated zeros: Let f :U → C be a holomorphic function. A zero of f is a point a in U such that f (a) = 0. We say
that a zero a is isolated if there exists an open set V ⊆ U containing a such that a is the only zero of f in V .

Using the theory of convergent power series, we can prove that, for any zero a, either f (z) = 0 in some open set con-
taining a, or the zero a is isolated. Indeed, we know that in an open set W containing a, f (z) = P(z − a) for some
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convergent power series P(z). If f is not identically zero on W , then P must have some nonzero terms. Let n be the
highest power of (z − a) that appears as a factor in all the terms. Then we have

f (z) = (z − a)n Q(z − a),

and Q has a nonzero constant term, so Q(z − a)(a) = Q(0) ≠ 0. Let H(z) = Q(z − a). Then f (z) = (z − a)n H(z), and
H is holomorphic in an open neighborhood of a with H(a) ≠ 0. By continuity, there exists an open neighborhood
V ⊆ W of a such that H is holomorphic in V with H(b) ≠ 0 for all b in V . But then f (z) = (z − a)n H(z) is holo-
morphic with f (z) ≠ 0 for all b ≠ a in V .

Using the topology of C, we can then show that if U is open and pathwise connected, then either f is constant on U

(i.e., f maps every point in U to the same value) or the zeros of f in U are isolated. See [Lang 1999], III, Theorem
1.2.

4.4. The Exponential and Trigonometric Functions

We now use the theory of power series to define complex versions of the real exponential and trigonometric func-
tions.

The exponential function: Let ex represent the real exponential function. From the theory of real Taylor series, we
obtain the series

ex =
∞

j=0
Σ x j

j!
= 1 + x +

x2

2
+ ⋅⋅⋅. (2)

See, e.g., The General Derivative, § 9.3. By applying the real Taylor formula shown there and using the rule
d

dx
ex = ex , we obtain the series shown. This series converges on all of R. It is natural to extend the definition to ez ,

defined on all complex numbers z:

ez =
∞

j=0
Σ z j

j!
= 1 + z +

z2

2
+ ⋅⋅⋅. (3)

Because ex converges for real x > 0, ez converges absolutely on all of C, and uniformly on any open ball B(0, r)
with r > 0.

By taking the formal derivative (§ 4.3) of the power series (3), we obtain the formula
d

dz
ez = ez . For each j ≥ 0, let

S j(z) =
j

k=0
Σ zk

k!
be the jth partial sum function of ez . By multiplying polynomials, it is easy to show that

S j(a + b) = S j(a)S j(b) for all a, b, and j. Therefore the limits must be the same, so we have

ea+b = eaeb

for all complex numbers a and b.

Let z = reiθ be a complex number expressed in polar coordinates, with r > 0. Then we have z = eln r+iθ , where ln r

is the real logarithm of r, and for any complex number a we can define the complex exponentiation function

za = (eln r+iθ )a = ea ln r+aiθ .

When a is a real number s, this becomes

zs = es ln r+siθ = r sei(sθ ).

That is, taking reiθ to the real power s takes the magnitude r to the power s and multiplies the angle θ by s.

It is worth reviewing the journey from integer powers, as we first encounter them, through the complex exponential
function:

1. We first learn that for a real number a and a nonnegative integer b, ab means “multiply a by itself b times.”

2. Then we learn that a−b = 1/ab and abc = (ab)c.

3. Then we learn that for a real number a and a positive integer b, a1/b means a root, i.e., a number c such that

cb = a. c may be irrational, and it may not exist in the real numbers.
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4. Using rules 1 through 3, we can take powers ab, where a is a real number and b is a rational number.

5. By taking limits of sequences of rational powers, we can define powers ab, where b is an irrational number.

6. In the case that a = e, the definition in item 5 agrees with the power series ex shown in equation (2) applied
with x = b. We can extend the real power series in equation (2) to complex numbers as shown in equation (3).

Note that we can get through step 5 without power series, but for step 6 we need power series. Also, each of rules 1
through 5 maintains some connection to the original idea of a power as a repeated multiplication. When we pass to
the complex exponential ez , the connection to repeated multiplication is lost. The definition is the complex power
series.

The trigonometric functions: Putting z in for x in the real Taylor series, we obtain the series

sin z =
∞

j=0
Σ (−1) j

(2 j + 1)!
z2 j+1 = z −

z3

3!
+

z5

5!
− ⋅⋅⋅ (4)

cos z =
∞

j=0
Σ (−1) j

(2 j)!
z2 j = 1 −

z2

2!
+

z4

4!
− ⋅⋅⋅ (5)

Again the series converge on all of C, because the real series converge for all r > 0.

By taking the formal derivative of (4) and (5), we obtain the formulas
d

dz
sin z = cos z and

d

dz
cos z = −sin z By

putting iz in for z in (3), multiplying (4) by i, and adding the result to (5) term by term, we obtain the Euler formula

eiz = cos z + i sin z.

This formula is valid for general complex numbers z, and in particular when z = θ is a real number. Thus the for-
mula justifies our use of eiθ to represent the number cos θ + i sin θ .

The logarithm: In first-year calculus, we learn that for any real number x > 0,

1. There is a unique real number ln x such that eln x = x.

2. ln x =
x

1
∫ 1

t
dt. On its domain of definition, ln x is differentiable, and its derivative is 1/x.

The function ln x is called the logarithm.

We extend the logarithm to complex numbers as follows. Let a ≠ 0 be a complex number. We may represent a as
reiθ , where r > 0 and 0 ≤ θ < 2π . Then

1. There is an infinite set La of complex numbers b such that eb = a. La is the set of all numbers

ln r + i(θ + 2π n), where n is an integer. Note that eln r+i(θ +2π n) = eln r eiθ e2π n = r ⋅ eiθ ⋅ 1 = a.

2. As shown below, on a set U ⊆ C − {0}, we may define a function log z that maps each complex number z in
U to an element of Lz , by computing an integral of 1/ζ dζ . On its domain of definition, log z is holomorphic,
and its derivative is 1/z.

There are many ways to define log z. Here is one. Let U be the complex plane with the origin and the negative real
axis deleted. Define log z:U → C as follows:

log z =
z

1
∫ 1

ζ
dζ . (6)

Notice the similarity to the definition of ln x in the real case. U is simply connected, so by § 3.4, the integral in (6)
is well-defined, because we may integrate along any path σ from 1 to z and get the same result. By the integral that
we computed in § 3.6 for the winding number, for any a in U we have

log a = log reiθ = (ln r − ln 1) + i(θ − 0) = ln r + iθ ,

where θ is the oriented angular displacement from the positive real axis to a. For each a in C, θ is uniquely defined
in the range −π < θ < π . Thus log a is a unique member of La. By § 3.4, on U we have



Calculus over the Complex Numbers Page 25

D log z = D(z →
z

1
∫ 1

ζ
dζ ) =

1

z
.

More generally, we may do the following:

1. Construct U by deleting any set of points from C − {0} such that U is open and simply connected. For exam-
ple, we may delete any half-axis of the complex plane, or any ray starting from zero in the complex plane.

2. Pick any point z0 = r0eiθ0 in U , with r0 > 0 and 0 ≤ θ0 < 2π .

3. Pick any integer n.

4. For z in U , define

log z = ln r0 + i(θ0 + 2π n) +
z

z0

∫ 1

ζ
dζ .

Then

log a = log reiθ = ln r0 + i(θ0 + 2π n) + (ln r − ln r0) + i(θ − θ0)

= ln r + i(θ + 2π n).

Again, log z is differentiable in U with derivative 1/z.

Note that for any definition of log z, in the case that z = x is a real number, we hav e log x = ln x.

5. Isolated Singularities

We now look more closely at the situation where a complex function f is holomorphic everywhere in an open set
containing a point p, except that it is undefined at p. This is the situation, for example, with the function f (z) = 1/z
in a neighborhood of the point p = 0. We call such a point p an isolated singularity. It is “isolated” because there
exists an open set U containing p such that p is the only singular, or undefined, point in U . Compare the discussion
of isolated zeros in § 4.3.

5.1. Laurent Series

Fix a complex function f that has an isolated singularity at b. In general we cannot write a power series expansion
P Tb at b, because if we had such an expansion, then we would have f (b) = P(b − b) = P(0) = P0, a complex
number. To write an expansion at b, we must extend the notion of power series to include terms with negative pow-
ers. We call this extended power series a Laurent series.

Definition and properties of Laurent series: We define a Laurent series L(z) as follows:

L(z) =
∞

j=−∞
Σ L j z

j ,

where the coefficients L j are complex numbers. Given a Laurent series L, we write L+ to denote the power series

L+(z) =
∞

j=0
Σ L j z

j .

We write L− to denote the sum of the negative power terms:

L−(z) =
−∞

j=−1
Σ L j z

j .

Note that every power series P is a Laurent series L, with L− = 0.

We define the order of a Laurent series L, written ord L, to be the smallest integer j such that L j ≠ 0 if such an inte-
ger exists. Otherwise (1) as before, if L is identically zero, then the order is ∞; and (2) if L has infinitely many neg-
ative power terms, then the order is −∞. For example, the order of the Laurent series 1/z is −1. Thus a power series
P is a Laurent series L with ord L ≥ 0.
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Given two Laurent series L and M of finite order, the Cauchy product LM (§ 4.1) is well-defined; this product
together with term-by-term addition makes the set of Laurent series L of finite order, together with L = 0, into a
ring. Also, for any two Laurent series L and M of finite order, we hav e the rule

ord LM = ord L + ord M .

This rule extends the rule that we stated in § 4.1 for the orders of power series.

Let U be a set of complex numbers. We say that a Laurent series L converges absolutely on U if both L+ and L−

converge absolutely on U . Similarly, we say that L converges uniformly on U if L+ and L− converge uniformly on
U . In either case, we regard L(z) as the function given by the sum of the functions L−(z) and L+(z).

As with power series, if f (z) = L(z) on a set where L converges absolutely, then we say that f has a Laurent series

expansion at zero. If f (z) = (L Tb)(z), then we say that f has a Laurent series expansion at b. For any com-
plex number a, we say that any convergence property of the Laurent series L at a − b is a convergence property of
the expansion L Tb at a.

Computing Laurent series: For any point b in the complex plane and any real numbers r1 and r2 with 0 ≤ r1 < r2,
let A = A(b, r1, r2) be the set of the points z such that

r1 ≤ |z − b| ≤ r2.

When r1 = 0, A is the closed disc D of radius r2 centered at b. When r1 > 0, A forms a closed annulus, or ring, of
points centered at b. It consists of D minus the open ball B(b, r1).

The following theorem shows how to compute a Laurent series expansion at b:

Fix a complex function f that is holomorphic on an open set U containing an annulus A = A(b, r1, r2). Then f

has a Laurent series expansion L Tb given by

L j =
1

2π i
∂D j

∫ f (ζ )

(ζ − b) j+1
dζ ,

where D j = D− is the disc of radius r1 centered at b if j < 0, and D j = D+ is the disc of radius r2 centered at b if

j ≥ 0. L Tb converges absolutely and uniformly for r1 < |z| < r2.

Note that if U is simply connected, then we may take r1 = 0, and the annulus becomes a disc. In this case L− = 0,
and the theorem coincides with the theorem on power series proved in § 4.3. So this theorem extends that one.

Proof: By the same argument that we made in § 4.3, it suffices to show

L j =
1

2π i
∂D

j
0

∫ f0(ζ )

ζ j+1
dζ ,

where f0 = f T −1
b , and D

j
0 is the disc D j with its center translated from b to 0. Let γ be the chain ∂D+

0 − ∂D−
0 .

Then γ is homologous to zero in U , because both circles wind once around any point outside U enclosed by A, and
zero times around any point outside U not enclosed by A. Therefore for any point z in A, Cauchy’s integral formula
yields

f (z) =
1

2π i
γ
∫ f0(ζ )

ζ − z
dζ =

1

2π i
∂D+

0

∫ f0(ζ )

ζ − z
dζ −

1

2π i
∂D−

0

∫ f0(ζ )

ζ − z
dζ .

The argument given in § 4.3 for the power series expansion, applied to the first integral on the right, establishes the
result for the terms L j in L+.

As to the second integral, we have

−
f0(ζ )

ζ − z
=

f0(ζ )

z






1

1 −
ζ
z






=
f0(ζ )

z
G(ζ /z),

where G(z) is the geometric series. Because ζ lies on D−
0 , we hav e |ζ | = r1. Therefore when |z| > r1, we hav e

|ζ /z| < 1, so G(ζ /z) converges absolutely and uniformly. Thus we have
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L−(z) =
1

2π i
∂D−

0

∫ f0(ζ )
G(ζ /z)

z
dζ =

1

2π i
∂D−

0

∫ f0(ζ )




∞

j=0
Σ ζ j

z j+1





dζ =
1

2π i
∂D−

0

∫ f0(ζ )




−∞

j=−1
Σ z j

ζ j+1





dζ .

By the argument we made in in § 4.3, we can integrate term by term, yielding

L−(z) =
−∞

j=−1
Σ






1

2π i
∂D

j
0

∫ f0(ζ )

ζ j+1
dζ






z j .

This establishes the result for L−.

Uniqueness of Laurent series: We now show that the Laurent series expansion at b is unique:

Fix a complex function f that is holomorphic on an open set U containing an annulus A = A(b, r1, r2). If f has

Laurent series expansions L Tb and M Tb that converge absolutely and uniformly for r1 < |z| < r2, then

L = M.

Proof: By the previous theorem, for each integer j, we hav e

L j =
1

2π i
∂D j

∫ f (ζ )

(ζ − b) j+1
dζ =

1

2π i
∂D j

∫
∞

k=−∞
Σ Mkζ k

(ζ − b) j+1
dζ .

Integrating term by term yields L j =
∞

k=−∞
Σ t jk , where

t jk =
1

2π i
∂D j

∫ Mkζ k

(ζ − b) j+1
dζ .

By the same argument that we made in § 4.3, t jj = M j , and t jk = 0 for j ≠ k. Therefore M j = L j for all integers j.

5.2. Removable Singularities

Fix a complex function f that is holomorphic on an open set U , except for an isolated singularity at b in U . We say
that f has a removable singularity at b if there exists a complex number c such that we can extend f to a holomor-
phic function on all of U by setting f (b) = c. Because a holomorphic function is continuous, it is clear that if such a
number c exists, then it is unique.

For example, let U = C, and let f (z) =
sin z

z
. Then f has an isolated singularity at zero. By examining the power

series expansion of sin z (§ 4.4), we see that

f (z) =
1

z



z −

z3

3!
+

z5

5!
− ⋅⋅⋅


= 1 −

z2

3!
+

z4

5!
− ⋅⋅⋅.

Therefore f has a removable singularity at zero, because we can extend f to a function that is holomorphic on all of
C by setting f (0) = 1.

Fix an open set U ⊆ C, a point b in U, and a holomorphic function f :U* = U − {b} → C. If f is bounded on

U*, then f has a removable singularity at b.

Proof: Because U is open, there exists a real number r > 0  such that for any 0 < r2 < r, f is holomorphic on
D+ − {b}, where D+ is the closed disc of radius r2 centered at b. Then for any 0  < r1 < r2, f is holomorphic on the
closed annulus A = A(b, r1, r2), and by § 5.1, f has a Laurent series expansion L Tb that converges on A. It suf-
fices to show that L− = 0, because then the power series L+ will be analytic on all of D+ and will agree with f on
D+ − {b}.

We may represent the coefficients of L− as L− j , for j ≥ 1. Then for any such j we have

L− j =
1

2π i
∂D−
∫ f (ζ )(ζ − b) j−1 dζ ,
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where D− is the closed disc of radius r1 centered at b. By assumption there exists a bound B ≥ 1 on | f (ζ )| for ζ in
U*. Let 0 < ε < 1  be a real number such that ε < rB, and let r2 = ε /B. Then 0 < r2 < r, and for ζ on ∂D− we have
|ζ − b| ≤ ε /B < 1, so for any j ≥ 1 we hav e

|L− j | ≤
1

2π
∂D−
∫ | f (ζ )||ζ − b| j−1 dζ ≤

1

2π
∂D−
∫ B dζ =

1

2π
⋅ 

2π ⋅

ε
B




⋅ B = ε .

Since we can do this for any j and any small enough ε , we must have L− j = 0 for all j ≥ 1.

5.3. Poles

The definition of a pole: Fix a complex function f that has a Laurent series expansion at b. If f has finite negative
order at b, i.e., there exists n > 0 such that ord fb = −n, then we say that f has a pole of order n at b. If n = 1, then
we say that f has a simple pole at b.

For example:

1. f (z) = 1/z has a simple pole at the origin.

2. f (z) = 1/z2 + 1/z has a pole of order 2 at the origin.

Properties of poles: From the definition of the Laurent series expansion L Tb, the following facts are clear:

1. f has a pole of order n at b if and only if the complex function g(z) = f (z)(z − b)n is holomorphic at n, and g

has no zero at b. In this case f (z) = g(z)/(z − b)n on U − {b}, where U is an open set containing b, so f is a
quotient of holomorphic functions on U .

2. If f is holomorphic on an open set U containing b and f (b) ≠ 0, then the function g(z) = f (z)/(z − b)n is
holomorphic on U − {b} and has a pole of order n at b.

Meromorphic functions: We say that a set S ⊆ C is discrete if, for each point p in S, there exists an open ball B p

centered at p such that no point of S except p lies in B p. Let f be a complex function defined and holomorphic on
an open set U except at a discrete set of points S where f has poles. We say that f is meromorphic on U . We say
that f is meromorphic at a point p if f is meromorphic on an open set U containing p.

5.4. Essential Singularities

Fix a complex function f that has a Laurent series expansion L Tb at b. If L Tb has infinitely many neg ative
terms, i.e., ord fb = −∞, then we say that f has an essential singularity at b. For example, the function f (z) = e1/z

has an essential singularity at zero because its Laurent series expansion at zero is

L(z) =
∞

j=0
Σ 1

z j j!
.

6. The Calculus of Residues

In this section we apply the theory of integration developed in § 3 to complex functions expressed as Laurent series.

6.1. The Residue Formula

The residue formula for small circles: Fix an open set U ⊆ C, a point b in U , and a complex function f that is
holomorphic on U* = U − {b}. Let C be a counterclockwise circle of radius r > 0  centered on b and contained in
U*. From § 5.1, we know that f has a Laurent series expansion L Tb at b, and that the series converges absolutely
and uniformly on U*. Therefore we may integrate term by term:

C

∫ f dz =
C

∫




∞

j=−∞
Σ L j(z − b) j





dz =
∞

j=−∞
Σ



C

∫ L j(z − b) j dz




=
∞

j=−∞
Σ L j I j,

where I j =
C

∫ (z − b) j dz. From § 3.4 we know that I j = 2π i when j = −1 and I j = 0 otherwise. Therefore we have

the formula
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C

∫ f dz = 2π i L−1.

We call L−1 the residue of f at b, and we write Resb f to denote this value. With this notation we obtain the fol-
lowing residue formula for integrating around the circle C:

C

∫ f dz = 2π i Resb f . (1)

Integration along closed chains: We now show how to reduce integration along a closed chain to a sum of integrals
along small circles. Fix an open set U ⊆ C and a closed chain γ in U that is homologous to zero in U . Let
p1, . . . , pn be n distinct points in U . For each 1 ≤ j ≤ n,

1. Let D j be a closed disc centered on p j , small enough so that D j and Dk are non-intersecting for all j ≠ k.

2. Let C j be the circular boundary of D j , oriented counterclockwise.

Let

γC =
n

j=1
Σ W (γ , p j)C j .

γC is a formal sum of the circles C j , each counted with multiplicity equal to the number of times that γ winds
around the center of C j .

We wish to show the following:

γ is homologous to γC in U* = U − {p1, . . . , pn}. (2)

Proof: We must show that W (γ , p) = W (γC , p) for all points p outside U*. By the definition of γC and the linearity
of the winding number, for any point p,

W (γC , p) =
n

j=1
Σ W (γ , p j)W (C j , p). (3)

A point p outside U* is either a point p outside U or a point p = pk for some 1 ≤ k ≤ n.

Let p be a point outside U . Then

• W (γ , p) = 0 by hypothesis, because γ is homologous to zero in U .

• For each j, W (C j , p) = 0 because p is outside every disc D j .

Therefore, by (3), W (γC , p) = W (γ , p) = 0.

Now let p = pk , for some 1 ≤ k ≤ n. Because the discs D j are disjoint, W (Ck , p) = 1, and W (C j , p) = 0 for j ≠ k.
Therefore, by (3), W (γC , p) = W (γ , pk) = W (γ , p).

From (2) and the homology form of Cauchy’s integral theorem (§ 3.6), we immediately obtain the following:

For any complex function f that is holomorphic on U*,

γ
∫ f dz =

γC

∫ f dz =
n

j=1
Σ W (γ , p j)

C j

∫ f dz. (4)

The residue formula for closed chains: From equations (1) and (4), we obtain the following residue formula for
closed chains:

Let U ⊆ C be an open set, and let γ be a closed chain in U that is homologous to zero in U. Let p1, . . . , pn be n

distinct points in U, none of which lies on γ . Let f :U − {p1, . . . , pn} → C be holomorphic. Then

γ
∫ f dz = 2π i

n

j=1
Σ W (γ , p j) Resp j

f .
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6.2. Computing the Order of a Function

The following result relates the order of a meromorphic function f with the residue of the function f ′/ f :

Let f be a complex function, not identically zero, that is meromorphic at b. Then

Resb f ′/ f = ordb f .

Proof: Because f is not identically zero and is meromorphic at b, ordb f is finite. Let m = ordb f . Then we have
the Laurent series expansion

f (z) = am(z − b)m + L Tb, (5)

where L is a Laurent series of order greater than m. Therefore we have

f (z) = am(z − b)m(1 + P Tb), (6)

where P is a power series of order greater than zero. Taking the formal derivative of (5), we have

f ′(z) = mam(z − b)m−1 + M Tb = mam(z − b)m−1(1 + Q Tb), (7)

where M is a Laurent series of order greater than m − 1, and Q is a power series of order greater than zero. Putting
(6) together with (7) yields

f ′(z)

f (z)
=

m

(z − b)

(1 + P Tb)

(1 + Q Tb)
.

From § 4.1 we know that the power series 1 + Q has an inverse, and this inverse must have constant term 1 in order
to yield 1 when multiplying by 1 + Q. Therefore (1 + P) ⋅ (1 + Q)−1 = 1 + R, where R is a power series of order
greater than zero, and we have

f ′(z)

f (z)
=

m

z − b
+

m (R Tb)

z − b
=

m

z − b
+ S Tb,

where S is a power series. The result then follows by the definition of Resb f ′/ f .

Recall from § 4.3 that a zero of a complex function f is a point b where f (b) = 0, and therefore ordb f > 0. The
following theorem relates the orders of the zeros and poles of a meromorphic function f to the integral of f ′/ f

along a closed chain:

Let γ be a closed chain in an open set U ⊆ C, homologous to zero in U. Let f be meromorphic on U with all of

its zeros and poles among the points p1, . . . , pn, none of which lies on γ . Then

γ
∫ f ′

f
dz = 2π i

n

j=1
Σ W (γ , p j) ordp j

f .

Proof: f ′ is holomorphic away from the poles of f , so f ′/ f is holomorphic away from the zeros and poles of f .
Therefore the residue formula for closed chains applies (§ 6.1). This result then follows from the previous one.

The following theorem shows how composition with a meromorphic function f transforms a small circle:

Let U ⊆ C be an open set, let b be a point in U, let f be meromorphic on U with no zeros or poles on

U* = U − {b}, and let C be a circle in U* centered at b. Then

ordb f = W ( f C, 0).

Proof: By the previous theorem,

ordb f =
1

2π i
C

∫ f ′
f

dz =
1

2π i
C

∫ f *(
1

z
dz),

where f * represents the pullback with respect to f (§ 3.3). By the argument we made in 3.5,

1

2π i
C

∫ f *(
1

z
dz) =

1

2π i
f C

∫ 1

z
dz = W ( f C, 0).
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For example, let C: [0, 2π ] → C be the circle of radius 1/2 centered at 1 given by t → 1 + eit /2.

1. Let f (z) = (z − 1)−1. Then f has a simple pole at z = 1 and no other zeros or poles. By the theorem, the
winding number of f C around zero is −1.

2. Let f (z) = (z − 1)2 + (z − 1). Then f has zeros at z = 0 and z = 1, and no other zeros or poles. By the theo-
rem, the winding number of f C around zero is 2.

6.3. Meromorphic One Forms

Fix an open set U ⊆ C and a complex function f :U → C. We say that the complex one form ω = f dz is meromor-
phic on U if f is meromorphic on U . In this case, we define the residue of ω at a point b in U to be the residue of f

at b:

Resb ω = Resb f dz = Resb f .

The residue of a meromorphic one form is invariant under coordinate transformation, in the following sense. Let
φ :U → C be a map defined on the open set U ⊆ C. We say that φ is a local coordinate map if it is holomorphic on
U , and if there exists a holomorphic function φ −1: φ (U) → U that is an inverse function for φ , i.e., such that φ −1 φ is
the identity function on U , and φ φ −1 is the identity function on φ (U). Because φ is the inverse of the continuous
function φ −1, it takes open sets to open sets.7 In particular, φ (U) is an open set.

Fix a local coordinate map φ , a chain γ in φ (U), and a meromorphic one form ω = f dz on φ (U). Then by the argu-
ment given in § 3.5, we can write

γ
∫ ω =

φ φ −1 γ
∫ ω =

φ −1 γ
∫ φ *ω .

Here we compose the map φ with the chain by composing φ with each path that appears in a term in γ . Thus the one
form φ *ω = f (φ (z))φ ′(z) dz on U represents ω under the change of coordinates given by the map φ.

Let b be a point in φ (U), and let C be a small circle in φ (U) centered at b. Then the winding number of φ −1 C with
respect to φ −1(b) is one, because φ −1 is one-to-one, so the image of C under φ −1 does not intersect itself before the
endpoint of the path. Therefore

Resb ω =
1

2π i
C

∫ ω =
1

2π i
φ −1 C

∫ φ *ω = Resφ −1(b) φ *ω .

This fact is useful in the study of Riemann surfaces, i.e., complex manifolds of complex dimension one. In that
application, φ is often a composition φ = φ2 φ −1

1 , where X is a topological space, U and V are open subsets of X ,
φ1:U → C and φ2: V → C are one-to-one continuous maps giving local coordinates from X to C, and φ is holomor-
phic on the open set φ1(U ∩ V ).
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