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This document defines concepts used in the area of mathematics known as classical algebraic geometry. This area,
which flourished in the nineteenth century and reached its apex in the first half of the twentieth century, studies
affine and projective varieties. Affine varieties are sets of solutions to equations of the form p(x1, . . . , xn) = 0,
where p is a polynomial in n variables over an algebraically closed field. Projective varieties are an extension of this
concept. Classical algebraic geometry naturally extends the coordinate geometry that we all studied in high school,
e.g., when drawing the graphs of curves such as y = x2 or x2 − y = 0 and intersecting these graphs with lines.

In contrast to the classical approach is modern algebraic geometry as developed by Alexander Grothendiek and
others starting in the 1950s. Modern algebraic geometry studies schemes, which generalize and extend the concept
of a variety. The modern, scheme-theoretic approach to algebraic geometry is extremely powerful, but it is also
abstract and technical. Its primary tool is commutative algebra; it is farther removed from the “ordinary” geometry
of vector spaces. Classical algebraic geometry provides the geometric intuition that motivates the more abstract
modern approach. It is also important, e.g., in the study of complex algebraic curves, which are closely related to
the study of Riemann surfaces.

This document assumes that you are familiar with the concepts discussed in my paper Definitions for Commutative

Algebra. The motivation for this paper is the same as the motivation for that one: it is useful to collect definitions
and basic results in one place for review and study.

Throughout this document, K refers to an algebraically closed field, and n refers to a natural number greater than
zero.

1. Affine and Projective Space

In mathematics, a space is a set of points with some common property, e.g., a vector space or a topological space.
There are two spaces associated with classical algebraic geometry: affine space and projective space. In this section,
we define these spaces.

1.1. Affine Space

In the context of classical algebraic geometry, we refer to the vector space K n as n-dimensional affine space and
denote it An(K ) or just An, when the field K is implied. There are at least two reasons to define the term “affine
space” instead of just saying K n:

1. It provides a counterpart to projective space, which we define in the next section.

2. When K n comes with a standard topology (e.g., in the case K = C, which provides many of the classical
examples in algebraic geometry), it lets us ignore that topology and use a different topology, which we define
in § 5.

We write a specified point a of An as an n-tuple of coordinates: a = (a1, . . . , an) = {ai}. We write a variable point as
z = (z1, . . . , zn) = {zi}. Note that the coordinate indices go from 1 through n.

By tradition, A1 is called the affine line. A2 is called the affine plane.

1.2. Projective Space

Affine space corresponds well to our geometric intuition of points embedded in a vector space. However, affine
space has the inconvenient property that a pair of lines may or may not intersect in a point. For example, the lines
z1 = 0 and z2 = 0 in A2 intersect in the point (0, 0), but the lines lines z1 = 0 and z1 = 1 in A2 do not intersect (i.e.,
they are parallel lines). This fact makes it inconvenient to count intersections. Therefore we introduce the concept
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of n-dimensional projective space, written Pn(K ) or just Pn, when the field K is implied. Pn is given by either of
the following equivalent definitions:

1. It is the set of lines through the origin in K n+1.

2. It is the set of equivalence classes of points a ≠ 0 in K n+1, under the relation a ∼ ka for any a in K n+1 and any
k ≠ 0 in K .

In the case K = C, we may also think of Pn as the set of equivalence classes of points on the unit sphere C centered

at the origin in Cn+1, under the relation that identifies each point a with its antipodal point on C, i.e., the point a′ ≠ a

on C and on the line L containing 0 and a.

According to definition 2, an element a of Pn is an equivalence class consisting of all tuples (ka0, . . . , kan) = {kai}
for a fixed set of values {ai}, not all zero, and all k ≠ 0. If {ai} is any representative of the class a, then we write
[a0, . . . , an] or [ai] to denote the class, and we call the values ai homogeneous coordinates of the element a. We
write Z = [Z0, . . . , Zn] = [Zi] to represent a variable point of Pn, with the understanding that [kZi] represents the
same point, for any k ≠ 0. Note that the coordinate indices go from zero through n.

By tradition, P1 is called the projective line. P2 is called the projective plane.

Fix a point a in Pn, and fix an index j ∈ [0, n].

1. The definitions imply that either a j = 0 or a j ≠ 0 for all representatives of a.

2. In the second case, a has a representative {ai /a j}i ∈ [0,n], and this is the unique representative with 1 as its j

coordinate. Moreover, the family of coordinates {ai /a j} for i ≠ j defines an element of An.

3. Let U j be the set of elements [a j] of Pn with a j ≠ 0. By item 2, we may identify U j with An.

The family of sets {Ui} defined above is called the standard cover of Pn by affine spaces An. Since each element a

in Pn has ai ≠ 0 for some i, the sets Ui cover Pn. The identification of Ui ⊆ Pn with An is a form of projection,
since in making the identification we delete a coordinate. This projection motivates the name “projective space.”

Returning to the example of the lines z1 = 0 and z1 = 1 in A2:

1. A general point [Z0, Z1, Z2] in U0 ⊆ A2 is represented by the tuple (1, Z1/Z0, Z2/Z0) in A3 and corresponds to
the point (Z1/Z0, Z2/Z0) in A2.

2. Thus we may lift the lines to P2 by substituting z1 = Z1/Z0 in the equations defining the lines. When we do
this, the equations become Z1 = 0 and Z1 = Z0. The projections of these lines in P2 onto U0 are the original
lines in A2.

3. Whereas the lines in A2 do not intersect, the corresponding lines in P2 intersect in the point [0, 0, 1].

If we think of the space defined by Z0 = 1 as a copy S of A2 in P2, then the complementary space P2 − S defined by
Z0 = 0 is a copy of the projective line P1. Let L = P1. Then P2 = S ∪ L. With respect to S, the line L is “at infin-
ity,” in the sense that parallel lines in S, when lifted to P2, intersect at a point on L.

More generally, when we set Z0 = 1 in Pn, the remaining n − 1 coordinates define a point in An. When we set
Z0 = 0, the remaining n − 1 coordinates define a point in Pn−1. Therefore we can think of Pn as a copy of An

together with a copy of Pn−1 “at infinity.”

2. Affine and Projective Varieties

In this section we define the main objects of study in classical algebraic geometry: affine and projective varieties.

2.1. Affine Varieties

We write K [z] to denote the polynomial ring K [z1, . . . , zn], and we write p(z) to denote a polynomial p(z1, . . . , zn)
in K [z].

Let p(z) be a polynomial in K [z]. Then p defines a function p: An → K given by a → p(a). The zero set or zero

locus of p is the set of elements a in An such that p(a) = 0.

Let F = {pα } be a family of polynomials in K [z]. The zero set or zero locus of F is the set of points a in An such
that a is in the zero set of each pα .

An affine variety is a set V ⊆ An such that V is the zero set of a family of polynomials F = {pα } in K [z]. We write
V (F) to denote the zero set of F . We also say that V (F) is the affine variety generated by or cut out by the
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polynomials F .

The empty set is an affine variety. For example, it is the zero set of the polynomial 1, where 1 is the multiplicative
identity of K . The space An is also an affine variety. It is the zero set of the polynomial 0.

2.2. Projective Varieties

We write K [Z ] to denote the polynomial ring K [Z0, . . . , Zn], and we write P(Z ) to denote a polynomial
P(Z0, . . . , Zn) in K [Z ]. Recall that P(Z ) is homogeneous if every term in P(Z ) has d variable factors for some
d ≥ 0. The number d is called the degree of the homogeneous polynomial. For example, the polynomial Z2

1 − Z0Z2

is homogeneous of degree 2.

Let P(Z ) be a polynomial in K [Z ]. In general, P does not define a function from Pn to K . Howev er, if P is homo-
geneous, then the zero set of P is well defined, because the property P(a) = 0 does not depend on the choice of

homogeneous coordinates. Indeed, if p has degree d , then we have P(ka) = kd P(a) for any k ≠ 0, so P(a) = 0 if
and only if P(ka) = 0. Similarly, the zero set of a family of homogeneous polynomials in K [Z ] is well defined.

A projective variety is a set V ⊆ Pn such that V is the zero set of a family F of homogeneous polynomials
F = {Pα } in K [Z ]. We write V (F) to denote the zero set of F . We also say that V (F) is the projective variety gen-

erated by or cut out by the polynomials F .

The empty set is a projective variety. For example, it is the zero set of the polynomials {Zi = 0}i ∈ [0,n], since there is
no point a of Pn such that all the homogeneous coordinates of a are zero. The space Pn is also a projective variety.
It is the zero set of the homogeneous polynomial 0.

2.3. The Relationship Between Affine and Projective Varieties

Let V ⊆ An be an affine variety. For each i, V is the intersection of Ui ⊆ Pn (§ 1.2) with a projective variety
Wi ⊆ Pn. Indeed, suppose that V is generated by the polynomials {pα }. For each α , construct a homogeneous
polynomial Pα (Z ) as follows:

1. Renumber the variables in pα from 0 through n, skipping i.

2. Replace each variable z j in the result of step 2 with Z j /Zi .

3. Multiply ev ery term in the result of step 3 by the highest power of Zi appearing in any term.

For example, let pα (z) = z1 + z2
2, and let i = 1. Then step 1 yields z0 + z2

2, step 2 yields (Z0/Z1) + (Z2/Z1)2, and step
3 yields Pα (Z ) = Z0Z1 + Z2

2 . Now let Wi be the zero set in Pn of the polynomials {Pα }. Then V = Ui ∩ Wi .
Indeed, if we project onto Ui by setting Zi = 1 and renumbering the variables, then each Pα becomes pα .

Let V ⊆ Pn be a projective variety. The intersection of V with any of the sets Ui ⊆ Pn is an affine variety in An.
Indeed, if Pα (Z ) is a homogeneous polynomial of degree d in K [Z ], then when Zi ≠ 0, the zero set of Pα equals the

zero set of Pα (Z )/Z d
i ; thus we may divide each of the d factors of each term of Pα by Zi . After doing this we may

replace Zi /Zi with 1, replace Z j /Zi with z j , and renumber the variables z j from 1 to n; then V ∩ Ui is the zero set of
the resulting polynomials pα (z).

2.4. Subvarieties; Irreducible Varieties

If V and W are affine varieties and W ⊆ V as a set, then we say that W is a subvariety of V . The analogous defini-
tion holds for projective varieties V and W .

An affine variety V is irreducible if it is nonempty and it cannot be written as the union V = V1 ∪ V2 for any pair
V1 and V2 of affine varieties, neither of which is equal to V . The analogous definition holds for projective varieties.
For example:

1. An is irreducible, because the only polynomial in K [z] that is zero on all of An is the zero polynomial.

2. Pn is irreducible, because the only homogeneous polynomial in K [Z ] that is zero on all of Pn is the zero poly-
nomial.

The terminology used here is consistent with, e.g., [Harris 1992]. Some sources (e.g., [Fulton 2008], [Hartshorne
1977]) require that an affine or projective variety be irreducible. In these sources, what we have defined as an affine
variety is called an affine algebraic set; and similarly for projective varieties. I prefer the terminology used here
because it is more general: definitions and results that pertain to varieties here also apply to algebraic sets. When we
need a variety to be irreducible, we will say so explicitly.
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3. Ideals Corresponding to Affine and Projective Varieties

In this section we explore the connection between affine and projective varieties and polynomial ideals.

3.1. Affine Varieties

Fix a set S ⊆ An. We write I (S) to denote the set of polynomials p in K [z] that vanish on S, i.e., p(a) = 0 for all
points a in S. Observe the following:

1. I (S) is not empty, because the polynomial 0 vanishes everywhere on An.

2. If p is a member of I (S), then qp is a member of S for any q in K [z], because for any a in S we have
(qp)(a) = q(a) p(a) = q(a) ⋅ 0 = 0.

Therefore I (S) is an ideal of K [z]. We call I (S) the vanishing ideal corresponding to the set S.

Fix an ideal I of K [z]. Recall the following definitions (see Definitions for Commutative Algebra, § 6):

1. The radical of I , written rad(I ), is the ideal of K [z] consisting of all polynomials p such that pm ∈ I for
some m > 0. For example, the radical of the principal ideal (x2) is (x).

2. We say that I is radical if rad(I ) = I . For example, (x) is radical, and (x2) is not.

Fix a subset S ⊆ An, a point a in S, and a polynomial p ∈ I (S). Suppose that p = qn for some n > 1. Because
p(a) = 0, and K is an integral domain, we must have q(a) = 0, i.e., q ∈ I (S). Therefore I (S) is a radical ideal.

Fix an ideal I of K [z].

1. By definition, the zero set of the polynomials in I is an affine variety (§ 2). We denote this affine variety V (I ).

2. We hav e I (V (I )) = rad(I ). This statement is the affine version of the Hilbert Nullstellensatz (in English,
“zero statement”) (proof omitted). It establishes a one-to-one correspondence between affine varieties V ⊆ An

and radical ideals I ⊆ K [z].

3. V (I ) is irreducible if and only if I is a prime ideal (proof omitted).

Fix an ideal I of K [z]. Then I is finitely generated, i.e., there exists a finite family F of polynomials in K [z] such F

generates I . This is the Hilbert basis theorem (proof omitted).

Fix a family F of polynomials in K [z], not necessarily finite. We write I (F) to denote the ideal generated by F .

1. We hav e V (I (F)) = V (F). Indeed, if a is in the zero set of all the polynomials in I (F), then it is in the zero set
of all the polynomials in F ⊆ I (F). On the other hand, each element of I (F) is a polynomial p =

i
Σ qi pi with

pi ∈ F for all i; so if a is in the zero set of all the pi , then p(a) = 0.

2. By the Hilbert basis theorem, V (I (F)) = V (I (F ′)), where F ′ is a finite family of polynomials in K [z]. By
item 1, V (F) = V (I (F)) = V (I (F ′)) = V (F ′). Therefore ev ery affine variety is generated by a finite family of
polynomials.

3.2. Projective Varieties

Fix an ideal I in K [Z ]. If I is generated by a set of homogeneous polynomials, then we call I a homogeneous

ideal. Note that a homogeneous ideal is not a set of homogeneous polynomials. For example, the homogeneous
ideal (x) contains the polynomial x(x + 1) = x2 + x, which is not homogeneous.

Fix a set S ⊆ Pn. We write I (S) to denote the homogeneous ideal generated by the homogeneous polynomials P

that vanish on S, i.e., P(a) = 0 for all a in S. We call I (S) the vanishing ideal corresponding to S. By the same
argument that we made in § 3.1 for affine varieties, I (S) is a radical ideal.

Let I be a homogeneous ideal of K [Z ].

1. Let F be a family of homogeneous polynomials that generate I . By definition, the zero set of F is a projective
variety (§ 2). We denote this projective variety V (F).

2. Let F1 and F2 be two such generating families. Then each element of F1 may be written as a sum of terms,
each of which is a polynomial in K [Z ] times a polynomial in F2. Therefore an element in the zero set of F2 is
in the zero set of F1 and vice versa, so the set V (F) is independent of the generators chosen. We write V (I ) to
denote the projective variety V (F) for any generators F of I .
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3. We hav e I (V (I )) = rad(I ). This statement is the projective version of the Hilbert Nullstellensatz (proof omit-
ted). It establishes a one-to-one correspondence between projective varieties V ⊆ Pn and radical homoge-
neous ideals I ⊆ K [Z ].

4. V (I ) is irreducible if and only if I is a prime ideal (proof omitted).

By the Hilbert basis theorem, a homogeneous ideal I of K [Z ] is finitely generated.

By the same arguments we made in § 2.1 for affine varieties:

1. For any family F of homogeneous polynomials, V (I (F)) = V (F), where I (F) is the homogeneous ideal gener-
ated by F .

2. By the Hilbert basis theorem, every projective variety is generated by a finite family of homogeneous polyno-
mials.

3.3. Irreducible Components

Any nonempty affine variety V may be uniquely expressed as a finite union of irreducible affine varieties {Vi} with
Vi not included in V j for i ≠ j; and similarly for projective varieties (proof omitted). This statement follows from a
general theorem on the primary decomposition of ideals in Noetherian rings (see Definitions for Commutative Alge-

bra, §§ 19 and 20). The varieties Vi are called the irreducible components of V .

For example, let V ⊆ A2 be the variety generated by z1z2. It is a union of two lines. The irreducible components of
V are the lines z1 = 0 and z2 = 0.

4. The Dimension of an Affine or Projective Variety; Curves and Surfaces

Due to the deep connection between the algebra of K [z] and the geometry of affine varieties in An, there are many
equivalent definitions of the dimension of an affine variety; and similarly for projective varieties. Here we give the
most elementary definition of the dimension of a variety; we will give other definitions in § 13, after we have dev el-
oped the concepts necessary to state them.

4.1. Affine Varieties

Let V ⊆ An be a nonempty affine variety. We define the dimension of V , written dim V , to be the maximal length
m over all chains

V0 ⊂ V1 ⊂ ⋅⋅⋅ ⊂ Vm ⊆ V ,

where each Vi is an irreducible affine variety, and ⊂ denotes strict inclusion of sets. For example:

1. The dimension of a point is zero. For example, {(1, 1)} is an irreducible affine subvariety of A2 of dimension
zero: it is the zero set of the polynomials z1 − 1 and z2 − 1.

2. dim An = n. Each of the subvarieties given by zi = 0, for i ∈ [1, n], is is a copy of An−1. Each of these copies
is an irreducible subvariety of dimension n − 1.

3. Let V be the zero set of p(z) = z2
1 − z2 in A2. Then V has dimension one. The irreducible affine subvarieties

of dimension zero are the points of V .

We define the dimension of the empty affine variety to be −1.

4.2. Projective Varieties

Let V ⊆ Pn be a nonempty projective variety. We define the dimension of V , written dim V , to be the maximal
length m over all chains

V0 ⊂ V1 ⊂ ⋅⋅⋅ ⊂ Vm ⊆ V ,

where each Vi is an irreducible projective variety, and ⊂ denotes strict inclusion of sets. For example:

1. The dimension of a point is zero. For example, {[1, 1, 1]} is an irreducible projective subvariety of P2 of
dimension zero: it is the zero set of the polynomials Z1 − Z0 and Z2 − Z0.

2. dim Pn = n. Each of the subvarieties given by Zi = 0, for i ∈ [1, n], is a copy of Pn−1. Each of these copies is
an irreducible subvariety of dimension n − 1.
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3. Let V be the zero set of P(Z ) = Z2
1 − Z0Z2 in P2. Then V has dimension one. The irreducible projective sub-

varieties of dimension zero are the points of V .

We define the dimension of the empty projective variety to be −1.

4.3. Irreducible Components

Let V be a nonempty affine or projective variety, and let {Vi} be its irreducible components (§ 3.3).

1. From the definitions in §§ 4.1 and 4.2, it is clear that the dimension of V is the maximum of the dimensions of
the Vi .

2. If all the Vi have the same dimension d , then we say that V has pure dimension d .

3. Let p be a point of V . We define the local dimension of V at p, written dimp V , to be the maximum of the
dimensions of the irreducible components Vi that contain p.

4.4. Curves and Surfaces

By tradition, we associate the following terms with the dimension of an affine or projective variety V :

1. A variety V of pure dimension one (§ 4.3) is called a curve. If V is generated by linear polynomials, then we
call it a line.

2. A curve in A2 is called an affine plane curve. A curve in P2 is called a projective plane curve.

3. A variety of pure dimension n − 1 in An or in Pn is called a hypersurface. An affine or projective variety V is
a hypersurface if and only if it is generated by a single polynomial (proof omitted). A hypersurface in A3 or
in P3 has dimension two and is called a surface.

4. A hypersurface generated by a linear polynomial is called a hyperplane. For example, the set of points in An

such that z1 = 0 is a hyperplane. A hyperplane in A3 or in P3 has dimension two and is called a plane.

5. A d-dimensional variety generated by linear polynomials is called a linear subspace or a d-plane. Note that
a hyperplane in An or Pn is an (n − 1)-plane. In particular, a plane in A3 or P3 is a 2-plane.

Curves in affine and projective space are often grouped together under the subject of algebraic curves. See, e.g.,
[Fulton 2008]. Algebraic curves over the complex numbers (i.e., for K = C) are called complex algebraic curves.
See, e.g., [Kirwan 1992]. Complex algebraic curves have complex dimension one but real dimension two, so they
are sometimes treated as topological surfaces, e.g., in the study of Riemann surfaces.

5. The Zariski Topology

Recall that a topological space is a pair (S, O), where S is a set and O is a set of subsets of S satisfying the follow-
ing axioms:

T1. The empty set and S are elements of O.

T2. Any union of elements of O is an element of O.

T3. Any intersection of finitely many elements of O is an element of O.

The set O is called a topology on S. The elements of O are called the open sets of the topology. A set T ⊆ S is
closed if its complement S − T in S is open; the empty set and S are both closed (and both open). For more infor-
mation on topological spaces, see § 23 of Definitions for Commutative Algebra.

In this section, we use the geometry of affine and projective varieties to define a topology called the Zariski topol-

ogy on affine and projective space.

5.1. Affine Space

Let O be the set of subsets T of An such that the complement An − T is an affine variety. In other words, let O be
the topology on An in which the closed sets are the affine varieties. Then O is a topology on An:

T1. An is the affine algebraic variety generated by the zero ideal, and ∅ is the affine algebraic variety generated by
the ideal K [z]. Therefore ∅ = An − An and An = An − ∅ are open sets.

T2. By taking complements, it suffices to show that any intersection of closed sets is a closed set. Let {Vi} be a
family of closed sets, i.e., affine varieties. Each Vi is generated by a family of polynomials Fi . Further,
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i
∩ Vi =

i
∩ V (Fi) = V (

i
∪ Fi). Therefore

i
∩ Vi is an affine variety, i.e., closed.

T3. By taking complements, it suffices to show that any union of finitely many closed sets is a closed set. Then by
induction, it suffices to show that the union V1 ∪ V2 of any two affine varieties is an affine variety. Let
V1 = V (F1) and V2 = V (F2) for families of polynomials F1 = {pα } and F2 = {qβ }. Then the union V1 ∪ V2

is the affine variety V (F), where F is the set of all pα qβ for pα in F1 and qβ in F2. Indeed, if a point a is in
the zero set of F1 or of F2, then ( pα qβ )(a) = 0 for all α and β , so a ∈ V (F). On the other hand, if a is out-
side the zero sets of both F1 and F2, then there exist pα and qβ such that pα (a) ≠ 0 and qβ (a) ≠ 0; in this case
( pα qβ )(a) ≠ 0, so a ∉ V (F).

We call O the Zariski topology on An.

Let (S, O) be a topological space. A basis for the topology O is a set B of subsets of S such that any open set may
be written as a union of sets in B.

Denote by V ( p) the affine variety generated by the polynomial p. Because every affine variety is generated by a set
of polynomials, every open set in the Zariski topology is given by a union of open sets An − V ( p) for polynomials p.
Indeed, let F = {pα } be a family of polynomials. Then the set An − V (F) consists of exactly the points a such that,
for some α , pα (a) ≠ 0, i.e., a lies in An − V ( pα ). Therefore the open sets An − V ( p), as p ranges over K [z], form a
basis for the Zariski topology. These sets are called the distinguished open sets of An.

Fix a subset S of An. We giv e S the subset topology, i.e., the topology in which a subset T ⊆ S is open if and only
if it is the intersection of S with an open set of An. When a subset T of S is open (respectively closed) in the subset
topology on S, we say that T is open in S (respectively closed in S).

Fix an affine variety V .

1. The distinguished open sets of V are the intersections of V with the distinguished open sets of An, i.e., the
sets V − V ( p) for polynomials p in K [z]. These sets are open in V .

2. A subset T of V is closed in V if and only if it is closed in An, i.e., it is an affine variety. Indeed, fix a subset T

of V . If T is closed in An, then V − T is the intersection of the open set An − T with V , so V − T is open in V ,
so T is closed in V . On the other hand, if T is closed in V , then V − T is open in V , so it is the intersection of
V with an open set in An. Therefore T is the intersection of V with a closed set in An, i.e. an affine variety W .
Thus T is the affine variety V ∩ W .

Let (S, O) be a topological space, and fix a subset T of S.

1. The closure of T in S is the intersection of all the closed sets of S that contain T .

2. T is dense in S if its closure in S is all of S. T is dense in S if and only if it has a nonempty intersection with
ev ery nonempty open subset of S. Indeed, fix a nonempty open subset U of S. If T has empty intersection
with U , then S − U is a closed set containing T and not equal to S, so T is not dense in S. On the other hand,
if T is not dense in S, then there exists a closed set U containing T and not equal to S, and S − U is a
nonempty open set that has empty intersection with T .

Let V be an irreducible affine variety.

1. For any two nonempty subsets T and U of V that are open in V , T ∩ U ≠ ∅. Indeed W1 = V − T and
W2 = V − U are closed sets in V , so they are affine varieties. Further, W1 ∪ W2 = V − (T ∩ U), so if
T ∩ U = ∅, then V = W1 ∪ W2, and so V is not irreducible.

2. Every nonempty subset T of V that is open in V is dense in V . This statement follows from item 1 and from
the fact, shown above, that T is dense in V if and only if it has nonempty intersection with every nonempty
open subset U of V .

In particular, these facts hold when V = An and T ⊆ An is an open set.

5.2. Projective Space

Let O be the set of subsets T of Pn such that the complement Pn − T is a projective variety. In other words, let O be
the topology on Pn in which the closed sets are the projective varieties. Then the same arguments that we made in
§ 5.1 for the Zariski topology on An establish that O is a topology on Pn. We call O the Zariski topology on Pn.
All the definitions and facts stated in § 5.1 apply to the Zariski topology on Pn, after replacing “affine” with “projec-
tive,” An with Pn, and polynomials p(z) in K [z] with homogeneous polynomials P(Z ) in K [Z ].
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6. Quasi-Affine and Quasi-Projective Varieties; General Varieties

In this section we use the Zariski topology (§ 5) to generalize the concepts of affine and projective varieties.

6.1. Quasi-Affine Varieties

Fix an affine variety V . A subset W ⊆ V that is open in V is called a quasi-affine variety.

1. Every affine variety V is a quasi-affine variety. Indeed, by the definition of the subset topology, V is open in
V .

2. There exist quasi-affine varieties W such that W is not an affine variety. For example X = A2 − {(0, 0)} is a
quasi-affine variety, because it is the complement of the zero set of the polynomials z1 and z2. Howev er, X is
not an affine variety (proof omitted).

Fix an affine variety V and a quasi-affine variety W ⊆ V . Then any set U ⊆ W that is open in W is a quasi-affine
variety. Indeed, since W is open in V , W = V ∩ X for some set X that is open in An. Since U is open in W , U is
the intersection of W and an open set of V , i.e., U = W ∩ (V ∩ Y ) for some set Y that is open in An. Therefore

U = (V ∩ X) ∩ (V ∩ Y ) = V ∩ (X ∩ Y ) = V ∩ Z ,

where Z = X ∩ Y is open in An, so U is open in V . Thus any definition or result that is valid for a quasi-affine vari-
ety W is also valid for any set U ⊆ W that is open in W .

6.2. Quasi-Projective Varieties

Fix a projective variety V . A subset W ⊆ V that is open in V is called a quasi-projective variety.

1. Every affine variety V ⊆ An is a quasi-projective variety. Indeed, as we observed in § 2.3, V is the intersec-
tion of the set Ui with a projective variety Wi ⊆ Pn. Ui is open in Pn, because it is the complement of the zero
locus of the polynomial Zi . Therefore V is open in Wi .

2. Every projective variety V is a quasi-projective variety. Indeed, by the definition of the subset topology, V is
open in V .

3. There exist quasi-projective varieties W such that W is neither an affine variety nor a projective variety. For
example X = A2 − {(0, 0)} is a quasi-projective variety, because it is the intersection of U0 and the comple-
ment of {[1, 0, 0]} in P2. Howev er, X is neither an affine variety nor a projective variety (proof omitted).

Fix a projective variety V and a quasi-projective variety W ⊆ V .

1. By the argument that we made in § 6.1 for quasi-affine varieties, any set U ⊆ W that is open in W is a quasi-
projective variety. Thus any definition or result that is valid for a quasi-projective variety W is also valid for
any set U ⊆ W that is open in W .

2. Let {Ui} be the standard cover of Pn by copies of An defined in § 1.2. Then for each i, W ∩ Ui is a quasi-
affine variety. Indeed, write W = V ∩ X for X open in Pn. Then we have

W ∩ Ui = (V ∩ Ui) ∩ (X ∩ Ui). (1)

By § 2.3, V ∩ Ui is an affine variety; and X ∩ Ui is open in Ui . Therefore by (1), W ∩ Ui is an open subset
of the affine variety V ∩ Ui .

6.3. General Varieties

Hereafter, when we use the term variety without qualification, we shall mean any one of an affine, quasi-affine, pro-
jective, or quasi-projective variety. A closed variety will mean an affine or projective variety.

A variety is irreducible if its closure is irreducible as defined in § 2.4. From § 3.3, we see that every variety is a
finite union of irreducible components.

7. Coordinate Rings; Regular Functions and Local Rings

In this section we define the coordinate ring of an affine or projective variety. We also define the related concepts of
regular functions and local rings for varieties.



Definitions for Classical Algebraic Geometry Page 9

7.1. Affine and Quasi-Affine Varieties

In this section, V ⊆ An is an affine variety.

A coordinate function on V is a function p|V : V → K obtained by choosing a polynomial p in K [z], considering p

as a function from An to K , and restricting the domain of p to V .

We define the coordinate ring of V , written K [V ], as follows:

K [V ] = K [z]/I (V ).

That is, K [V ] is the set of polynomials p in K [z], modulo the relation that p ∼ q if p − q is in the vanishing ideal
I (V ), i.e., (p − q)(a) = 0 for all a ∈ V . This is true if and only if p|V = q|V . Therefore the elements of K [V ] are
exactly the coordinate functions on V .

In order to simplify the wording, we will refer to elements of K [V ] as polynomials ev en though they are really
equivalence classes of polynomials. For example, when we say “the polynomial p in K [V ]” we will mean “the
equivalence class [p] = p + I (V ) in K [V ] of the polynomial p in K [z].”

The maximal ideals of K [V ] correspond exactly to the vanishing ideals of points of V . That is, an ideal I ⊆ K [V ] is
maximal if and only if, for some a ∈ V , I is the ideal I ({a})/I (V ) of coordinate functions in K [V ] that vanish at a

(proof omitted). Note the following:

1. I is the ideal generated by the polynomials {zi − ai}, where {ai} are the coordinates of a. For example, in A2,
the ideal I ({a}) for a = (1, 2) is generated by the polynomials {z1 − 1, z1 − 2}.

2. In A1, this statement follows from the fundamental theorem of algebra: for K algebraically closed, every
monic polynomial in K [z1] is a product of factors {z1 − k j}. Since K [z1] is a principal ideal domain, the
maximal ideals are exactly the principal ideals (z1 − k) for k ∈ K .

We write ma to denote the maximal ideal of K [V ] corresponding to the point a.

Let U ⊆ V be a quasi-affine variety (§ 6.1). We define the coordinate ring K [U] to be the coordinate ring K [W ],
where W is the closure of U .

Let U ⊆ V be a quasi-affine variety, and let f :U → K be a function.

1. For any point a in U , we say that f is regular at a if there exist a set W ⊆ U open in U containing a and
polynomials p and q in K [z] such that, for all b in W , (a) q(b) ≠ 0 and (b) f (b) = p(b)/q(b). In this case we
say that f is represented by the expression p/q on W .

2. We say that f is regular on U if it is regular at every point a in U .

3. Let p and q be polynomials in K [z]. Then there exists a set W ⊆ U , open in U , such that p/q represents a
regular function f : W → K . Indeed, let X be the set of points a in U such that q(a) = 0. Then X is an affine
variety, so its complement An − X is open. Let W = U ∩ (An − X). Then W is open, and q(a) ≠ 0 for a in W ,
so p/q represents a regular function on W .

By taking U = V , we can apply the definition of a regular function to the affine variety V . In this case the function
f : V → K is regular on V if and only if f is represented by p/1 on V for some polynomial p in K [V ] (i.e., is repre-
sented by ( p + qI (V )) / 1 for some polynomial p and all polynomials q in K [z]) (proof omitted).

Let U be a distinguished open subset V − V (q) for some polynomial q in K [z] (see § 5.1).

1. Let R be the set of functions regular on U . It is a ring under the standard rules for adding and multiplying
polynomial fractions, i.e.,

p1

q1

+
p2

q2

=
p1q2 + p2q1

q1q2

p1

q1

p2

q2

=
p1 p2

q1q2

.

2. Let [q] be the equivalence class of q in K [V ]. The set S = {1, [q], [q]2, . . . }  of powers of [q] is a multiplica-
tive monoid. Therefore we may form the ring of fractions S−1K [V ]. See Definitions for Commutative Alge-

bra, § 14. This ring is exactly the ring R (proof omitted).

Fix a point a ∈ V .

1. As noted above, the ideal of polynomials in K [V ] vanishing at a is the maximal ideal ma.

2. Every maximal ideal is prime, so ma is prime, and therefore its complement S = K [V ] − ma is a multiplicative
monoid. See Definitions for Commutative Algebra, § 14. S is the set of polynomials that do not vanish at a.
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3. We may form S−1K [V ], which is the localization of K [V ] with respect to the maximal ideal ma. See Defini-

tions for Commutative Algebra, § 14. This ring is called the local ring of V at a and denoted Oa(V ). It con-
tains all expressions p/q with p and q in K [V ] and q(a) ≠ 0, where p′/q′ represents the same element if
pq′ − p′q is a zero divisor in K [V ]. If V is irreducible, then K [V ] is an integral domain; in this case pq′ − p′q
is a zero divisor if and only if pq′ − p′q = 0, i.e., pq′ = p′q.

4. Let F be the set of all pairs (U , f ), where U is open in V , U contains a, and f :U → K is a regular function.
Construct a set G from F by identifying pairs of elements that satisfy the following equivalence relation:
(U , f ) ∼ (W , g) if there exists an open set X ⊆ U ∩ W such that a ∈ X , and f and g agree on X . The ele-
ments of G are called regular function germs.1

5. If V is irreducible, then the set G is exactly the ring Oa(V ). Indeed, a regular function germ at a is represented
by an expression p/q, with p and q in K [V ] and q(a) ≠ 0. Another expression p′/q′ represents the same germ
if

p′(b)/q′(b) = p(b)/q(b)

for all b in an open neighborhood of a. This is true if and only if pq′ − p′q = 0 in K [V ]. But this is exactly
the rule for constructing the ring S−1K [V ].

7.2. Projective and Quasi-Projective Varieties

In this section, V ⊆ Pn is a projective variety.

We define the coordinate ring of V , written K [V ], as follows:

K [V ] = K [Z ]/I (V ).

That is, K [V ] is the set of polynomials p in K [Z ], modulo the relation that p ∼ q if p − q is in the homogeneous
ideal I (V ). Again we call the elements of K [V ] polynomials and freely write p instead of [p] to refer to elements
of K [V ] represented by polynomials p in K [Z ]. Note that, unlike in the affine case discussed in § 7.1, the elements
of the coordinate ring K [V ] are not well-defined functions on V : in general, p(a) ≠ p(ka) where a is a point in An+1

that represents a point on V .

The polynomial ring K [Z ] is a graded ring. See Definitions for Commutative Algebra, § 25. It is also a graded
K [Z ]-module, and this graded K [Z ]-module is a graded K -algebra. The coordinate ring K [V ] is also a graded ring,
a graded K [V ]-module, and a graded K -algebra.

Let U ⊆ V be a quasi-projective variety (§ 6.2). We define the coordinate ring K [U] to be the coordinate ring
K [W ], where W is the closure of U .

Let U ⊆ V be a quasi-projective variety, let f :U → K be a function, and let {Ui} be the standard open cover of Pn.
We say that f is regular on U if, for every i, f |U ∩ Ui

is regular on U ∩ Ui as defined in § 7.1. By § 6.2, U ∩ Ui is a
quasi-affine variety, so the condition of the definition in § 7.1 is satisfied. Note also the following:

1. If the quasi-projective variety U is an affine variety (see § 6.2), then we have U ⊆ V ∩ Ui , and so
U ∩ Ui = U . In this case the definition stated here coincides with the definition stated in § 7.1.

2. By taking U = V , we can apply the definition stated here to projective varieties.

3. Let P and Q be homogeneous polynomials in K [Z ] of the same degree d . By the same argument we made in
§ 7.1, there exists a set W ⊆ U , open in U , such that Q(a) ≠ 0 for a in W . Then the expression P/Q induces a
well-defined function P/Q: W → K , because for each a in W we have

(P/Q)(ka) = P(ka)/Q(ka) = (kd P(a)) / (kdQ(a)) = P(a)/Q(a) = (P/Q)(a).

Moreover, on each Ui , the function P/Q|Ui
is the regular function pi /qi , where pi and qi are the polynomials in

K [z] corresponding to P and Q on W ∩ Ui (§ 2.3). Therefore, P/Q is regular on W .

1 If you have not seen the term “function germ” before, you may be confused as to what a function germ is and/or why we need to define such

a thing. The idea is to focus on the behavior of a function near a point a, and to abstract away details such as the domain of definition of the func-

tion or the behavior of the function on points away from a. An example of a function germ from complex analysis is a power series P(z) that

converges in a neighborhood of zero. If we specify a domain of definition U inside the radius of convergence, then we get a function

P(z)|U :U → C; if we don’t specify a domain, then we get a function germ at zero. All the functions P(z)|U that we could get by specifying a

domain U that contains a are in some sense equivalent.
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Let U be a distinguished open subset V − V (Q) for some polynomial Q in K [Z ].

1. Let R be the set of functions regular on U . As in § 7.1, R is a ring.

2. Let [Q] be the equivalence class of Q in K [V ]. Form the set S = {1, [Q], [Q]2, . . . }  of powers of [Q]. Let F

be the ring of fractions S−1K [V ].

3. Let R′ ⊆ F be the subring of elements represented by P/Q′, where P and Q′ are homogeneous polynomials of
the same degree. Then each element of R′ defines a regular function on U . Further, R′ = R (proof omitted).

Let W ⊆ V be a quasi-projective variety, and fix a point a ∈ W .

1. The local ring at a is defined analogously to the definition stated in § 7.1 for the affine case: it is the ring of
germs of functions f :U → K , where U is a neighborhood of a that is open in W , and f is regular on U . We
denote the local ring at a as Oa(W ).

2. For any i, let X be the closure in An of Ui ∩ W . Then Oa(W ) = Oa(X), where Oa(X) is the local ring of X at
a defined in § 7.1 (proof omitted).

Again, by taking U = V , we can apply the definition to projective varieties.

8. Regular Maps Between Varieties

In this section we define the concept of a regular map or morphism between varieties.

8.1. Regular Maps to Quasi-Affine Varieties

Let φ : S → K n be a map from a set S to the n-dimensional vector space K n. The ith coordinate map φ i: S → K is
the composition of φ with the projection π i onto the ith coordinate of K n. That is, φ i = π i φ . We may represent φ
as the tuple of maps (φ1, . . . , φ n), one for each coordinate of K n.

Let V be a variety.

1. A regular map or morphism φ from V to An, written φ : V → An, is a map from V to An, each of whose
coordinate maps φ i is a regular function on V (§ 7). For example, let V ⊆ A2 be the affine variety given by the
zero set of p(z) = z2

1 − z2
2. Let φ1(z) be the polynomial z2

1, and let φ2(z) be the polynomial z2
2. Then

φ (z) = (φ1(z), φ2(z)) is a regular map φ : V → A2.

2. Let W ⊆ An be a quasi-affine variety. A regular map φ : V → W is a regular map φ : V → An whose image is
contained in W . If W is an affine variety, each such map φ corresponds to a ring homomorphism from K [W ]
to K [V ] giv en by p → p φ . Further, the map φ → ( p → p φ ) is a bijection (proof omitted).

Let V be a variety, let W ⊆ An be a quasi-affine variety, and let φ : V → W be a regular map. Then φ is continuous,
i.e., for every U ⊆ W that is open in W , φ −1(W ) is open in V . To see this, let p(z1, . . . , zn) be a polynomial, and let
X p = W − V ( p) be the distinguished open set of points in W that are not in the zero set of p. Since every open set in
W is a union of distinguished open sets, it suffices to prove that φ −1(X p) is open.

1. If V is quasi-affine, then V is covered by open sets Y j such that on each Y j , each of the coordinate maps φ i is
represented by an expression pij /qij . For each j we may construct a polynomial p j by (a) substituting pij /qij

for zi in p and (b) multiplying by sufficiently high powers of all the qij to clear the denominators. For any j,
let a be a point in Y j . Since qij(a) ≠ 0 for all i, φ (a) is outside the zero set of p if and only if a is outside the
zero set of p j . Therefore for each j, Y j ∩ φ −1(X p) is open in V . Since the Y j cover φ −1(X p), we have that
φ −1(X p) is open in V .

2. If V is quasi-projective, then we may apply the result from item 1 to V ∩ Ui for each of the standard open sets
Ui .

Let V and W be quasi-affine varieties.

1. A regular isomorphism or isomorphism between V and W is a pair of regular maps φ : V → W and
ψ : W → V such that each map is a bijection, and each is the inverse of the other.

2. We say that V and W are isomorphic if there is an isomorphism between them.

The coordinate ring K [V ] of an affine variety is an invariant of isomorphism: two affine varieties V and W are iso-
morphic if and only if their coordinate rings K [V ] and K [W ] are isomorphic as K -algebras (proof omitted).
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Let φ : An → An be a regular isomorphism each of whose coordinate maps is a polynomial of degree one. We say
that φ is an affine coordinate transform or affine change of coordinates.

8.2. Regular Maps to Quasi-Projective Varieties

Let V be a variety.

1. A regular map or morphism φ from V to Pn, written φ : V → Pn, is a map from V to Pn such that (a) φ is
continuous; and (b) for each of the standard open sets Ui ⊆ Pn, the restriction of φ to φ −1(Ui) is a regular map
in the sense of § 8.1.

2. Let W ⊆ Pn be a quasi-projective variety. A regular map φ : V → W is a regular map φ : V → An whose image
is contained in W .

Fix a variety V , and let {φ i: V → K}i ∈ [0,n] be a family of regular functions on V .

1. Let φ : V → Pn be a regular map. If φ (a) = [φ0(a), . . . , φ n(a)] for all a in V , then we say that the regular map φ
has regular coordinate functions φ i .

2. Let W ⊆ V be the set of points a such that φ i(a) ≠ 0 for some i. Then W is open in V , and the map
φ : W → Pn given by a → [φ i(a)] is a regular map with regular coordinate functions.

Fix variety V , and let φ : V → Pn be a regular map. It is not necessarily the case that φ has regular coordinate func-
tions on all of V . For example, let V ⊆ P2 be the zero set of Z2

0 + Z2
1 − Z2

2 , and let φ : V → P1 be the map given by

φ (Z ) = φ0(Z ) =



1,

Z0

Z2 + Z1





if Z2 + Z1 ≠ 0

φ (Z ) = φ1(Z ) =




Z0

Z2 − Z1

, 1




if Z2 − Z1 ≠ 0.

Note that in this definition, φ0 and φ1 are not coordinate functions; they are alternate definitions on overlapping
domains. Then

1. φ is a well-defined map. Indeed, in the intersection W of the domains of φ0 and φ1, Z0/(Z2 − Z1) is well-
defined and nonzero. Therefore for Z in W we have

φ0(Z ) =



1,

Z0

Z2 + Z1





⋅
Z0

Z2 − Z1

=




Z0

Z2 − Z1

,
Z2

0

Z2
2 − Z2

1





=




Z0

Z2 − Z1

, 1




= φ1(Z ).

Here we have used the fact that a point [a0, a1] in P1 is invariant under multiplication of each homogeneous
coordinate ai by the same nonzero element of K . We hav e also used the fact that on V , Z2

0 = Z2
2 − Z2

1 .

2. φ is defined on all of V . Indeed, for any point a on V , if a2 + a1 = 0 and a2 − a1 = 0, then a1 = 0 and a2 = 0;
and then a0 = 0 on V . Therefore a = [0, 0, 0], which is not a point of P2.

3. Each φ i is the restriction of φ to the inverse image φ −1(Ui), each φ i is continuous because it has regular coordi-
nate functions, and each φ i is a regular function. Therefore φ is a regular map. However, each φ i is undefined
on V − φ −1(Ui). For example, φ0 is undefined at [0, 1, −1]. Further, there is no family of coordinate functions
φ i such that the φ i are regular on all of V .

Let V and W be quasi-projective varieties.

1. An isomorphism between V and W is a pair of regular maps φ : V → W and ψ : W → V such that each map is
a bijection, and each is the inverse of the other.

2. We say that V and W are isomorphic if there is an isomorphism between them.

3. If the coordinate rings K [V ] and K [W ] are isomorphic as graded K -algebras (see § 7.2), then we say that V

and W are projectively equivalent. In this case, V and W are isomorphic. However, unlike the affine case
(§ 8.1), V and W may be isomorphic without being projectively equivalent (proof omitted).

Let φ : Pn → Pn be a projective equivalence with regular coordinate functions each of which is a homogeneous poly-
nomial of degree one. We say that φ is a projective coordinate transform or projective change of coordinates.
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8.3. Intrinsic and Extrinsic Properties of Varieties

Fix a variety V . Let S(V ) be a true statement about V . If, for any variety W that is isomorphic to V , S(W ) is also
true, then we say that S(V ) is an intrinsic property of V . Otherwise we say that S(V ) is an extrinsic property of
V . An intrinsic property is a property of the equivalence class C of all varieties isomorphic to V . We call C the iso-

morphism class of V or the abstract variety corresponding to V . An extrinsic property depends on the embedding
of V in affine or projective space.

9. Products of Varieties

In this section we define products of varieties.

9.1. In Affine Space

For any m and n, we may form the Cartesian or set-theoretic product Am × An. As a set, this product is equal to
K m × K n, which naturally has the structure of K m ⊕ K n = K m+n = Am+n. Therefore we define

Am × An = Am+n.

This definition lets us take products of arbitrary affine and quasi-affine varieties. For example, if V ⊆ Am and
W ⊆ An are affine varieties, then V × W is the set of all points a in Am+n such that the first m coordinates define a
point of V in Am and the last n coordinates define a point of W in An. Equivalently, if we write the coordinates of
Am as x = (x1, . . . , xm) and we write the coordinates of An as y = (y1, . . . , yn), and if V is generated by the polyno-
mials F ⊆ K [x] and W is generated by the polynomials G ⊆ K [y], then V × W is the affine variety in Am × An gen-
erated by F ∪ G ⊆ K [x, y]. We handle quasi-affine varieties similarly.

9.2. In Projective Space

The set S = Pm × Pn does not naturally have the structure of a projective variety. Indeed, write a general point of Pm

as X = [X0, . . . , Xm], and write a general point of Pn as Y = [Y0, . . . , Yn]. Then a point in S is a tuple of coordinates
[X], [Y ] such that [X], [Y ] ∼ [k1 X], [k2Y ] for any k1, k2 ≠ 0 in K ; whereas a point in projective space would be a
tuple of coordinates [X , Y ] such that [X , Y ] ∼ [kX , kY ] for any k ≠ 0.

To giv e S the structure of a projective variety, we let N = mn + m + n, and we embed S in PN as follows:

1. Let the homogeneous coordinates of PN be Z0, . . . , ZN . Note that there are

N + 1 = mn + m + n + 1 = (m + 1)(n + 1)

coordinates. So there is one coordinate for each pair (Xi , Y j) of coordinates in X and Y .

2. Let σ : [0, m] × [0, n] → [0, N ] be giv en by σ (i, j) = (n + 1)i + j. σ maps each pair of coordinate indices (i, j)
in Pm × Pn uniquely to a coordinate index in PN .

3. Let φ : S → PN be the regular map with regular coordinate functions (§ 8.2) whose coordinate function φσ (i, j),
for each i ∈ [0, m] and j ∈ [0, n], is given by

φσ (i, j)([X], [Y ]) = XiY j . (2)

That is, the homogeneous coordinate at index σ (i, j) = (n + 1)i + j in the image of φ ([X], [Y ]) is XiY j .

Note the following:

1. Fix an element a of Pm and an element b of Pn.

a. For some i and j, we hav e ai ≠ 0 and b j ≠ 0. Therefore φσ (i, j)([a], [b]) = aib j ≠ 0.

b. For k1, k2 ≠ 0, we have φ ([k1a], [k2b]) = k1k2φ ([a], [b]).

Therefore φ is a well-defined map to PN .

2. φ is an injection. To see this, fix a point c in φ (S), and let a in Pm and b in Pn be points such that φ (a, b) = c.

a. For some i0 there is a unique representative [ai] of a such that ai0
= 1, and for some j0 there is a unique

representative [b j] of b such that b j0
= 1. The coordinates {ck} with cσ (i, j) = aib j provide the unique

representative of c with cσ (i0, j0) = 1.
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b. Now consider another pair of points a′ and b′ in Pm × Pn, with a′ ≠ a or b′ ≠ b. We will show that
φ (a′, b′) ≠ c.

i. If a′ has coordinate zero at i0 or b′ has coordinate zero at j0, then coordinate σ (i0, j0) of φ (a′, b′)
is zero, so φ (a′, b′) ≠ c.

ii. Otherwise, let [a′i] be the unique representative of a′ with a′i0
= 1, and let [b′j] be the unique repre-

sentative of b′ with b′j0
= 1. If a′ ≠ a, then a′i1

≠ ai1
for some i1 ≠ i0. In this case

φσ (i1, j0)([a′i], [b′j]) = a′i1
≠ ai1

= φσ (i1, j0)([ai], [b j]).

Therefore φ (a′, b′) ≠ c. A similar argument shows that if b′ ≠ b, then φ (a′, b′) ≠ c.

3. φ (S) ⊆ PN is the zero set of the homogeneous polynomials

Pσ (i1, j1)σ (i2, j2)(Z ) = Zσ (i1, j1)Zσ (i2, j2) − Zσ (i1, j2)Zσ (i2, j1) (3)

in K [Z ], for all pairs of pairs of indices ((i1, j1), (i2, j2)) with i2 > i1 and j2 > j1.

a. φ (S) is contained in this zero set: for example, (a1b2)(a3b4) − (a1b4)(a3b2) = 0.

b. On the other hand, given any element c in the zero set, we can choose a representative [ck] with
cσ (i0, j0) = 1 for some i0 and j0. Let a be the point in Pm represented by [ai], where ai = cσ (i, j0), and let
b be the point in Pn represented by [b j], where b j = cσ (i0, j). Then

φσ (i, j)([ai][bi]) = cσ (i, j0)cσ (i0, j) = cσ (i, j)cσ (i0, j0) = cσ (i, j).

So φ (a, b) = c, and so φ (S) contains the zero set.

Therefore φ (S) ⊆ PN is a projective variety.

The map φ is called the Segre map or the Segre embedding.

We may express the Segre map in the language of tensor products.

1. Recall that K m+1 ⊗ K n+1 = K (m+1)(n+1), and that a basis for K m+1 ⊗ K n+1 is the set of elements {ci ⊗ d j},
where {ci} are basis vectors for K m+1 and {d j} are basis vectors for K n+1. See Definitions for Commutative

Algebra, § 8.

2. We may represent an element a ∈ K m+1 as
i
Σ aici , where ai are the coordinates of a, and ci are the standard

unit basis vectors. Similarly, we may represent an element b ∈ K n+1 as
j

Σ b j d j .

3. The element a ⊗ b ∈ K m+1 ⊗ K n+1 is then

(
i
Σ aici) ⊗ (

j
Σ b j d j) =

i, j
Σ aici ⊗ b j d j =

i, j
Σ(aib j)(ci ⊗ d j).

Identifying the coefficient aib j of (ci ⊗ d j) with the coordinate σ (i, j) of K (m+1)(n+1), we see that this is the
image φ ([a], [b]) of the Segre map.

4. If we write P(Am+1) to mean the projective space Pm with homogeneous coordinates in Am+1, then the Segre
map takes the element ([a], [b]) in P(Am+1) × P(An+1) to the element [a ⊗ b] in P(A(m+1)(n+1)).

5. Compare the product of affine spaces (§ 9.1), which takes (a, b) in Am × An to a ⊕ b in Am+n.

We may express projective subvarieties of φ (S) = φ (Pm × Pn) in terms of polynomials in the ring K [X , Y ].

1. Let P(X , Y ) be a polynomial in K [X , Y ]. Let PY (X) be the corresponding polynomial in K [Y ][X], i.e., with
variables in X and coefficients in K [Y ], and let PX (Y ) be the corresponding polynomial in K [X][Y ]. We say
that P is bihomogeneous if PX is homogeneous with degree dX and PY is homogeneous with degree dY . In
this case we say that P has bidegree (dX , dY ). For example, let P(X , Y ) = X1 X2Y 3

1 + X2
1Y1Y 2

2 . Then
PY (X) = (Y 3

1 )X1 X2 + (Y1Y 2
2 )X2

1 , PX (Y ) = (X1 X2)Y 3
1 + (X2

1 )Y1Y 2
2 , and P is bihomogeneous with bidegree

(2, 3).

2. We say that a bihomogeneous polynomial has equal bidegree if its bidegree is (d , d) for some d . For exam-
ple, X1Y1 + X2Y2 has equal bidegree with d = 1.

3. Let V be a projective subvariety of φ (S). Then V is the intersection of φ (S) with a subvariety of PN , i.e., it is
in the image (2) and is also in the zero set of a family of homogeneous polynomials {Pα (Z )} in K [Z ].
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Replacing each Zσ (i, j) with Xi X j in each Pα (Z ) according to (2) yields a family of polynomials {Qα (X , Y )} in
K [X , Y ], each of which is bihomogeneous with equal bidegree.

4. On the other hand, given a bihomogeneous polynomial Q[X , Y ] of equal bidegree, we can group pairs of fac-
tors Xi and Y j and replace each pair by Zσ (i, j); according to the relations (3), it doesn’t matter how we do this
grouping. The zero set of the resulting homogeneous polynomial P(Z ) is in the image (2).

Items 3 and 4 establish that the subvarieties V of φ (S) are precisely the images φ (W ) of subsets W ⊆ Pm × Pn cut out
by families of homogeneous polynomials in K [X , Y ] of equal bidegree.

If V ⊆ Pm and W ⊆ Pn are projective varieties, then the Segre image φ (V × W ) ⊆ PN is a projective variety.

1. Suppose that V is generated by homogeneous polynomials {Pα (X)}, and let Vα denote the zero set of Pα .
There is no point in Pn where all the Yi are zero. Therefore, for each α , Vα × Pn is the zero set of

Fα = {Pα (X)Y
dα
i }i ∈ [1,n], where dα is the degree of Pα .

2. Let FV =
α
∪ Fα . Then V × Pn is the zero set of FV .

3. Similarly, suppose that W is generated by homogeneous polynomials {Pβ (Y )}, and let Wβ denote the zero set

of Pβ . Then for each β , Pm × Wβ is the zero set of Fβ = {Pβ (Y )X
dβ
i }i ∈ [1,m], where dβ is the degree of Pβ .

4. Let FW =
β
∪ Fβ . Then Pm × W is the zero set of FW .

5. V × W is the zero set of F = FV ∪ FW . All the polynomials in F are bihomogeneous of equal bidegree, and
they cut out V × W ; so by the previous paragraph, φ (V × W ) is a subvariety of φ (S).

A similar result holds for quasi-projective varieties (proof omitted).

We define the product of any two quasi-projective varieties V ⊆ Pm and W ⊆ Pn to be the Segre image
φ (V × W ) ⊆ PN . This definition gives us a stronger notion of product than the set-theoretic product, because in this
sense the product of two varieties is again a variety.

10. Parameterized Families and General Objects

Let O be a set of objects (not necessarily varieties), and let p: O → {true, false} be a predicate function that
expresses whether a particular property holds for a member o of O. Let V be an irreducible variety, and let
F = {oa}a ∈ V be a family of objects in O.

1. We say that the family F is parameterized by the variety V .

2. We say that the general object of F has property p if p(ov) = true for all v on an open dense subset of V .

For example, consider the set of all lines in P2. Each line is given by the zero set of a homogeneous polynomial

L(Z ) = a0Z0 + a1Z1 + a2Z2,

with not all the ai equal to zero. We may identify each such line with a point a = [a0, a1, a2] in P2. Thus we may
express the set of lines in P2 as a family {La}a ∈ P2 . Fix a point b in P2, say b = [0, 0, 1]. The lines La that do not
intersect b are given by points a with a2 ≠ 0; the set of all such points is open in the irreducible variety P2 and hence
is dense in P2 (§ 5.2). Therefore we may say that the general line in P2 does not intersect the point b.

11. Rational Functions and Maps

In this section we define the concepts of rational functions on varieties and rational maps between varieties. These
concepts generalize the concepts of regular functions (§ 7) and regular maps (§ 8) on irreducible varieties.

11.1. Rational Functions

Fix an irreducible affine variety V ⊆ An.

1. The coordinate ring K [V ] of V is an integral domain, so we may form its field of fractions. See Definitions

for Commutative Algebra, § 14. We denote the field of fractions K (V ) and call it the rational function field

of V . The elements of K (V ) are called rational functions on V .

2. For any point a in V , the local ring Oa(V ) is a subring of K (V ): K (V ) contains all elements p/q with p and q

in K [V ]; whereas Oa(V ) contains all elements p/q in K (V ) such that q(a) ≠ 0.
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3. Fix a set U ⊆ V that is open in V .

a. Let f :U → K be a regular function (§ 7.1). Then for every point a in U , there is a set Wa ⊆ U that
contains a and is open in U such that, on Wa, f is represented by a rational function p/q in K (V ). This
statement follows from the definitions of a regular function and of a rational function.

b. Fix a rational function p/q. Then p/q is not necessarily regular on U , because at some point a in U we
may have q(a) = 0. p/q is regular on a subset of U that is open in U (the complement in U of the zero
locus of q).

Fix a quasi-affine variety W . We define the rational function field K (W ) to be K (V ), where V is the closure of W .

Note the mismatch of terminology: a regular function on U is a well-defined function f :U → K that is represented
at each point in U by a ratio of polynomials. A rational function on V is a ratio of polynomials that may or may not
be a well-defined function at any point of V . This mismatch is unfortunate, but standard.

Fix an irreducible projective variety V ⊆ Pn.

1. We define the rational function field of V , again noted K (V ), to be the rational function field K (U) of the
affine variety U = V ∩ Ui for any of the standard open sets Ui; the field so obtained is independent of i (proof
omitted).

2. K (V ) is equal to the field of elements P(Z )/Q(Z ), where P and Q are homogeneous polynomials in K [V ] of
the same degree (proof omitted).

Fix a quasi-projective variety W . We define the rational function field K (W ) to be K (V ), where V is the closure of
W .

11.2. Rational Maps

In this section, V is an irreducible variety, and W is a variety.

Let S be the set of pairs (U ,ψ ), where U ⊆ V is nonempty and is open in V , and ψ :U → W is a regular map (§ 8).
Let ∼ be the following binary relation on S:

(U1,ψ1) ∼ (U2,ψ2) if ψ1 and ψ2 agree on U1 ∩ U2.

It is easy to see that ∼ is an equivalence relation on S. Let M be the set of equivalence classes of S modulo ∼. We
call the elements φ of M rational maps. We write φ : V - - → W to denote a rational map from V to W . Let
φ = {(Ui ,ψ i)} be an element of M , and note the following:

1. Any regular map ψ : V → W induces a rational map φ : V - - → W given by φ = {Ui ,ψ |Ui
}, where the sets Ui

are the nonempty subsets of V that are open in V .

2. Let W = ∩ Ui . The closure of W is the intersection of the closures of the Ui . Since the Ui are nonempty and
V is irreducible, each Ui is dense in V (§ 5.1), i.e., the closure of each Ui is V . Therefore the closure of W is
V , i.e., W is a nonempty and dense open subset of V set on which all of the ψ i agree.

3. Let U = ∪ Ui . Then U is open in V . For each point a in U , define ψ (a) = ψ i(a), for any i such that Xi con-
tains a. Since the regular maps ψ i agree on their points of common definition, ψ is well-defined on all of U

and is a regular map from U to W . The pair (U ,ψ ) is therefore an element (U j ,ψ j) of φ . Moreover, for every
i, Ui ⊆ U ; and U is the unique set U j with this property. U is called the domain of regularity of the rational
map φ . V − U is called the indeterminacy locus of φ .

4. A rational map φ is not a map in the ordinary sense. Instead, it is an equivalence class of maps. In this respect
a rational map is similar to a function germ (§ 7.1). This is another bit of idiosyncratic terminology.

The following facts motivate the term “rational map.”

1. Assume that V ⊆ Am and W ⊆ An are quasi-affine varieties. Let {φ i}i ∈ [1,n] be a family of rational functions
fi in K (V ). We may represent each fi as a ratio pi /qi of polynomials in K [z] having no common factors of
degree greater than zero. Assume that at each point a of W , either (a) qi(a) = 0 for some i or (b) the point
{pi(a)/qi(a)} lies in W . Then the set of points for which (a) is true is the intersection with V of the union of
the zero sets of the polynomials qi in K [z]. Therefore the set of points for which (b) is true is a set U ⊆ V that
is open in V . Let φ (a) = {φ i(a)}. On U , each φ i is a regular function, so φ is a regular map. Therefore φ
defines a rational map from V to W .
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2. Assume that V ⊆ Pm and W ⊆ Pn are quasi-projective varieties. Let {φ i}i ∈ [0,n] be a family of rational func-
tions Fi in K (V ). We may represent each Fi as a ratio Pi /Qi of homogeneous polynomials in K [Z ] of equal
degree, having no common factors of degree greater than zero. Assume that at each point a of W , either (a)
Qi(a) = 0 for some i or (b) Pi(a) = 0 for all i or (c) the point [Pi(a)/Qi(a)] lies in W . Let φ (a) = [Pi(a)/Qi(a)]
on the set of points a where (c) is true. Then by a similar argument to the one made in item 1, φ defines a reg-
ular map on an open set U , and hence a rational map from V to W .

3. We may reason similarly in the cases where V is quasi-affine and W is quasi-projective, or vice versa. In each
case, a family of rational functions defines a rational map.

A rational map φ : V - - → W is dominant if, for some pair (U ,ψ ) in φ , ψ (U) is dense in W . This is true if and only
if it is true for every pair (U ,ψ ) in φ (proof omitted).

11.3. Rational Functions as Rational Maps

Let V be an irreducible variety, and let f be a rational function in K (V ).

1. If the closure of V is an affine variety, then f = p/q, where p and q are polynomials in K [z] having no com-
mon factors. p/q defines a regular function ψ on the open set U = V − V (q).

2. If the closure of V is a projective variety, then f = P/Q, where P and Q are homogeneous polynomials in
K [Z ] with equal degree, having no common factors. P/Q defines a regular function ψ on the open set
U = V − V (Q).

In either case, (U ,ψ ) defines a rational map φ : V - - → A1.

Let F be the set of rational maps φ : V - - → A1. F is a field with operations

(U1,ψ1) + (U2,ψ2) = (U1 ∩ U2,ψ1 + ψ2)

−(U ,ψ ) = (U , −ψ )

(U1,ψ1) ⋅ (U2,ψ2) = (U1 ∩ U2,ψ1 ⋅ ψ2)

1/(U ,ψ ) = (ψ −1(A1 − {0}), 1/ψ )

F is isomorphic to the rational function field K (V ) (proof omitted).

11.4. Graphs and Images of Rational Maps

Let V ⊆ Pm be a quasi-projective variety, and let ψ : V → Pn be a regular map. The graph of ψ, denoted Γψ , is the
subset of V × Pn consisting of all pairs (a, b) such that b = ψ (a). Let S: Pm × Pn → PN be the Segre map (§ 9.2). If
V is a projective variety in Pm, then S(Γψ ) is a projective variety in PN (proof omitted).

Let V ⊆ Pm be an irreducible variety, and let φ : V - - → Pn be a rational map.

1. The graph of φ, denoted Γφ , is the closure of the graph Γψ of the regular map ψ :U → Pn, where (U ,ψ ) is any
representative of the class φ . This definition is independent of the representative chosen (proof omitted).

2. Let π1: Γφ → V be the projection S(a, b) → a. This notation means that π1(c) = a, where a and b are the
unique values such that S(a, b) = c. Let π2: Γφ → Pn be the projection S(a, b) → b.

a. The image of φ is the set π2(Γφ ). If V is a projective variety, then the image of φ is also a projective
variety (proof omitted).

b. Let X ⊆ V be a variety. The image of X under φ , written φ (X), is π2(π −1
1 (X)). Note that when X = V ,

we get the definition in part (a).

c. Let Y ⊆ Pn be a variety. The inverse image of Y under φ , written φ −1(Y ), is π1(π −1
2 (Y )).

Note that these “images” and “inverse images” of rational “maps” do not behave like images and inverse
images of ordinary maps. For example, it is not true in general that for any point b in the image of φ, there
exists a point a in V such that φ (a) = b. So we hav e more idiosyncratic terminology.

Let V be an irreducible variety, let W be a quasi-projective variety, and let φ : V - - → W be a rational map. From the
definitions, we have the following:
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1. The image of φ is contained in the closure of W .

2. φ is dominant (§ 11.2) if and only if the image of φ is the closure of W .

11.5. Composition of Rational Maps

In this section, φ1: V - - → W and φ2: W - - → X are rational maps.

Suppose there exist pairs (U1,ψ1) representing φ1 and (U2,ψ2) representing φ2 such that ψ1(U1) ∩ U2 is nonempty.
Then U = ψ −1

1 (U2) ⊆ U1 is nonempty; and because ψ1 is continuous (§ 8), U is open in V . Let ψ be the composition
of the restriction of ψ1 to U with ψ2, i.e., ψ = ψ2 ψ1|U . Then ψ defines a regular map from U to X , so (U ,ψ ) repre-
sents a rational map φ : V - - → X . We call φ the composition of φ1 and φ2 and write φ = φ2 φ1.

1. If, for every pair (U1,ψ1) and (U2,ψ2), ψ1(U1) ∩ U2 is empty, then U = φ −1
1 (U2) is empty, and the composition

φ2 φ1 is not defined.

2. If φ1 is dominant (§ 11.2), then U ≠ ∅, and φ2 φ1 is defined.

Assume that φ1 is dominant, and let f be an element of K (W ). Then f φ1 is defined and is a rational map from V

to A1, so it is an element of K (V ) (§ 11.3). Let φ *
1: K (W ) → K (V ) be the map that takes f to φ *

1 f = f φ1. Then
φ *

1 is an inclusion of function fields (proof omitted).

11.6. Birational Isomorphism

Let V and W irreducible varieties. Suppose there exist rational maps φ1: V - - → W and φ2: W - - → V such that the
compositions φ2 φ1 and φ1 φ2 are both defined and equal to the identity map on their domains of regularity. In
this case we say that each of the maps φ1 and φ2 is birational, and we say that the varieties V and W are bira-

tionally isomorphic or birational. Note that when φ1 and φ2 are birational, each φ i is a dominant rational map.

Fix irreducible varieties V and W .

1. As noted in § 11.2, a regular map ψ : V → W induces a rational map φ : V - - → W . If ψ is a regular isomor-
phism (§ 8), then φ is a birational isomorphism.

2. Let φ : V - - → W be a rational map, and assume that the field K has characteristic zero (see Definitions for

Commutative Algebra, § 6). Then φ is birational if and only if for the general point a of W (§ 10), the inverse
image φ −1(a) (§ 11.4) consists of a single point (proof omitted).

3. V and W are birational if (a) K (V ) is isomorphic to K (W ) or (b) there exist nonempty open subsets X ⊆ V

and Y ⊆ W such that X and Y are isomorphic (§ 8). Conditions (a) and (b) are equivalent (proof omitted).

Let V be a variety. We say that V is rational if any of the following conditions holds:

1. V and Pn are birational. Note this condition implies that V is irreducible.

2. K (V ) is isomorphic to the field of fractions of K [z].

3. V contains an open subset U that is isomorphic to an open subset of An.

These conditions are equivalent (proof omitted). If these conditions do not hold, then we say that V is irrational.

11.7. Rational Maps of Finite Degree

Let V be an irreducible variety, and let W be a variety. Let φ : V - - → W be a dominant rational map, and let
φ *: K (W ) → K (V ) be the corresponding inclusion of function fields (§ 11.5).

1. φ −1(a) is finite for the general point of W if and only if K (V ) is a finite extension of φ *K (W ) (see Definitions

for Commutative Algebra, § 18) (proof omitted).

2. If the condition in item 1 is satisfied, then

a. We say that φ is generically finite or of finite degree.

b. The number of points in φ −1(a) for general a is called the degree of the map.

c. If K has characteristic zero, then the degree of the map is equal to the degree of the field extension
(proof omitted).
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12. Blowing Up Varieties Along Subvarieties

In this section we define a construction called the blowup of a variety along a subvariety.

12.1. In Affine Space

Fix an irreducible affine variety V ⊆ Am and a variety W ⊆ V . Let {pi(z)}i ∈ [1,n] be a family of polynomials in
K [z] that generate I (V ). Let φ : V - - → Pn be the rational map represented by (X ,ψ ), where X = V − W , and

ψ (z) = [ pi(z)].

Then we have the following:

1. For every point a in X , at least one of the values pi(a) is not zero. Therefore ψ : X → Pn is a regular map with
regular coordinate functions (§ 8.2).

2. For every point in W , all the values pi(a) are zero. Therefore the domain of regularity of φ is X , and the inde-
terminacy locus is W .

Let Y ⊆ Pm × Pn be the set of points ([1, a], b) such that a ∈ X and b = ψ (a), and let S: Pm × Pn → PN be the Segre
map (§ 9.2). Observe the following:

1. The map from X to Y given by a → ([1, a],ψ (a)) is a bijection. Indeed, for any two points b = ([1, a],ψ (a))
and b′ = ([1, a′],ψ (a′)) in Y , if a = a′, then ψ (a) = ψ (a′), and b′ = b. Therefore if b′ ≠ b, then a′ ≠ a.

2. The map in item 1 induces a map η: X → S(Y ) giv en by η(a) = S([1, a],ψ (a)). η is a regular isomorphism
(proof omitted).

3. S(Y ) is a subset of the graph Γφ (§ 11.4). Let π : Γφ → V be the projection map S([1, a], b) → a. Then π
restricted to S(Y ) is the isomorphism η−1: Y → X .

The pair (Γφ , π ) is called the blowup of V along W . Let E be the set π −1(W ) of elements S(a, b) in Γφ such that
a ∈ W . E is called the exceptional divisor associated with the blowup.

For example, let V = A2, and let W be the variety {(0, 0)} generated by {z1 = 0, z2 = 0}. Let φ : A2 - - → P1 be the
rational map represented by (X ,ψ ), where X = A2 − W , and

ψ (z1, z2) = [z1, z2].

Then we have the following:

1. X is the set of points a = (a1, a2) such that a ≠ (0, 0).

2. S(Y ) ⊆ S(P2 × P1) is the set of points S([1, a], [a]) = S([1, a1, a2], [a1, a2]) such that a ≠ (0, 0).

3. X is isomorphic to S(Y ) via the isomorphism η(a) = S([1, a], [a]).

4. The graph Γφ is the closure in PN of S(Y ). Because the open set U0 = {[1, a]}a ∈ A2 is dense in P2, Γφ is the
set S(Y ) ∪ E, where E is the set of points S([0, a], [a]) for a ≠ (0, 0).

5. E is the exceptional divisor π −1(W ). It is isomorphic to P1.

Notice how the blowup extends the regular map ψ in a natural way. When a ≠ 0, the projection of π −1(a) onto P1

agrees with ψ (a) and yields the point [a] of P1 corresponding to a. When a = 0, ψ is undefined, and the projection
of π −1(a) onto P1 yields all of P1.

12.2. In Projective Space

Let I be an ideal of K [Z ]. We define the saturation of I , denoted
_
I , to be the set of all polynomials p in K [Z ] such

that, for some k ≥ 0 and all homogeneous polynomials P of degree d ≥ k, Pp lies in I .

Fix ideals I and J of K [Z ]. The following conditions on I and J are equivalent (proof omitted):

1.
_
I =

_
J .

2. Denote by Im the set of elements of I , each of whose terms has degree at least m. Then for some M ≥ 0 and
all m ≥ M , Im = Jm.

3. For each i in [0, n], let Ii be the result of converting each polynomial P(Z0, . . . Zn) in I to a polynomial
p(z1, . . . , zn) in K [z] as described in § 2.3. Let Ji be the result of converting each polynomial of J in the
same way. Then Ii = Ji . Therefore, for each i, the zero sets of I and J in Pn have the same intersection with
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the standard open set Ui .

Fix an irreducible projective variety V ⊆ Pm and a variety W ⊆ V . Let F = {Pi(z)}i ∈ [1,n] be a family of homoge-

neous polynomials in K [Z ] of the same degree. Let I be the ideal generated by F , and assume that
_
I = I (V ). Let

φ : V - - → Pn be the rational map represented by (X ,ψ ), where X = V − W , and

ψ (z) = [Pi(z)].

As in the affine case (§ 12.1), ψ : X → Pn is a regular map with regular coordinate functions, and the domain of reg-
ularity of φ is X . Let π : Γφ → V be the projection map. Again the pair (Γφ , π ) is called the blowup of V along W ,
and E = π −1(W ) is called the exceptional divisor associated with the blowup.

Let Y ⊆ Pm × Pn be the image of X under the map a → (a,ψ (a)). Let S: Pm × Pn → PN be the Segre map. Then
the map η: X → S(Y ) giv en by η(a) = S(a,ψ (a)) is a regular isomorphism (proof omitted).

12.3. Factoring Rational Maps

Let V be an irreducible closed variety, and let φ : V1 - - → Pn be a rational map. Then there exist a sequence of vari-
eties {Vi}i ∈ [1,m], subvarieties Wi ⊆ Vi , maps π i: Vi+1 → Vi , and a regular map ψ : Vm - - → Pn such that the follow-
ing hold:

1. For each i in [1, m − 1] and each Xi = Vi − Wi ,

a. (Vi+1, π i) is the blowup of Vi along Wi .

b. There exists an injective regular map η i: Xi → Vi+1 such that π i restricted to η i(Xi) is η−1
i .

2. The composition of regular maps ψ ηm−1 ⋅⋅⋅ η1 is a regular map χ : X1 → Pn. The rational map from V to
Pn represented by (X1, χ ) is φ .

(Proof omitted.)

See Figure 1. In this figure, the arrows Xi → Vi are the inclusion maps. All the solid arrows commute, and (X1, χ )
represents φ .

Vm

π m−1

⋅⋅⋅

π2

V2

π1

V1
φ

PnX1

X2

Xm

η1

η2

⋅⋅⋅

ηm−1

ψ

χ

Figure 1: Factoring a rational map as a sequence of blowups.

In the example given in § 12.1, we may take m = 2 and n = 1. Then

• V1 = A2, and X1 = A2 − {(0, 0)}.

• X2 is the set of points S([1, a], [a]) such that a ≠ (0, 0). Therefore X2 is isomorphic to P1.

• V2 is X2 together with the points S([0, a], [a]) such that a ≠ (0, 0). Therefore V2 is isomorphic to
P2 − {[1, 0, 0]}.

• ψ : V2 → P1 is the regular map given by S([z0, z1, z2], [z1, z2]) → [z1, z2]. Notice that ψ is well-defined on V2,
because we never hav e z1 = z2 = 0.
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• For any point a in A2 − {(0, 0)}, applying η1 yields S([1, a], [a]), and then applying ψ yields [a]. So ψ η1

agrees with φ on X1.

13. The Dimension of a Variety

We now come back to the dimension of a variety, for which we gav e an initial definition in § 4.

Let V be an irreducible variety. For any ring A, let dim A denote the Krull dimension of A (see Definitions for Com-

mutative Algebra, § 19). Here we take the dimension of the zero ring to be −1. The following definitions of dim V

are mutually equivalent (proof omitted):

1. dim V is the dimension of the closure of V according to the definition given in § 4 for a closed variety.

2. dim V is the smallest integer d ≥ −1 such that the general (n − (d + 1))-plane (§ 4.4) is disjoint from V . Here
we take the empty variety to be a −1-plane. For example:

a. The dimension of the empty variety ∅ is −1 in Pn, because the general m-plane is disjoint from ∅ for
m = n − (−1 + 1) = n.

b. A point a has dimension zero in A3, because for m = 3 − (0 + 1) = 2, the general m-plane is disjoint
from a, but for m = 3 − (−1 + 1) = 3 the general m-plane (i.e., A3) is not disjoint from a.

c. A3 has dimension 3, because for m = 3 − (3 + 1) = −1, the general m-plane (i.e., the empty variety) is
disjoint from A3, but for m = 3 − (2 + 1) = 0, the general m-plane (i.e., the general point) is not disjoint
from A3.

3. Let K [V ] denote the coordinate ring of V (§ 7). Then dim V = dim K [V ].

4. Let a be any point of V , and let Oa(V ) denote the local ring of V at a (§ 7). Then dim V = dim Oa(V ). This
definition is independent of the choice of the point a (proof omitted).

5. Let K (V ) denote the field of fractions of K [V ] (§ 11). Let d be −1 if K (V ) = 0; otherwise let d be the tran-
scendence degree of K (V ) over K (see Definitions for Commutative Algebra, § 18). Then dim V = d .

Let V be a nonempty variety, and let {Vi} be its irreducible components (§ 6.3). As in § 4.3, we define the follow-
ing:

1. The dimension of V is the maximum of the dimensions of the Vi . If all the Vi have the same dimension d ,
then we say that V has pure dimension d .

2. Let a be a point of V . We define the local dimension of V at a, written dima V , to be the maximum of the
dimensions of the irreducible components Vi that contain a.

In the rest of this section, V is a variety of dimension d ≥ 0. We assume without loss of generality that V ⊆ Pn; if V

is affine or quasi-affine, we have V ⊆ Ui ⊆ Pn, where Ui is one of the standard copies of An in Pn (§ 1.2).

The codimension of V , denoted codim V , is n − d .

Let W ⊆ Pn be a hypersurface (§ 4.4), and let X = V ∩ W .

1. If W contains an irreducible component of V , then dim X = d .

2. Otherwise dim X = d − 1.

(proof omitted).

Let {Pi}i ∈ [1,k] be a minimal set of homogeneous generators for the closure of V . If k = n − d , then we say that V is
a complete intersection. In this case, V is generated by the smallest number of polynomials that can produce a vari-
ety of dimension d in An or Pn.

Fix a point a in V . Let an affine neighborhood of a be a set U such that (1) U ⊆ Ui ⊆ Pn for some standard affine
set Ui; (2) U contains a; and (3) U is closed in Ui . The following properties are equivalent (proof omitted):

1. There exists an affine neighborhood U of a such that the ideal of polynomials in K [U] that vanish on U ∩ V

is generated by n − d polynomials.

2. There exists a d-dimensional variety W ⊆ Pn such that a ∉ W and V ∪ W is a complete intersection.

If these properties hold, then we say that V is a local complete intersection at a.

V is a local complete intersection if it is a local complete intersection at every point a in V .
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14. Hilbert Polynomials

Let V ⊆ Pn be a projective variety, and let K [V ] = K [Z ]/I (V ) (§ 7.2). For each natural number m, let K [V ]m denote
the set of homogeneous polynomials of K [V ] with degree m, and let dim K [V ]m denote the dimension of K [V ]m as
a vector space over V .

1. The Hilbert function of V is the function hV : N → N given by

hV (m) = dim K [V ]m.

Because dim K [V ]m = dim K [Z ]m − dim I (V )m, we say that hV (m) is the codimension in K [Z ]m of the
space I (V )m of homogeneous polynomials of degree m that vanish on V .

2. There exist a polynomial pV (Z ) and a natural number M such that for all m ≥ M , hV (m) = pV (m). The poly-
nomial pV is called the Hilbert polynomial of the projective variety V . The degree of pV is the dimension of
V (proof omitted).

15. Tangent Spaces; Smooth and Singular Points and Varieties

In this section we define the concept of a tangent space to a variety. We also define the related concepts of smooth
and singular points of a variety.

15.1. The Zariski Tangent Space at a Point

Let V be a variety, and fix a point a of V . Let Oa(V ) be the local ring of V at a (§ 7), and let ma be the maximal
ideal in Oa(V ) of polynomials that vanish at a.

1. Let Fa be the field Oa(V )/ma. The Zariski cotangent space to V at a is the Fa-vector space defined as fol-
lows:

T *
a (V ) = ma/m2

a.

T *
a (V ) is a Fa-vector space because it is an Oa(V )-module that is annihilated by ma.

2. The Zariski tangent space to V at a, denoted Ta(V ), is the dual space of T *
a (V ), i.e., the space of linear maps

λ : T *
a (V ) → Fa:

Ta(V ) = (T *
a (V ))*.

Let V and W be varieties, and let ψ : V → W be a regular map. For each point a in V , ψ induces the following maps:

1. A map ψ *: Oψ (a)(W ) → Oa(V ) giv en by ψ *( p) = p ψ .

2. A map θ : Ta(V ) → Tψ (a)(W ) giv en by θ (λ) = λ ψ *, where λ : T *
a (V ) → Fa is an element of

Ta(V ) = (T *
a (V ))*.

In particular, when V is an affine variety, the embedding ψ : V → An induces an embedding

θ : Ta(V ) → Tψ (a)(A
n) = K n.

In this case the embedding θ has the following alternative and equivalent definition (proof omitted):

1. Fix a family {pi}i ∈ [1,m] of polynomials in K [z] that generate the ideal I (V ). For each i in [1, m], pi defines a
differentiable function f : K n → K given by fi(v) = pi(v). Let L(K n, K ) denote the space of linear maps
λ : K n → K . The derivative Dfi is the map from K n to L(K n, K ) giv en by

Dfi(z)(h) =
n

j=1
Σ D j fi(z)(h j),

where D j fi(z): K → K denotes the jth partial derivative of fi (i.e., the derivative of fi treated as a function of
the single variable z j), and h j is the jth coordinate of h. See § 6.2 of my paper The General Derivative.

2. The Zariski tangent space Ta(V ) is the set of all vectors h in K n such that

Dfi(a)(h) = 0

for all i in [1, m].
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Note the following:

1. Ta(V ) =
i ∈ [1,m]

∩ Ta(Vi), where Vi is the zero set of fi .

2. Fix an index i in [1, m] and a point a in V . If Dfi(a) ≠ 0, then Ta(Vi) is the ordinary tangent space of the
graph of fi from calculus and differential geometry. For example, in A2, let fi(z) = z2

1 − z2. Then

Dfi(z)(h) = 2z1h1 − h2 = (2z1, −1) ⋅ h,

so Ta(Vi) is the space of vectors h = (h1, h2) that are perpendicular to (2a1, −1).

15.2. Smooth and Singular Points

Let V be a variety in An or Pn of pure dimension d , and fix a point a of V .

1. The Zariski tangent space Ta(V ) is a subspace of K n and is isomorphic to K m, for some m with d ≤ m ≤ n

(§ 13) (proof omitted).

2. If m = d , then we say that a is a smooth point of V . Otherwise we say that a is a singular point of V .

Let V be a variety of pure dimension d .

1. The set of singular points of V is a subvariety of V (proof omitted). We denote this subvariety Vsing.

2. The set of smooth points of V is an open and dense subset of V (proof omitted). We denote this set Vsm.

3. If V has no singular points, then we say that V is a smooth variety. Otherwise V is a singular variety.

4. Assume that V is irreducible. If the field K has characteristic zero, then there exists a smooth irreducible vari-
ety W and a regular birational map φ : W → V (proof omitted). If V is singular, then the map φ is called a res-

olution of singularities of V .

15.3. The Affine Tangent Plane at a Point

Let V ⊆ An be an affine variety. The affine tangent plane of V at a, denoted Ta(V ), is the set of points b in An

such that b − a lies in the Zariski tangent space Ta(V ), considered as a subspace of An. If V has pure dimension d

and a is a smooth point of V , then Ta(V ) is a d-plane in An and is the image of the d-plane Ta(V ) under the transla-
tion that takes the origin to a.

For example, let K = C, let n = 2, let V be the zero locus of z2
1 − z2, and let a = (1, 1). Then

1. Ta(V ) is the line through (0, 0) perpendicular to the line through (0, 0) and (2, −1).

2. Ta(V ) is the line through (1, 1) perpendicular to the line through (1, 1) and (3, 0).

15.4. The Projective Tangent Plane at a Point

In this section, V ⊆ Pn is a projective variety, and a is a point of V with homogeneous coordinates [ai].

Fix a family {Pi}i ∈ [1,m] of homogeneous polynomials in K [Z ] that generate the ideal I (V ), and let {Fi}i ∈ [1,m] be
the corresponding family of functions from K n+1 to K . The projective tangent plane of V at a, denoted Ta(V ), is
the set of points b in Pn with homogeneous coordinates [bi] such that

DFi(a)(b) = 0

for all i in [1, m]. Note that Ta(V ) is a well-defined subset of Pn, because if Fi(Z ) is a homogeneous polynomial of
degree d , then by the rule for differentiating polynomials

DFi(X)(Y ) =
n

j=0
Σ DFi(X)Y j

is a bihomogeneous polynomial of degree d − 1 in X and degree 1 in Y .

Let Uk be any of the standard affine open sets Uk ⊆ Pn containing a. Then

Ta(V ∩ Uk) = Ta(V ) ∩ Uk ,

where Ta on the left denotes the affine tangent plane (§ 15.3). Indeed, suppose k = 0, and assume a0 = 1. Choose
any i in [1, m] and let F = Fi .
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1. By the Euler relation for homogeneous polynomials we have

n

j=0
Σ D j F(Z ) Z j = d ⋅ F(Z ),

where d is the degree of F .

2. Because F(a) = 0, we have

n

j=0
Σ D j F(a) a j Z0 = d ⋅ F(a) Z0 = 0.

Therefore

D0F(a) Z0 = D0F(a) a0Z0 = −
n

j=1
Σ D j F(a) a j Z0. (4)

3. By definition, Ta(V ) is the set of all b in Pn such that

n

j=0
Σ D j F(a)b j = 0. (5)

By (4), the left-hand side of (5) is

(
n

j=1
Σ D j F(a)b j) + D0F(a)b0 =

n

j=1
Σ D j F(a)b j −

n

j=1
Σ D j F(a) a j b0

=
n

j=1
Σ D j F(a)(b j − a j b0). (6)

4. When intersecting with U0, we may assume b0 = 1. Therefore, by (5) and (6), Ta(V ) ∩ U0 contains all and
only the points satisfying

n

j=1
Σ D j F(a)(b j − a j) = 0. (7)

These are exactly the points satisfying the definition of Ta(V ∩ U0) (§ 15.3).

Let W ⊆ An+1 be the zero locus of the ideal I (V ), considered as a set of polynomials p(z0, . . . , zn). Then Ta(V ) is
the subspace of Pn corresponding to Ta(W ) (proof omitted).

16. The Degree of a Variety

Let V and W be linear subspaces of Pn (§ 4.4).

1. The span of V and W , denoted
______
V , W , is the set of all points [a + b], where [a] is a point of V , [b] is a point of

W , and (a + b)i = ai + bi . Equivalently,
______
V , W is the smallest linear subspace of Pn that contains both V and

W .

2. The dimension of
______
V , W is the minimum of n and m, where m = dim V + dim W − dim (W ∩ V ) (proof omit-

ted).

3. If V is a point a and W is a different point b, the span
____

a, b is the unique line in Pn passing through a and b.

4. Assume that V has dimension m and that W is a point a in Pn − V . The span
_____
a, V is called a cone. It is the

union of all the lines
____

a, b for which b is a point of V . It is an (m + 1)-plane in Pn.

Let m be a natural number in [0, n). Let V and W be subvarieties of Pn such that V is isomorphic to Pm, W is iso-
morphic to Pn−m−1, and V ∩ W = ∅.

1. The projection of Pn − V to W is the map πV : Pn − V → W that sends a point a of Pn − V to the intersection

of W with the (m + 1)-plane
_____
a, V . This map is well-defined because the intersection is a single point (proof

omitted). If X ⊆ Pn − V is a projective variety in Pn, then πV (X) is a projective variety in W = Pn−m−1 (proof
omitted).
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2. Up to projective equivalence (§ 8.2), we may choose V and W as follows:

• The points of V are the points of Pn whose last n − m homogeneous coordinates are zero.

• The points of W are the points of Pn whose first m + 1 homogeneous coordinates are zero.

In this case πV is the standard coordinatewise projection map that takes [a0, . . . , am, am+1, . . . , an] to
[am+1, . . . , an] (proof omitted). This map is well-defined on Pn − V , because on that domain one of the coordi-
nates am+1 through an must be nonzero.

Let V ⊆ Pn be an irreducible variety of dimension m. We define the degree of V in the following ways, all of which
are equivalent (proof omitted).

1. Let W be a general (n − m − 2)-plane in Pn. Then

a. πW (V ) is an irreducible hypersurface in Pm+1 (proof omitted).

b. For any W , the degree of the irreducible homogeneous polynomial P(Z ) defining πW (V ) is the same
natural number d (proof omitted).

The degree of V is d .

2. Let X be a general (n − m − 1)-plane in Pn. Then

a. π X defines a surjective map from V to Pm (proof omitted).

b. For the general point a of Pm, the set π −1
X (a) contains d points, for some natural number d (proof omit-

ted).

The degree of V is d .

3. Let Y be a general (n − m)-plane in Pn. Then V intersects Y in d points, for some natural number d that does
not depend on Y (proof omitted). The degree of V is d .

4. Suppose V has dimension m, and let pV be the Hilbert polynomial of V (§ 14). Then the degree of V is m!
times the leading coefficient of pV .

We write deg V to denote the degree of V .

Let V and W be quasi-projective varieties in Pn.

1. Let a be a point of V ∩ W . V and W intersect transversely at a if V and W are smooth at a (§ 15.2) and the
span of Ta(V ) and Ta(W ) is Pn (§ 15.4). For example, projecting from P2 onto A2, let V be the curve y = x2,
and let W be the line y = 1. Then V and W intersect transversely at (1, 1), because the tangent line to V and
(1, 1) and the line y = 1 span A2. On the other hand, if W is the line y = 0, then V and W do not intersect
transversely at (0, 0), because the tangent line to V at (0, 0) and the line y = 0 span a space of dimension one.

2. Let {Xi} be the irreducible components of V ∩ W (§ 3.3). V and W intersect generically transversely if, for
each i, V and W intersect transversely at the general point a of Xi .

3. Assume that V has pure dimension dV , W has pure dimension dW , dV + dW ≥ n, and V and W intersect gener-
ically transversely. Then

deg (V ∩ W ) = (deg V )(deg W ).

This statement is called Bézout’s Theorem (proof omitted).

Let V and W be quasi-projective varieties in Pn, each with pure dimension.

1. V and W intersect properly if

codim (V ∩ W ) = codim V + codim W

or equivalently

dim (V ∩ W ) = dim V + dim W − n.

2. Assume that V and W intersect properly, and let {Xi} be the irreducible components of V ∩ W . There exists
a family {mi} of natural numbers such that the following properties hold (proof omitted):

a. mi ≥ 1, and mi = 1 if and only if V and W intersect transversely at a general point of Xi .
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b. (deg V )(deg W ) =
i
Σ mi deg Xi .

For each i, mi is called the intersection multiplicity or intersection number of V and W along Xi .
2

17. Parameter Spaces

In this section, B ⊆ Pm is a variety, π : Pm × Pn → Pm is the map (b, c) → b, and φ : Pm × Pn → PN = Pmn+m+n is the
Segre map (§ 9.2).

Let V ⊆ φ (B × Pn) be a variety. V induces a family of subsets {Vb}b ∈ B of PN according to the rule Vb = φ (π −1(b)).

1. If each set Vb ⊆ PN is a variety, then we say that F = (B, V ) is an algebraic family of varieties in PN . We
call B the base of F , and we call V the total space of F .

2. Let F = (B, V ) be an algebraic family of varieties in PN . If V is closed, then we say that F is a closed alge-

braic family. In this case, F has the following properties:

a. Each Vb is the intersection of the closed sets V and φ ({b} × Pn), so each Vb is a projective variety.

b. If B is an affine variety, then F is defined by a set of homogeneous polynomials in n + 1 variables
whose coordinates are polynomials in m variables.

c. If B is a projective variety, then F is defined by a set of homogeneous polynomials in n + 1 variables
whose coordinates are homogeneous polynomials in m + 1 variables.

We now define the concept of a reduced algebraic family of varieties.3 Let F = (B, V ) be an algebraic family of vari-
eties in PN with base B ⊆ Pm and total space V ⊆ PN .

1. For any point b of B and any point v of Vb ⊆ V , let f (b, v): Ob(B) → Ov(V ) be the map g → g π , where g

is a regular function germ (§ 7.2). This map is well-defined because

a. For any polynomials p and q in K [z], if p(b) = q(b) for all b in B then (p π )(v) = (q π )(v) for all v

in V , so p ∼ q in K [B] implies f (b, v)( p) ∼ f (b, v)(q) in K [V ].

b. For any polynomial q in K [B], if q(b) ≠ 0 then (q π )(v) ≠ 0, so for any function germ g = p/q in
Ob(B), f (b, v)( p/q) = ( p π )/(q π ) is an element of Ov(V ).

2. Fix point b of B and a point v of Vb. Let mb ⊆ Ob(B) be the maximal ideal of functions vanishing at b. If the
set f (b, v)(mb) generates the ideal of Vb in Ov(V ), then we say that the algebraic family F is reduced with
respect to the pair (b, v).

3. If, for all points b in B and all points v in Vb, F is reduced with respect to (b, v), then we say that F is
reduced.

4. If, for all points b in B and the generic point v of Vb, F is reduced with respect to (b, v), then we say that F is
generically reduced.

Now we define what it means for the variety V to be a parameter space for the family F = (B, V ). Fix a variety
C ⊆ PmC for some natural number mC .

1. Let R(F , C) be the set of regular maps from C to B.

2. Let F(F , C) be the set of families {Xc}c ∈ C of varieties in Pn parameterized by C such that for each c in C,
Xc = Vb for some b in B. Here equality means set equality as subsets of Pn.

3. For any regular map ψ : C → B, define a family of varieties G(F , C,ψ ) = {X(F , C,ψ )c}c ∈ C according to the
rule X(F , C,ψ )c = Vψ (c).

4. Let Φ(F , C): R(F , C) → F(F , C) be the map that takes ψ to G(F , C,ψ ).

Let Fcr(F , C) be the subset of F(F , C) consisting of all closed reduced algebraic families. If, for every variety C,
Φ(F , C) is a bijection between R(F , C) and Fcr(F , C), then we say that the variety V is a parameter space for F .

2 If V and W are affine plane curves, then mi has a constructive definition that is relatively straightforward. See [Fulton 2008], § 3.3. If V and

W are general quasi-projective varieties, then the constructive definition of mi requires the machinery of intersection theory, which is a subtopic

of modern algebraic geometry. See [Fulton 1984].
3 Following [Harris 1992], we introduce this concept in order to define parameter spaces in the language of varieties. Modern algebraic geom-

etry uses the alternative concept of a “flat family of schemes.” See [Harris 1992], p. 267.
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Let Fcgr(F , C) be the subset of F(F , C) consisting of all closed, generically reduced algebraic families. If, for every
variety C, Φ(F , C) is a bijection between R(F , C) and Fcgr(F , C), then we say that the variety V is a cycle parame-

ter space for F .

Notice that each variety Vb in the family F = {Vb} has the form φ ({b} × Wb), for some set Wb ⊆ Pn. It is often the
case that {Wb}b ∈ B is also a family of varieties, and it is useful to think of V as a parameter space for this family.

18. Moduli Spaces

In this section, we define the concept of a moduli space. Like a parameter space (§ 17), a moduli space is a family
of varieties parameterized by another variety, with some additional structure. Unlike a parameter space, the varieties
need not be embedded in a fixed space PN .

Fix a variety B. Let V be a variety, and let π : V → B be a map. The map π induces a family of sets {Vb}b ∈ B

according to the rule Vb = π −1(b).

1. If each Vb is a variety, then we may form the family {[Vb]}b ∈ B of isomorphism classes of varieties (§ 8.3). In
this case we say that F = (B, V , π ) is an algebraic family of abstract varieties. Again we call V the total

space of F , and we call B the base of F .

2. Let F be an algebraic family of abstract varieties. We say that F is reduced if it is reduced according to the
definition given in § 17 for algebraic families of varieties in PN . This definition is equally valid for families of
abstract varieties.

Fix a variety B, and let S = {Xb}b ∈ B be a standard (i.e., not necessarily an algebraic) family of abstract varieties.

1. For any variety C, define the following:

a. Let F(S, C) be the set of algebraic families of abstract varieties (C, V , π ) such that for each c in C, we
have [Vc] = Xb for some b in B. Here equality means identity of abstract varieties (i.e., isomorphism
classes).

b. For any family F = (C, V , π ) in F(S, C), let ψ (C, F): C → B be the map c → b, where [Vc] = Xb.

2. B is a coarse moduli space for the family S if the following hold:

a. For any variety C and any reduced family F in F(S, C), ψ (C, F) is a regular map.

b. B is unique up to isomorphism in the following sense. Suppose the following:

i. Item a holds for another variety B′ and another family S′ = {X ′b}b ∈ B′.

ii. η: B′ → B is a regular bijection.

iii. For every variety C and for every family F in F(S, C) there is a family F ′ in F(S′, C) such that
ψ (C, F) = η ψ (C, F ′).

Then B′ is isomorphic to B.

Notice that unlike a parameter space, a coarse moduli space is not the total space of an algebraic family. If there
exists an algebraic family F = (B, V , π ) such that {[Vb]}b ∈ B = S, then we say that F is a tautological family over
B. The variety V in the tautological family is then analogous to the parameter space V of an algebraic family in PN .

Suppose there exists a tautological family F over B.

1. For any variety C, let R(S, C) be the set of regular maps from C to B, and let Fr(S, C) be the subset of F(S, C)
consisting of reduced families.

2. Let Φ(S, C): Fr(S, C) → R(S, C) be the map that takes a family G to the regular map ψ (C, G). If Φ is a bijec-
tion, then we say that F is a universal family. In this case, we say that B is a fine moduli space for the fam-
ily S.
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bihomogeneous: § 9.2
birational: § 11.6
birationally isomorphic: § 11.6
blowup: §§ 12.1, 12.2
closed algebraic family: § 17
closed in S: § 5.1
closed: §§ 5, 6.3
closure: § 5.1
coarse moduli space: § 18
codimension: §§ 13, 14
complete intersection: § 13
complex algebraic curves: § 4.4
composition: § 11.5
cone: § 16
coordinate function: § 7.1
coordinate map: § 8.1
coordinate ring: §§ 7.1, 7.2
curve: § 4.4
cut out by: §§ 2.1, 2.2
cycle parameter space: § 17
degree: §§ 2.2, 11.7, 16
dense in S: § 5.1
dimension: §§ 4.1, 4.2
distinguished open sets: § 5.1
domain of regularity: § 11.2

dominant: § 11.2
d-plane: § 4.4
equal bidegree: § 9.2
exceptional divisor: §§ 12.1, 12.2
extrinsic property: § 8.3
fine moduli space: § 18
finite degree: § 11.7
general object: § 10
generated by: §§ 2.1, 2.2
generically finite: § 11.7
generically reduced: § 17
graph: § 11.4
Hilbert basis theorem: § 3.1
Hilbert function: § 14
Hilbert Nullstellensatz: §§ 3.1, 3.2
Hilbert polynomial: § 14
homogeneous coordinates: § 1.2
homogeneous ideal: § 3.2
homogeneous: § 2.2
hyperplane: § 4.4
hypersurface: § 4.4
image: § 11.4
indeterminacy locus: § 11.2
intersect generically transversely: § 16
intersect properly: § 16
intersect transversely at a: § 16
intersection multiplicity: § 16
intersection number: § 16
intersection theory: § 16
intrinsic property: § 8.3
inverse image: § 11.4
irrational: § 11.6
irreducible components: § 3.3
irreducible: §§ 2.4, 6.3
isomorphic: §§ 8.1, 8.2
isomorphism class: § 8.3
isomorphism: §§ 8.1, 8.2
line: § 4.4
linear subspace: § 4.4
local complete intersection: § 13
local dimension: §§ 4.3, 13
local ring at a: § 7.2
local ring of V at a: § 7.1
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moduli space: § 18
morphism: §§ 8.1, 8.2
open in S: § 5.1
open sets: § 5
parameter space: § 17
parameterized by: § 10
plane: § 4.4
polynomials: §§ 7.1, 7.2
product: § 9.2
projection: § 16
projective change of coordinates: § 8.2
projective coordinate transform: § 8.2
projective line: § 1.2
projective plane curve: § 4.4
projective plane: § 1.2
projective space: § 1.2
projective tangent plane: § 15.4
projective variety: § 2.2
projectively equivalent: § 8.2
pure dimension d: §§ 4.3, 13
quasi-affine variety: § 6.1
quasi-projective variety: § 6.2
radical: § 3.1
rational function field: § 11.1
rational functions: § 11.1
rational maps: § 11.2
rational: § 11.6
reduced: §§ 17, 18
regular at: § 7.1
regular coordinate functions: § 8.2
regular function germs: § 7.1
regular isomorphism: § 8.1
regular map: §§ 8.1, 8.2
regular on U : § 7.2
regular on: § 7.1
represented by: § 7.1
resolution of singularities: § 15.2
saturation: § 12.2
Segre embedding: § 9.2
Segre map: § 9.2
singular point: § 15.2
singular variety: § 15.2
smooth point: § 15.2
smooth variety: § 15.2
space: § 1
span: § 16
standard cover: § 1.2
subset topology: § 5.1
subvariety: § 2.4
surface: § 4.4
tautological family: § 18
topological space: § 5
topology: § 5
total space: §§ 17, 18

universal family: § 18
vanishing ideal: §§ 3.1, 3.2
variety: § 6.3
Zariski cotangent space: § 15.1
Zariski tangent space: § 15.1
Zariski topology: §§ 5, 5.1, 5.2
zero locus: § 2.1
zero set: § 2.1


