
FPP: A Modeling Language for F Prime

Robert L. Bocchino Jr., Jeffrey W. Levison, and Michael D. Starch
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

{robert.l.bocchino,jeffrey.w.levison,michael.d.starch}@jpl.nasa.gov

Abstract—We present F Prime Prime (FPP), a new open-source
modeling language for F Prime. F Prime is an open-source
flight software framework developed at JPL and deployed,
among other places, on the Mars helicopter Ingenuity. FPP
provides a convenient way to model the architectural elements
of an F Prime application, e.g., components, ports, and their
connections. It has a succinct and readable syntax, a well-
defined semantics, and robust error checking and reporting. The
FPP tool suite, written in Scala, analyzes FPP models, reports
errors, and translates correct FPP models to a combination
of XML and C++. Existing F Prime tools translate the XML
to a partial implementation in C++, to be completed by the
developers. The model elements have clean interfaces and are
highly reusable. An accompanying visualization tool constructs
diagrams of components and connections that FSW developers
can use to understand and communicate their designs, for ex-
ample at reviews. We discuss the design and implementation of
FPP and the integration of FPP into F Prime. We also discuss
our experience using FPP to construct F Prime models. Finally,
we discuss our plans for future work, including improved code
generation, improved visualization, and more advanced analysis
capabilities.

TABLE OF CONTENTS

1. INTRODUCTION .1

2. F PRIME .2

3. THE FPP LANGUAGE .3

4. THE FPP TOOL SUITE .9

5. EXPERIENCE WITH FPP . 11

6. FUTURE WORK . 13

7. RELATED WORK . 14

8. CONCLUSION . 14

ACKNOWLEDGMENTS . 15

REFERENCES . 15

BIOGRAPHY . 15

1. INTRODUCTION

When developing flight software (FSW) for a mission, it is
usually a good idea to reuse existing software as much as
possible. That way you can focus your effort on the mission
at hand; you don’t have to re-implement behavior that has
already flown successfully on other missions. The best way
that we know to achieve this kind of reuse is to use a flight
software framework.

F Prime [1] is a flight software framework developed at JPL.
It provides a flight-proven software architecture approach; a
set of ready-to-use components for basic FSW functions such
as command and telemetry; and a set of tools for developing,
testing, and deploying FSW. It is free and open-source, with
a growing user and developer community. It has been suc-

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

cessfully deployed on several missions. One such mission is
the Mars helicopter Ingenuity, the first-ever powered aircraft
to fly on another planet [2][28]. Other recent and upcoming
missions include the ASTERIA space telescope [31][29], the
Lunar Flashlight mission to the Moon [3], and the NEA Scout
mission to a near-earth asteroid [4].

F Prime uses a model-based approach to FSW development.
In this approach, developers describe the high-level structure
of the software in a model, which is a machine-representable
data structure with a formal specification. Using a model has
several advantages: it provides a clear statement of design
intent, it can be visualized as a set of diagrams, it can be
automatically checked for correctness properties, and it can
form the input to tools that auto-generate a partial FSW
implementation in C++.

This approach requires a modeling tool, i.e., a way for
developers to express the model. The modeling tool can
be a domain-specific language, a graphical tool, or a com-
bination of the two. Before F Prime v3.0.0 (released De-
cember 22, 2021), the preferred modeling tool for F Prime
was Extensible Markup Language (XML) extended with an
F Prime-specific schema and a code generator written in
Python. Using XML has some advantages: it is widely used,
lightweight, easy to parse, and flexible. However, the F Prime
XML schema has some major disadvantages as a modeling
language: it is verbose and inconvenient for users to read and
write, its semantics is not well specified, and it has poor error
checking and reporting. Many errors go through to be caught
by the C++ compiler. There are also places in the model
where code could be generated but is not; these gaps have
to be filled in with handwritten C++.

In this paper we present F Prime Prime (FPP) [5]. FPP is a
new open-source domain-specific language for constructing,
analyzing, and translating F Prime models. The FPP tool
suite, written in Scala, analyzes FPP models, reports errors,
and translates correct FPP models to a combination of XML
and C++. The existing F Prime tools translate the XML to
C++. An accompanying visualization tool constructs dia-
grams of components and connections that FSW developers
can use to understand and communicate their designs, for
example at reviews.

As of F Prime v3.0.0, F Prime has integrated support for FPP,
so that F Prime developers can write FPP models instead of
XML models. Compared to writing XML, FPP provides a
cleaner and more succinct syntax, a well-defined semantics,
and robust error checking and reporting. It closes the gaps
between the XML model and the implementation code.

We believe that FPP can improve the experience of using
F Prime today. FPP also enables future enhancements to F
Prime, including improved code generation, improved visual-
ization, and more advanced modeling and analysis capability.
Finally, beyond the specifics of F Prime, FPP can serve as

1

an example of the benefits of model-based FSW engineering
supported by a clean domain-specific language.

The rest of this paper proceeds as follows. In Section 2 we
give a brief overview of F Prime. In Section 3 we present the
FPP modeling language. In Section 4 we present the FPP tool
suite. In Section 5 we describe our experience using FPP. In
Section 6 we describe our plans for future work. In Section 7
we discuss related work. In Section 8 we conclude.

2. F PRIME

In this section, we provide a brief overview of F Prime.
First we discuss the architecture of an F Prime application.
Then we describe the F Prime code base. Finally we discuss
the typical process for constructing an F Prime deployment
(executable program).

Architecture

F Prime is based on the architectural concepts of components
and ports. A component is like a class in an object-oriented
language: it defines a collection of data and some operations
on the data. Components organize FSW applications into
reusable pieces with well-defined interfaces. A port is the
endpoint of a connection between two component instances.
Communication over a port is called an invocation; it may
be either synchronous (a function call that does work) or
asynchronous (a function call that puts work on a queue for
later dispatch).

An F Prime executable program is called a deployment. Each
deployment has a topology, i.e., a directed graph specifying
the component instances and the connections between their
ports. An F Prime deployment may run on an operating sys-
tem (OS) or directly on hardware (bare metal). When running
on an OS, each deployment consists of a single process with
multiple threads. A single-process FSW application consists
of one deployment. A multi-process application consists of
several deployments, one for each process.

F Prime supports three kinds of components:

1. An active component has an associated thread T. It may
receive both synchronous and asynchronous invocations. A
synchronous invocation runs on the thread of the caller. An
asynchronous invocation runs on T. Active components typi-
cally implement background tasks and event-driven behavior.
2. A passive component has no associated thread. It receives
only synchronous invocations. It provides functions that other
components call directly, e.g., for filtering, transforming, or
querying data.
3. A queued component has a queue, so it may receive
synchronous invocations, but it has no thread; its behavior
must be driven by the thread of another component. A typical
use of queued components is to implement a rate group (a
set of component instances that run periodically at the same
rate).

Each port has a type and a kind. The type is like a function
signature: it specifies the number and types of the data items
carried on a port. The kind specifies whether the port is an
output port (a port that sends invocations) or an input port (a
port that receives invocations). Input ports are further divided
into the following kinds:

1. A synchronous input port receives synchronous invoca-
tions (function calls that do work).

2. A guarded input port is a synchronous input port with
concurrency control. An invocation of a guarded port takes a
mutex lock, performs a synchronous invocation, and releases
the lock.
3. An asynchronous input port receives asynchronous in-
vocations (function calls that put messages on a queue).

Components have no compile- or link-time dependencies on
each other. At compile time, each component depends only
on the types of the ports that it uses. The connections are
established at run time, when a FSW deployment starts up.
This fact makes F Prime components highly modular and
reusable.

Code Base

The code base for constructing F Prime deployments consists
of three main parts:

1. A core framework that provides basic services. These
include (a) the behavior common to all ports and all compo-
nents and (b) a platform-independent interface to OS services
such as threads and queues.
2. An XML schema for expressing the F Prime architectural
concepts (ports, components, and topologies) together with a
code generator for converting XML specifications into C++
code.
3. A collection of reusable components that perform standard
FSW functions such as dispatching commands and storing
telemetry. These components are implemented using the
same mechanisms (items 1 and 2 above) that developers use
to write new application-specific components.

In addition to the architecture concepts discussed in the
previous section, the XML schema lets developers express
the following:

1. Ground dictionaries. The XML specification for a com-
ponent C may include a component ground dictionary: for
example, the commands that C implements and the telemetry
channels that it emits. Each deployment D has a deployment
ground dictionary (or just ground dictionary); it is the union
of the ground dictionaries of the component instances used
in D. F Prime comes with a lightweight ground data system
(GDS) that provides commanding and telemetry for F Prime
deployments, via the ground dictionary. The dictionary may
also be translated to the formats required by other ground
tools.
2. Data types. The XML schema allows developers to define
basic data types: enumerations, structures, and arrays. The
generated C++ code automatically serializes these types to
and from a binary format. These types may appear in port
types (for example as the type of data carried on a port) and
in the ground dictionary (for example, as the type of data
emitted as telemetry).

Constructing a Deployment

To construct an F Prime deployment, developers typically do
the following:

1. Design the topology. To manage complexity, developers
typically divide the topology graph for a deployment into sub-
graphs: for example, one for commands, one for telemetry,
and so forth. In this step, the developers decide which F Prime
components they will reuse and which components they will
develop. The newly developed components typically have
new application-specific behavior.
2. Design, code, and test the new components. For each
new component C identified in step 1, the developers de-

2

termine what new types and ports are needed, if any, to
implement C. They construct a model of the types, for the
ports, and for C. They run the F Prime code generator,
generating a C++ base class for C. The base class contains a
pure virtual function for each of C’s input port handlers. The
developers write a derived class for C, overriding each pure
virtual function with the desired behavior. Then they write
and run unit tests for C, using F Prime’s built-in support for
unit testing.
3. Construct the topology. The developers write a topology
model that defines the component instances and states how
their ports are connected. The code generator generates
(a) C++ code for connecting the component instances and
(b) an XML ground dictionary. The developers also hand-
write C++ code for setting up and tearing down the topology.
This handwritten code calls the auto-generated function for
connecting the component instances. It includes a main
function for starting the application.
4. Test the topology. The developers perform integration
testing on the topology, either interactively via the GDS or
in a scripted manner. F Prime provides a Python interface for
writing scripted integration tests.

3. THE FPP LANGUAGE

We now give an overview of the FPP modeling language. For
full details, see the the FPP User’s Guide [6] and the The FPP
Language Specification [7]. We divide the discussion into
the following sections: constants, types, ports, components,
component instances, topologies, and ground dictionaries.

Constants

FPP lets you define named constants. Constant definitions
associate names with values, so that elsewhere in the model
you can use the name instead of repeating the literal value.
Figure 1 shows some examples of constant definitions. It
also illustrates some basic features of FPP: comments, an-
notations, and module definitions.

Line 1 of Figure 1 illustrates a comment. This is some text
addressed to human readers; the FPP parser ignores it. Lines
2–26 illustrate a module definition. A module definition in
FPP is like a namespace in C++: it introduces a name and a
scope; the name qualifies all the definitions inside the scope.
In this example, all the definitions are qualified with the name
Constants.

Lines 5–24 of Figure 1 illustrate constant definitions of
various types. In each case FPP infers the type from the
expression appearing after the equals sign. The lines of
text beginning with the @ character are annotations. The
parser associates this text with the definition next to which
it appears. The text is then available for use during code
generation; a typical use is to generate a comment. Line 18
illustrates an array expression. Arrays are first-class values
in FPP. In this case, the array value has three elements 1,
2, and 3, each of integer type. Similarly, line 21 illustrates
a struct expression. Structures (or structs) are first-class
values. In this case, the struct value has members x and y.
Member x is assigned the symbolic value a, which evaluates
to the integer 123. Member y is assigned the symbolic value
b, which evaluates to the floating-point value 123.456. Line
24 illustrates an arithmetic expression. The constant g is
assigned the value a + 1, which evaluates to 124. Evaluation
of arithmetic expression occurs with arbitrary precision for
integers and with 64-bit values for floating-point numbers.

1 # Some examples of FPP constants

2
3 module Constants {

4
5 @ An integer constant

6 constant a = 123

7
8 @ A floating-point constant

9 constant b = 123.456

10
11 @ A Boolean constant

12 constant c = true

13
14 @ A string constant

15 constant d = "This is a string"

16
17 @ An array constant

18 constant e = [1, 2, 3]

19
20 @ A struct constant

21 constant f = { x = a, y = b }

22
23 @ An arithmetic expression

24 constant g = a + 1

25
26 }

27
28 @ A module-qualified use

29 constant a = Constants.a + 1

Figure 1. FPP constant definitions.

Lines 28–29 illustrate a module-qualified use of a constant
definition. The constant definition a at the outer scope refers
to the constant definition a inside the Constants module,
via the qualified name Constants.a. The value associated
with a at the outer scope is 124.

When writing FPP definitions, the order does not matter. For
example, this is allowed:

constant b = a + 1 # OK, b gets the value 2
constant a = 1

However, cycles in the graph of definitions and their uses are
not allowed. For example, this is illegal:

constant a = b
constant b = a # Error: use-def cycle

Types

FPP lets you define the following kinds of basic data types:
arrays, structures (structs), and enumerations (enums). These
correspond to the types expressible in F Prime XML. You can
also define an abstract type; this is a type that is defined in
C++ and is opaque in the FPP model. Figure 2 shows some
examples.

Lines 1–8 illustrate array definitions. As shown in line 2,
a basic array type specifies a name, a number of elements
(here 3), and an element type (here U32, representing a
32-bit unsigned integer). The number of elements may be
any constant expression of numeric type. The element type
may be a signed or unsigned integer, a floating-point type, a
Boolean type, a string type, or a name that refers to a type
definition. Line 5 shows an array definition with an optional
default value. This is the array value associated with the
array type if no other value is given. The default value may

3

1 @ An array type

2 array A1 = [3] U32

3
4 @ An array type with a default value

5 array A2 = [3] U32 default [1, 2, 3]

6
7 @ An array type with a format string

8 array WheelSpeeds = [3] U32 format "{} RPM"

9
10 @ A struct type

11 struct S1 { x: U32, y: string }

12
13 @ A struct type with a default value

14 struct S2 { x: U32, y: string } default {

15 x = 1

16 }

17
18 @ A struct type with a member format string

19 struct Channel {

20 name: string

21 offset: U32 format "offset 0x{x}"

22 }

23
24 @ An enum

25 enum E1 { X, Y }

26
27 @ An enum with numeric values

28 enum E2 { X = 1, Y = 2 }

29
30 @ An enum with a representation type

31 enum E3: U8 { X, Y }

32
33 @ An enum with a default value

34 enum E4 { YES, NO, MAYBE } default MAYBE

35
36 @ A qualified use of an enumerated constant

37 constant maybe = E4.MAYBE

38
39 @ An abstract type

40 type T

Figure 2. FPP type definitions.

be any expression whose type matches the shape (number
of elements and element type) of the array. If you omit the
default value, then the default value for the array has, at each
element, the default value associated with the type of the
element. The default value associated with a type T is zero if
T is numeric, false if T is Boolean, the empty string if T is
a string type, and the default value specified in the definition
of T if T is a named type. Line 8 shows an array definition
with an optional element format string. The format string
says how to display each element of the array, after replacing
the sequence {} with the value of the element. The sequence
{} is called a replacement field. For example, in this case an
element value of 1000 would be displayed as 1000 RPM.

Lines 10–22 illustrate struct definitions. A basic struct defi-
nition specifies a name and a sequence of struct members,
each of which has a name and a type. For example, line 11
specifies a struct S1 with two members: x of type U32 and
y of type string. Lines 14–16 show a struct definition with
an optional default value. Again, the default value specifies
the value to use for the type when no other value is given.
The default value may be any expression whose type matches
the shape (member names and types) of the struct definition.
If any member is missing from the default value, then that
member gets the default value for its type. For example, the

code shown omits the member y. If no default value is given,
then all members get the default values for their types. Lines
18–22 show a struct definition with an optional member
format string. The member format string is similar to the
format string for an array element; it says how to display
the member when displaying a value of the struct type. In
the code shown, the replacement field {x} says to display the
member in hexadecimal format; for example an offset value
of 256 would be displayed as offset 0x100.

Lines 24–34 illustrate enum definitions. An enum definition
is a named type T together with several named numeric
constants called enumerated constants. The enumeration
constants are the values that the type T may attain. As shown
in line 28, a basic enum definition specifies a name and a
sequence of enumerated constants. As in C and C++, if the
enumerated constants have no explicit values, then they get
the values 0, 1, 2, and so forth. You can also provide explicit
values for the constants, as shown in line 28. As shown in
line 31, you can provide an optional representation type for
an enum. Here the representation type is U8 (8-bit unsigned
integer). The representation type is the type used to store
values of type T in a binary format; the default representation
type is I32 (32-bit signed integer). As shown in line 34, you
can provide a default value for an enumeration type. In line
34, the default value for enumeration type E4 is MAYBE. If you
give no default value, then the default is the first enumerated
constant in the sequence. Line 37 shows that when referring
to an enumerated constant outside the scope of the enum, you
must qualify the constant name with the enum name.

Line 40 illustrates an abstract type. This definition says that
the name T defines a type that may be used in the model.
However, it doesn’t say what the type is; the type is defined
via a handwritten class in the C++ implementation. In this
way the FPP model can refer to types that are not directly
expressible in the model.

Ports

FPP lets you define ports; these correspond to port definitions
in the F Prime XML. Figure 3 shows some examples.

1 @ A basic port

2 port P1

3
4 @ A port with formal paramters

5 port P2(a: U32, b: string)

6
7 @ A port with a return type

8 port P3 -> U32

9
10 type T

11
12 @ A port with a reference parameter

13 port P4(

14 ref result: T @< The result

15)

16
17 enum Status { FAIL, SUCCEED }

18
19 @ A port that returns a status value

20 port P5(ref result: T) -> Status

Figure 3. FPP port definitions.

Line 2 shows a basic port definition. This port carries no
data. It could be used, for example, as a triggering event.

4

Line 5 shows a port with formal parameters. These are
similar to the formal parameters of a function signature: they
provide named, typed variables that carry data. The FPP
formal parameters become the formal parameters of a handler
function in the C++ translation. A port may have a return
type, as shown line 8. A port definition with a return type
may be used only in a synchronous port specifier. The return
type is the type of the value returned when invoking the port.

As shown in line 14, you can mark a port formal parameter
ref. In this case, the parameter is passed by mutable
reference when the port is invoked synchronously. As in
C++, a mutable reference parameter provides an alternate
way to return a value. For example, a C++ handler function
corresponding to the port definition in lines 12–15 could store
a value of type T into the parameter result. Line 14 also
shows that we can annotate formal parameters, and we can
use the syntax @< to place the annotation after the element
being annotated.

Line 20 shows another common use of a ref parameter, to
return a value by reference and a status by return type. A C++
handler function for port P5 in a component C might look like
this:

Status C::P5_handler(T& result) {
Status status = Status::FAIL;
if (...) {

...
result = ...
status = Status::SUCCEED;

}
return status;

}

Components

1 @ A port for carrying an F32 value

2 port F32Value(value: F32)

3
4 @ A passive component for adding F32 values

5 passive component PassiveF32Adder {

6
7 @ Input 1

8 sync input port f32ValueIn1: F32Value

9
10 @ Input 2

11 sync input port f32ValueIn2: F32Value

12
13 @ Output

14 output port f32ValueOut: F32Value

15
16 }

17
18 @ An active component for adding F32 values

19 @ Uses a port array

20 active component ActiveF32Adder {

21
22 @ Inputs 0 and 1

23 async input port f32ValueIn: [2] F32Value

24
25 @ Output

26 output port f32ValueOut: F32Value

27
28 }

Figure 4. Passive and active components.

Writing components—Figure 4 shows how to write a passive
component and an active component. Writing a queued
component is similar.

Lines 4–16 of Figure 4 show a passive component that adds
two F32 values (32-bit floating-point values) and produces
an F32 value. There are three port specifiers, specifying
two synchronous input ports and one output port. Each port
specifier states the kind, the name, and the type of the port.
Here the port type is F32Value. This port type is defined in
line 2 of the example.

Lines 18–28 show a similar component, but this one is active
instead of passive, and the input ports are asynchronous
instead of synchronous. Also, we have used an array of input
ports instead of two separate named ports. In FPP, every port
specifier specifies an array of ports; if no array size is given,
then the default size is one.

Rules for port specifiers—FPP enforces the following rules
for port specifiers:

1. No passive component may have an async input port. This
is because a passive component has no message queue, so
asynchronous input is not possible.
2. An active or queued component must have asynchronous
input. That means it must have at least one async input port;
or it must have an internal port (a port that a component can
use to send a message to itself); or it must have at least one
async command (described below in the section on ground
dictionaries).
3. A port type used in an async input port may not have a
return type. This is because returning a value makes sense
only for synchronous input.

1 @ An active component for adding F32 values

2 @ Specifies priority and queue full behavior

3 active component F32Adder {

4
5 @ Inputs 0 and 1

6 async input port f32ValueIn: [2] F32Value \

7 priority 10 drop

8
9 @ Output

10 output port f32ValueOut: F32Value

11
12 }

Figure 5. Priority and queue full behavior for async ports.

Priority and queue full behavior—Figure 5 shows how to
specify priority and queue full behavior for an async port.
This example is similar to the active component shown in
Figure 4, except that the async input port has priority 10 and
specifies drop for the queue full behavior. The priority is a
numeric value whose meaning depends on the OS. The queue
full behavior is one of assert (fail a FSW assertion and
abort), block (block the sender until the queue is available),
or drop (drop the message that overflowed). The default
behavior is assert.

Lines 6–7 show how to distribute a unit of FPP syntax across
several lines: you can escape the newline with a backslash
character.

Serial ports—When writing a port instance, instead of speci-
fying a named port type, you may write the keyword serial.
Doing this specifies a serial port. A serial port does not
specify the type of data that it carries. It may be connected
to a port of any type. Serial data passes through the port; the
data may be converted to or from a specific type at the other
end of the connection.

5

1 @ Component for repeating a serial data stream

2 passive component SerialRepeater {

3
4 @ Input

5 sync input port serialIn: serial

6
7 @ Output

8 output port serialOut: [10] serial

9
10 }

Figure 6. Serial ports.

Figure 6 shows an example. This is a passive component for
taking a stream of serial data and repeating it by copy onto
several streams.

By using serial ports, you can send several unrelated types
of data over the same port connection. This flexibility comes
at the cost that you lose the type compile-time type checking
provided by port connections with named types.

1 @ A component illustrating special ports

2 passive component SpecialPorts {

3
4 @ A port for receiving commands

5 command recv port cmdIn

6
7 @ A port for registering command opcodes

8 command reg port cmdRegOut

9
10 @ A port for sending command responses

11 command resp port cmdResponseOut

12
13 @ A port for emitting events

14 event port eventOut

15
16 @ A port for emitting text events

17 text event port textEventOut

18
19 @ A port for emitting telemetry

20 telemetry port tlmOut

21
22 @ A port for getting parameter values

23 param get port prmGetOut

24
25 @ A port for setting parameter values

26 param set port prmSetOut

27
28 @ A port for getting the time

29 time get port timeGetOut

30
31 }

Figure 7. Special ports.

Special ports—A special port is a port that has a special
behavior in F Prime. The special behaviors fall into five
groups: commands, events, telemetry, parameters, and time.
Figure 7 illustrates the special ports.

1. The special command ports are command reg for reg-
istering command opcodes with the dispatcher, command

recv for receiving commands, and command resp for send-
ing command status responses to the dispatcher. Lines 4–11
illustrate these ports.
2. The special event ports are event for sending event

reports in binary form and text event for sending event
reports in text form. An event report is a report of onboard
activity, such as completing a file uplink. Lines 13–17
illustrate these ports.
3. The special telemetry port is telemetry for sending
telemetry. Lines 19–20 illustrate this port.
4. The special parameter ports are param get for getting
a parameter value and param set for setting a parameter
value. A parameter is a FSW configuration constant that
is stored in a parameter database and may be updated from
the ground. Lines 22–26 illustrate these ports.
5. The special time port is time get for getting the time.
Lines 28–29 illustrate this port.

In the section on ground dictionaries below, we explain how
to specify the data sent on these ports (commands, event
reports, telemetry channels, and parameters).

1 @ Component for checking health of

2 @ active components

3 queued component Health {

4
5 @ Number of health ping ports

6 constant numPingPorts = 10

7
8 @ Ping output port

9 output port pingOut: \

10 [numPingPorts] Svc.Ping

11
12 @ Ping input port

13 async input port pingIn: \

14 [numPingPorts] Svc.Ping

15
16 @ Corresponding port numbers of

17 @ pingOut and pingIn must match

18 match pingOut with pingIn

19
20 }

Figure 8. Matched ports.

Matched ports— Figure 8 shows a queued component
Health. Its function is to send periodic messages to active
components, emitting a warning or causing an abort if no
response is received within a specified time interval. In order
for this component to function properly, we must obey the
following constraint when connecting it into a topology: for
every component C that is connected to port array pingOut

at port p, C must be connected to pingIn at the same port p.
We enforce this constraint with a port matching specifier,
as shown in line 18 of the example. When analyzing the
topology, FPP will (1) check that any manually-supplied port
numbers obey the constraint; (2) fill in any missing numbers
in a way that obeys the constraint; and (3) emit an error if the
constraint cannot be satisfied.

Figure 8 also shows that you can define a constant inside
a component definition. The constant name is qualified by
the component name; here the full name of the constant is
Health.numPingPorts. Similarly, you can define types
inside component definitions.

Component Instances

FPP lets you define component instances that you can use
to construct topologies. Figure 9 shows an example. It is
a slightly modified version of the cmdSeq instance from the
Ref example in the F Prime GitHub repository [8]. Ref is
the reference example that exercises the F Prime framework

6

1 instance cmdSeq: Svc.CmdSequencer \

2 base id 0x0600 \

3 queue size Default.queueSize \

4 stack size Default.stackSize \

5 priority 100 \

6 {

7
8 phase Fpp.ToCpp.Phases.configConstants """

9 enum {

10 BUFFER_SIZE = 5*1024

11 };

12 """

13
14 phase Fpp.ToCpp.Phases.configComponents """

15 cmdSeq.allocateBuffer(

16 0,

17 Alloc::allocator,

18 ConfigConstants::cmdSeq::BUFFER_SIZE

19);

20 """

21
22 phase Fpp.ToCpp.Phases.tearDownComponents """

23 cmdSeq.deallocateBuffer(Alloc::allocator);

24 """

25
26 }

Figure 9. The cmdSeq instance from the Ref example.

and core components and shows how to construct an F Prime
project. cmdSeq is short for “command sequencer.”

As shown in line 1, to define a component instance, we pro-
vide a name and a type. The type names a component. Here
the name is cmdSeq and the type is Svc.CmdSequencer.
Then we provide a base identifier, as shown in line 2. This
number is added to the relative identifiers of the component
(e.g., command opcodes and telemetry channel identifiers)
to form the identifiers for the instance. For instances of
active components, we provide a queue size, a stack size,
and a priority, as shown in lines 3–5. The stack size and
priority are parameters of the thread associated with the active
component. We may also provide the number of a CPU to use
to run the thread (not shown in this example).

Next we may provide init specifiers, as shown in lines 6–26.
Each init specifier has a phase, which is a predefined numeric
constant corresponding to a phase of code generation. Then it
has a string representing C++ code to insert into the code gen-
eration in that phase. Here, lines 8–12 say to insert the spec-
ified constant into the area for configuration constants, lines
14–20 say to insert the call to cmdSeq.allocateBuffer

when configuring the component instances, and lines 22–24
say to insert the call to cmdSeq.deallocateBuffer when
tearing down the component instances.

The code examples in Figure 9 show the use of the multiline
string literal delimited by """. This is similar to the multiline
string literal in Python, Scala, and other languages.

When generating C++ code for an init specifier whose type is
component C, FPP infers the use of a standard C++ header
for C. To use a different header, you can write at and a
header path after the base identifier. With this technique, you
can use any one of several different implementations for the
same component model.

Topologies

1 port P

2
3 passive component C {

4 sync input port pIn: P

5 output port pOut: P

6 }

7
8 instance c1: C base id 0x100

9 instance c2: C base id 0x200

10 instance c3: C base id 0x300

11
12 @ An example topology

13 topology Example {

14
15 @ Makes c1 part of the topology

16 instance c1

17 @ Makes c2 part of the topology

18 instance c2

19
20 @ Specifies a connection graph C1

21 connections C1 {

22 c1.pOut -> c2.pIn

23 }

24
25 @ Specifies a connection graph C2

26 connections C2 {

27 c2.pOut -> c1.pIn

28 }

29
30 }

Figure 10. An example topology.

Figure 10 shows an example of an FPP topology definition.
Lines 1–6 define a port P and a passive component C with
port specifiers of type P. Lines 8–10 define instances c1

through c3 of component C. Lines 12 and following define
the topology.

Each topology has a name; here the name is Example. Lines
15–18 show examples of component instance specifiers.
These specifiers make instances c1 and c2 part of the topol-
ogy. Notice that only instances c1 and c2 are used in this
topology; c3 could be used in a different topology.

Lines 20–28 show examples of connection graphs. Each
connection graph has a name and specifies some connections.
The graphs let us divide the set of all connections into named
groups. In a more realistic example, the groups would have
meaningful names such as Command, Telemetry, and so
forth. As shown, the connection syntax consists of an output
port, a right arrow, and an input port. Each port consists
of a component name, a dot, and a port specifier name.
FPP checks that the connection graphs are well formed: for
example, each connection goes from an input port to an
output port, and the port types match at the two ends of each
connection.

In this example it is possible to infer the instances from
the connections. However, in general this is not true. For
example, we could add instance c3 to the Example topology
and add no other connections. In this case the ports of c3
would appear as unconnected ports in the topology. This is a
useful procedure for adding new instances to a topology: first
add the instance, and then connect its unconnected ports.

7

Pattern graph specifiers—The connection graphs shown in
Figure 10 are called direct graphs because they directly
specify connections. You can also write pattern graphs.
These are a shorthand way of writing common connection
patterns. For example, suppose we want to connect the time
get ports of component instances to a sysTime instance that
provides the time. Using direct graphs, that might look like
this:

connections Time {
a.timeGetOut -> sysTime.timeGetPort
b.timeGetOut -> sysTime.timeGetPort
c.timeGetOut -> sysTime.timeGetPort
...

}

This works, but it is tedious and repetitive. Instead, you can
write the single line

time connections instance sysTime

and FPP will infer the connections from the types of the
ports. Connection patterns are available for the following
kinds of connections: commands, events, health, parameters,
telemetry, and time.

Port numbering—As discussed above in the section on com-
ponents, each port specifier P in the definition of a compo-
nent C specifies an array of ports. When you instantiate C
and use C.P in a connection graph, you have to specify which
port in the array to connect. There are three ways to do this.

1. Explicit numbering. If necessary, you can write an
explicit port number, expressed as an array index, at any
output or input port position. For example:

c1.pOut[0] -> c2.pIn[1]

In most cases it is better not to do this, and to let FPP number
the ports for you.
2. Matched numbering. For any component instance that
has matched ports, as discussed in the section on components
above, FPP will attempt to fill in any missing port numbers
in a way that obeys the matching constraint. If it can’t satisfy
the constraint, then it emits an error.
3. General numbering. After resolving explicit port num-
bers and matched port numbers, FPP fills in the remaining
port numbers in a deterministic way, using an algorithm
described in the language specification.

Importing topologies—FPP lets you import one topology into
another one. For example, you might have a topology for
command and data handling (CDH). You might have another
topology for guidance, navigation, and control (GNC). And
you might have a third topology that integrates CDH and
GNC. In this case the integrated topology could import the
CDH topology and the GNC topology.

To import a topology B into a topology A, you put the speci-
fier import B inside the definition of topologyA. When you
do this, the following happens:

1. All the component instances of topology B are added to
the instances of A. Any duplicate instances are counted only
once.
2. For each connection group G appearing in either A or B,
all the connections of topologyB in group G are added to the
connections of A in group G.

It is often useful to include one or more instances in a
topology solely for developing that topology. For example,

the GNC topology might require a stubbed version of a fault
protection component in order to run on its own, but it might
use the real fault protection component when imported into
the integrated topology. In this case you can mark the stub
component instance private inside the GNC topology. A
private instance is available for use in the topology where it
is specified, but neither it nor any connection to it is imported
into other topologies.

Ground Dictionaries

1 active component Dictionaries {

2
3 ...

4
5 @ An async command

6 async command START(a: F32, b: U32) \

7 opcode 0x10

8
9 @ An event

10 event Event(

11 count: U32 @< The count

12) \

13 severity activity high \

14 id 0x10 \

15 format "The count is {}"

16
17 @ A telemetry channel

18 telemetry Channel: F64 id 0x10 \

19 update on change

20
21 @ A parameter

22 param Param: F64 default 2.0 id 0x10

23
24 }

Figure 11. Component dictionary specifiers.

In FPP you may include dictionary specifiers in a component
definition. These specifiers define the commands accepted
by the component, the telemetry and events emitted by the
component, and the parameters of the component. Figure 11
shows an example. Lines 5–7 show an async command with
two formal parameters that become bound to arguments when
the command is sent. In general, commands may be sync
(handled immediately) or async (placed on a queue). Lines
9–15 show an event report with one formal parameter and
a severity of high. When the event is emitted, the value of
count replaces the sequence {} in the format string. Lines
17–19 show a telemetry channel, i.e., a pair consisting of
an identifier and a data type. A telemetry channel emits
telemetry points. Each telemetry point is a pair consisting
of a channel identifier and a data value of the corresponding
type. In this case the type is F64 (64-bit floating point). The
channel specifier says that the telemetry is to be emitted only
when it changes. Lines 21–22 show a parameter of type F64
with default value 2.0.

The opcode and identifiers shown in Figure 11 are relative
to the Dictionaries component. For example, if this
component is instantiated into an instance dict, then the base
identifier for dict is added to the relative opcode 0x10 for
START to form the opcode for sending command START to
instance dict.

When a component has dictionary specifiers, it must also have
the special ports from Figure 7 implied by those specifiers.
For example, the Dictionaries component has commands,
so it must have command ports. FPP checks and enforces this

8

rule. Figure 11 does not show these ports; assume they are in
the part of the component represented by ellipses (line 3).

4. THE FPP TOOL SUITE

We now discuss the FPP tool suite. This is the collection
of tools for analyzing and translating FPP models. We
divide the discussion into the following sections: computing
dependencies, checking models, translating models, tool im-
plementation, visualizing topologies, and integration with F
Prime.

Except in the cases of visualizing topologies and converting
XML to FPP, most F Prime users will not run these tools
directly. Instead, they will run the F Prime build utility
fprime-util to request an action, such as building a com-
ponent library or deployment executable. fprime-util is a
Python program that launches builds specified in CMake [9].
The CMake builds run the FPP tools to perform actions such
as computing dependencies or translating FPP models.

Computing Dependencies

In any language that distributes source text over multiple files,
we must address the following problem. Suppose we want to
translate a collection of files F that uses symbols defined in
some other files D. In this case we call D the dependencies
of F . How do we identify the files D when translating F ?
Broadly speaking, there are two approaches:

1. Have the developer write the dependencies into the source
files. This is the approach taken in C and C++ (via header
include directives) and in Python (via import directives).
2. Leave the dependencies out of the handwritten source
code, and let the tools figure it out. Scala and Rust, for
example, take this approach.

In FPP we opt for approach 2. It yields a cleaner source
syntax, more flexibility, and less repetitive declaration. Here
is how we do it:

1. We provide syntax for specifying the location of each
symbol S defined in a project. The location of a symbol S
is the source file where S is defined. The location specifier
syntax is part of the FPP source language, but you generally
do not write it by hand; instead, you let the tools generate it.
2. We provide a tool called fpp-locate-defs for scanning
the source files of a project and computing the locations L of
the symbols that they define.
3. We provide a tool called fpp-depend that takes the loca-
tions L and the source files F and computes the dependencies
D.

Below we explain how we use these tools in the F Prime build
system.

fpp-depend computes dependencies transitively: that is, a
dependency of a dependency is a dependency. This is what
you want for computing the input to the FPP translation tools.
For computing the input to a build system, you may want
direct dependencies. So fpp-depend generates these too,
via a command-line option.

FPP also provides a tool called fpp-locate-uses. This
tool takes as input the locations L and a set of source files
F . It extracts from L the locations corresponding to symbols
used in F . Whereas fpp-depend computes file-level depen-
dencies, fpp-locate-uses computes dependencies at the

level of individual symbols. This level of detail is not needed
for translating FPP models (fpp-depend suffices for that),
but it is useful to developers.

Checking Models

FPP provides a tool called fpp-check for checking the
correctness of an FPP model. When run on a set of input
files F, this tool does the following:

1. Parse F and construct an abstract syntax tree (AST).
2. Build a semantic model from the AST and check for
semantic correctness.

If any error occurs in either step, the tool prints an error
message and halts. Step 2 checks standard rules for language
semantics: for example, it ensures that every use of a symbol
has a matching definition and that the type of every use
matches the context where it is used. This step also checks
the F Prime-specific rules relating to ports, components, and
topologies.

fpp-check has a command-line option that lets you check
for unconnected ports in any topology. An unconnected
port is a port specifier in a component instance that has
no connection at any of its port numbers. Checking for
unconnected ports is useful in at least two ways:

1. After adding a new instance I to a topology T , you can
check for unconnected ports in T . The result shows you all
the ports of I that you need to connect.
2. You can run the check as part of an implementation review.
Any unconnected ports in the report should agree with the
designers’ intent; otherwise there is a mistake.

Translating Models

For the first release of FPP, we opted to leverage the existing
F Prime XML representation and autocoders. Accordingly,
we provide a tool fpp-to-xml for generating F Prime XML
from FPP. We also provide a tool fpp-to-cpp that does
direct FPP-to-C++ translation of FPP features not supported
by the F Prime XML format. Finally, we provide a tool
fpp-from-xml that assists in porting existing XML models
to FPP.

Translating FPP to XML— The fpp-to-xml tool accepts
as input (1) a set F of files to translate and (2) a set I of
imported files via a command-line option -i. The imported
files are read for their definitions but not translated. The
procedure for translating files F looks like this:

1. Run dependency analysis described above on F to gener-
ate I .
2. Run fpp-to-xml -i I F to do the translation.

When translating files F , fpp-to-xml traverses the AST
represented by F and identifies the definitions of types, ports,
components and topologies. For each such definition, it
generates the corresponding F Prime XML file.

F Prime XML requires dependencies to be declared, via
import directives. fpp-to-xml uses the locations of the FPP
files to generate these directives, according to the convention
that each XML file resides in the same directory as the FPP
file that defined the corresponding FPP symbol.

fpp-to-xml provides an option -p that takes a list of path
prefixes. When generating import directives, the tool removes
the matching prefix from the path. That way the generated

9

import directives are system independent, because they are
relative to a system-dependent position (such as the top-level
directory of a repository) that does not appear in the generated
code.

Translating FPP to C++—fpp-to-cpp provides direct FPP-
to-C++ translation in two cases: (1) constant definitions and
(2) topology definitions. In the first case, F Prime XML has
no way to represent symbolic constants. In the second case,
the F Prime autocoder does translate topology XML into C++
code for connecting ports; however there is no way to specify
or generate code for constructing, initializing, and tearing
down component instances. Before FPP, developers had to
hand-write all that code, including a lot of boilerplate that
could easily be inferred from the model. With FPP, they can
write just the code that can’t be inferred from the model, as
illustrated in Figure 9, and use fpp-to-cpp to generate the
rest.

Like fpp-to-xml, fpp-to-cpp takes as input a list I of
imported files and a list F of files to translate. It generates
C++ #include directives using the same strategy as for
XML import directives.

fpp-to-cpp generates files FppConstantsAc.hpp and
FppConstantsAc.cpp representing all the constant defini-
tions in F . By default it uses location of the FPP source file to
generate an include guard for FppConstantsAc.hpp. You
can also set the include guard via command-line option.

For each topology definition T in F , fpp-to-cpp generates
files TTopologyAc.hpp and TTopologyAc.cpp. These
files provide functions for setting up and tearing down the
topologyT that the developers can call from a short handwrit-
ten main function. The file TTopologyAc.hpp includes a
file TTopologyDefs.hpp that the developers must provide.
It contains handwritten definitions used in the topology setup
and teardown code.

Translating XML to FPP—fpp-from-xml accepts one or more
F Prime XML files and generates the corresponding FPP
code. To keep the tool simple, the translation is purely
syntactic; the tool doesn’t do any dependency analysis or
semantic analysis on the XML files. As a result, symbolic
values (for example, default values of array type) can’t be
translated, because the tool has no idea what they mean.
When encountering such a value, the tool generates an an-
notation stating what it could not translate. The developers
can then review the annotation and take appropriate action.

fpp-from-xml does not attempt to translate XML import
directives. It doesn’t need to, because that information will be
reconstructed through dependency analysis after the XML-to-
FPP translation.

Tool Implementation

The tools for analyzing and translating FPP source files are
implemented in Scala. We use a mostly pure functional
style, supplemented by Scala traits for expressing visitors
over structure (e.g., the AST). We use Scala’s monadic
for...yield construct for error handling, in lieu of throw-
ing and catching exceptions.

The code is organized as follows:

1. A library module implements all the analysis and transla-
tion capability. It is organized into the usual parts: syntax,
semantics, and code generation. The parser uses the Scala

Standard Parser Combinator Library [10].
2. A set of Scala programs, one for each tool, provides the
command-line interfaces to the tools. Each program is a
small wrapper that handles command-line options and I/O
and calls into the library to do the work. This way, for
example, fpp-check, fpp-to-xml, and fpp-to-cpp can
all use the same code base for doing parsing and semantic
analysis. Command-line options are handled via scopt [11].

Installation occurs via the Simple Build Tool for Scala
(sbt) [12], together with a shell script that generates Java
Archive (JAR) files, generates shell scripts for invoking the
JAR files, and copies everything into place.

Each of the FPP tools comes with a suite of tests for checking
correctness and for conducting regression testing. The tests
use a combination of ScalaTest [13] for testing the library
code and shell scripts for testing the command-line tools.

Visualizing Topologies

FPP has two companion tools for visualizing topology
graphs. The first one, F Prime Layout [14], is a command-
line tool written in Scala. It extracts named connection graphs
from F Prime XML topologies annotated with special com-
ments. When generating an XML topology, fpp-to-xml
inserts these comments, according to the connection graphs
described in the FPP model. This approach makes F Prime
Layout compatible with F Prime projects that have not yet
switched to FPP. For those projects, users can add the com-
ments by hand. We use comments because the F Prime topol-
ogy XML format has no way to specify named connection
graphs (each topology has a single list of all its connections).

The output of F Prime Layout is a set of JavaScript Object
Notation (JSON) [15] files, one for each connection graph.
Each JSON file describes a layout and forms an input to the
second tool, called F Prime Visualizer [16]. F Prime Visual-
izer is a web application written in JavaScript, HTML Canvas,
and CSS. It provides a browser interface for rendering the
JSON layout files, each one in a separate browser window.
Figure 12 shows an example of a rendered connection graph.
The graph shown represents part of the Rate Groups topology
from the Ref example in the F Prime GitHub repository.

F Prime Layout uses a simple layout algorithm. As shown in
Figure 12, it arranges the component instances into vertical
columns. When doing this it uses a heuristic that attempts to
minimize back edges and edges that cross multiple columns.
Then it sorts the components vertically within each column,
going left to right, using a heuristic that attempts to minimize
line crossings.

In addition to generating JSON layout files, F Prime Lay-
out can directly render connection graphs as encapsulated
PostScript (EPS) files. The rendering uses the pic drawing
tool for Unix. This feature is useful for quickly generating a
topology rendering file, without opening a browser.

Integration with F Prime

As of F Prime v3.0.0 (released December 22, 2021), we have
integrated the FPP tools with the F Prime build environment.
Developers can now use FPP source instead of XML source
to generate code for F Prime types, ports, components, and
topologies. Developers can also use the new C++ gener-
ation that FPP provides for constants and topologies. For
backwards compatibility, building from XML source is still
supported.

10

Figure 12. Part of the Rate Groups topology from the Ref example.

For the most part, the integration of FPP into the F Prime
build is straightforward. First it uses the FPP tools to generate
dependencies. Then it uses the FPP tools to generate XML
and C++. The build architecture is the same as before,
modulo some refactoring and improvement.

We did have to address several performance issues. First, the
FPP tools are slow to start up. This is a general property of
applications that run on the Java Virtual Machine (JVM). For
example, on a 2019 MacBook Pro running Mac OS 10.15.7,
running fpp-check on an empty input file takes around half
a second. The F Prime build system runs the FPP tools
repeatedly (multiple times per build module), and it takes this
startup performance hit each time.

Second, on a modern multicore system, with a build system
that is parallel (dispatching independent work to different
cores) and incremental (running tools only when input files
have changed), the JVM performance hit should not be a
problem. However, before v3.0.0, the dependency analysis in
the F Prime build system was neither parallel nor incremental.
Whenever a developer changed even one source file of a
project, the system would sequentially regenerate the depen-
dencies for every source file in the project. (Then it would
run the autocoder and the C++ compiler incrementally and
in parallel.) This behavior was noticeably slow but tolerable
when building from XML. With the FPP tools in the loop, it
became unacceptable.

For now we decided to tolerate the first problem and to work
around the second one. We will continue to investigate a
better solution, e.g., factoring the dependency computation
into a separate build step so that it is parallel and incremental.

To minimize the impact of the second problem, we used
memoization [17]. When the F Prime build tools generate
dependencies, they remember the input and the results. When
CMake asks for dependencies, the F Prime tools check if the
input has changed since the last request. If it has not, they
give CMake the old results. Otherwise they generate new
ones. This approach is still slow when building the first time,
because all the dependencies are computed sequentially, but
thereafter it is reasonably fast.

The last performance issue relates to location specifiers (de-
scribed above in the section on computing dependencies).
Adding or deleting a symbol definition from an FPP source
file changes the location specifier for that symbol, and the
location specifiers are an input to the dependency analysis.

Therefore a naive approach would regenerate the dependen-
cies of every source file whenever a symbol definition is
added to or deleted from any source file. To address this
issue we do the following, whenever a new build is requested
following a successful build B: (1) recompute the locations
of all the symbols in the project; (2) compute the difference
D between the those locations and the locations computed
during B; (3) for each build module in the project, rerun
dependency analysis if (a) its source files have changed or
(b) if any of its dependencies appear as deletions in D. If the
source files have not changed, then case (b) occurs if and only
if a dependency has moved to a different file.

5. EXPERIENCE WITH FPP

We now discuss our experience using FPP. We divide the
discussion into the following sections: the ASTERIA mod-
eling tool, porting the Ref topology, topology visualization,
comparison with XML, comparison with MagicDraw and
SysML, and implementation language.

The ASTERIA Modeling Tool

The FSW team for the ASTERIA CubeSat missions [31][29]
used a prototype of FPP to develop the ASTERIA FSW. We
will refer to this prototype as the ASTERIA modeling tool.

The ASTERIA modeling tool had a rudimentary parser (it
accepted text files in a simple tabular form) and minimal error
checking (most errors would go through to be caught at the
XML or C++ levels). It had no capability for declaring sym-
bolic constants, and it lacked FPP’s pattern graph specifiers.
In other respects, it behaved like FPP: it allowed users to
compose F Prime models in a simple textual form, and it
generated XML and C++. It supported named connection
graphs and imported topologies. It auto-numbered ports,
including matched ports, and it reported unconnected ports.
It had a feature similar to FPP’s init specifiers for associating
handwritten C++ fragments with component instances. Like
FPP, it inserted those fragments into the generated code for
setting up and tearing down a topology.

The ASTERIA modeling tool had a simple topology visual-
izer based on the dot tool from the Graphviz package [18].
Like the FPP visualizer, the ASTERIA visualizer rendered
each named connection graph separately. Unlike FPP, it
rendered each connection between any port of a component
instance A and any port of a component instance B as an
arrow from A to B; it did not attempt to draw the ports or

11

show the port numbers. The port connections and numbers
were stored in a separate table that could be rendered as
HTML.

In our experience the ASTERIA modeling tool gave a pro-
ductivity boost, particularly in the area of topology modeling.
The ASTERIA FSW consisted of several subsystems (ten for
the main mission, a few more for the extended missions).
Using the ASTERIA tool, we modeled each subsystem as
a separate topology that could run on its own and also
formed part of the release topology, via the topology import
mechanism. Doing this provided the following benefits:

1. It fostered a modular approach to design and development.
We could separately design, implement, and test each subsys-
tem.
2. It helped with testing on flight-like hardware, especially
in the early phases of ASTERIA FSW development, when
the configuration of the testbed hardware or “flat sat” was
still in flux. For example, we could build the Attitude Control
subsystem as a standalone deployment and test it, even on a
day when we did not have access to the Power subsystem.
3. We could isolate behavior by creating topologies with
stubbed components. For example, when developing code for
the ASTERIA autonomy experiments [29], we created a de-
ployment that exercised the planning and execution software
and used stubs for the functional components. This approach
allowed us to test and debug the planning and execution
software in a controlled way.

The ASTERIA modeling tool minimized the amount C++
code we had to write to manage topologies. We could write
one fragment of initializer code per component instance,
and reuse the same instances in each topology. If we had
had to hand-manage a separate C++ initializer file for every
topology, the amount of code duplication would have been
large, constructing each new deployment would have been
painful, and the code would have been difficult to maintain.

Porting the Ref Topology

As part of the development for F Prime v3.0.0, we ported
the XML model for the Ref topology example to FPP. The
model has 31 components. Eight of them are specific to
the Ref example and are for demonstration only. The other
23 are flight-grade generic components and are part of the
standard command and data handling topology for F Prime
flight projects.

Porting the Ref model let us demonstrate that FPP can suc-
cessfully model an F Prime project. It also let us exercise the
fpp-from-xml tool. Finally, porting the Ref model makes
the reusable parts of the model available to other developers,
for use in their projects.

For the most part, the porting effort went smoothly. The main
challenge involved the elimination of some older styles of
enumerations and port specifiers that are no longer supported
in the transition to FPP.

In our experience, fpp-from-xml strikes a good compro-
mise. It does all the tedious translation work; the part that
it does not do involves minimal effort. At the same time,
the tool avoids complex parsing and analysis: for example,
it doesn’t attempt to do any semantic analysis on the XML,
or to parse fragments of C++ embedded in the XML. This
compromise seems appropriate for a best-effort tool that
assists a one-time porting effort.

Topology Visualization

The topology visualizer is an important part of the FPP work
flow. First, it provides a picture of the components, ports,
and connections in a topology. Such a picture is essential
both for understanding the design and for communicating
the design to others, e.g., in design reviews. Second, the
visualizer provides information that is not directly available
in the FPP source files. Specifically, it provides (1) all the
resolved connections from the pattern specifiers; (2) all the
resolved connections from the imported topologies; and (3)
all the resolved port numbers.

In our experience, dividing the topology into named con-
nection graphs helps manage complexity of large topology
graphs. It also makes the rendering problem easier. Trying
to render a full project topology all at once would be taxing
even for a sophisticated layout algorithm. Once we break
the topology up into manageable pieces, a simple layout
algorithm such as the one in the FPP visualizer is sufficient.

Comparison with XML

Compared to F Prime XML, FPP source is much more
succinct. For example, the FPP model shown in Figure 4
has 28 lines and 513 characters. The corresponding F Prime
XML has 76 lines and 2,161 characters. The difference is
pronounced in the area of topology models. For example, the
FPP Ref topology model has 154 lines and 4,643 characters.
The corresponding F Prime XML has 930 lines and 47,556
characters.

The FPP source is also much more readable. XML is intended
to be read and written by machines, not people. It contains a
large amount of syntactic noise (angle brackets, backslashes,
redundant tag names, quotation marks) that make it hard to
read and to write by hand.

FPP provides improved integration between the model and
the generated code, specifically in the areas of symbolic
constants and topology construction code. For topology
construction, the init specifiers provide the glue between
the handwritten and the auto-generated parts of topology
construction. For constants, some hard-coded values in the
XML component specifications (e.g., priorities, maximum
string sizes) are really configuration parameters. With FPP,
we can make them user-configurable. We can also make them
visible to the C++ code, so the FSW implementation and tests
can refer to them. We will make these improvements as we
continue to develop the FPP model for core F Prime.

FPP provides robust error checking. The XML schemas do
some error checking, but many semantic rules are not checked
at the XML level. Errors that get through the XML cause
Python autocoder errors or C++ compilation errors that can be
hard to understand. FPP catches more errors at the language
level, and it provides better error messages.

FPP is better specified than the F Prime XML autocoder. The
F Prime User’s Guide [19] gives an informal description of
the intended behavior of the autocoder. Yet not all details of
the behavior are covered, and the behavior in these cases can
cause surprise. FPP uses a specification-oriented approach,
which is closer to the way that we develop flight code at
JPL. The specification aims to cover all the behavior in
an unambiguous way; any surprise is either a bug in the
implementation (fixed by bringing it in line with the spec)
or a bug in the spec (fixed by updating the spec). We hope
that this tighter approach will lead to fewer bugs and a clearer

12

path to fixing any bugs that do occur.

Comparison with MagicDraw and SysML

Before the ASTERIA prototype, F Prime used a model-
ing approach based on the MagicDraw modeling tool [20].
MagicDraw models use the System Modeling Language
(SysML) [21]. A previous paper on F Prime [27] gives an
overview of this approach.

There were several issues with this approach. First, Magic-
Draw is a commercial tool, and we wanted an open-source
solution. We did not want to require F Prime users to pay for
a MagicDraw license.

Second, SysML and MagicDraw are more general and pow-
erful than required for F Prime modeling. As a result, they
are unduly complex and difficult to use. For example, the
MagicDraw model for the F Prime Command Dispatcher is
639K bytes in size. The corresponding FPP model is about
one percent of that size, at 6,449 bytes. The MagicDraw file
is much larger because it mixes metadata (e.g., information
about graphical rendering) with model data. The MagicDraw
format is also not human readable and not amenable to
version control in git. By contrast, FPP separates model data
from rendering data, and the model data is stored in a simple,
human-readable form that is easy to maintain in git. Finally,
representing F Prime build modules as MagicDraw modules
was awkward and error-prone, at least as of the version of
MagicDraw that we used (version 18).

Third, graphical modeling addresses only some of the needs
of F Prime. It works well for component interface diagrams
and for topology diagrams. It does not provide a solution
for specifying, e.g., ground dictionaries. In the F Prime
MagicDraw approach, developers had to (1) write ground
dictionaries directly in XML and (2) configure the SysML
model to include the handwritten XML. This approach was
awkward, and it remained tethered to XML as a source
language. On the plus side, it provided graphical editing for
topologies, a capability that we still lack in the FPP tools. We
discuss this issue further in Section 6.

Implementation Language

As discussed in Section 4, we are using Scala to implement
the FPP tools. We considered using Python for consistency
with the existing F Prime tools (build tools, ground data
system, autocoders). We chose Scala because of its static type
system and its strong support for this kind of work.

Based on our experience developing FPP so far, we are very
happy with this choice. Scala’s combination of functional and
object-oriented features is well suited to developing parsers,
analyzers, and translators. The functional features keep the
code clean and high-level. The object-oriented features help
with code reuse (e.g., they allow us to build up traits for
visiting ASTs with increasing complexity, each one using
the previous ones). Scala’s static type system also really
helps. Each data structure (for example, an AST node, or
the data structure for holding semantic analysis results) has
statically typed fields. The types come directly from the
design documentation. As we develop the code, the compiler
checks that we use the data structures according to their
types, and therefore according to the design. When we revise
the design in a way that breaks existing behavior (e.g., by
modifying an AST node), the compiler tells us what we need
to fix (e.g., visitors, analysis passes, and code generation
passes).

As noted above, there is a performance cost to using Scala.
There may also some cost to maintaining tools in two lan-
guages (Scala and Python), although we have found that sbt
makes it easy to integrate Scala tools with the installation.

6. FUTURE WORK

In this section we discuss our plans for future work. We
discuss the following topics: improving the C++ code gener-
ation, improving the visualizer, advanced analysis, and state
machine modeling.

Improving the C++ Code Generation

As mentioned above, most of the FPP-to-C++ code gener-
ation currently goes from FPP to XML (via the FPP tools)
and then to C++ (via the F Prime code generator). As future
work, we intend to implement all the C++ code generation in
the FPP back end, cutting XML out of the loop.

This work will have at least two benefits. First, it will elim-
inate an extra step in the build process, increasing efficiency.
Second, the F Prime autocoder uses templates written in
Cheetah [22]. While these templates enabled rapid initial
development of the autocoder, they are hard to maintain,
because they intertwine two programs (the program doing
the generation and the program being generated) in a way
that obscures the structure of both. FPP uses a traditional
compiler-based back end that makes better use of the imple-
mentation language (in this case, Scala) to organize the code.
By switching to the FPP back end, we can make the translator
code cleaner, more maintainable, and more extensible.

Once we have revised the C++ back end, we can improve the
generated code. We envision at least two specific improve-
ments:

1. As originally designed, F Prime XML did not support
enum types or array types. The C++ code generation for
these types uses the mechanism for representing serializable
class types. However, enums don’t need full serializable
C++ classes. Therefore we can improve the generated code,
making it more efficient in time and space.
2. F Prime XML has no way to represent constants and types
inside components. When any constant or type appears inside
a component definition in FPP, the corresponding C++ object
uses an underscore qualifier (e.g, A B) instead of a proper
C++ qualifier (e.g., A::B) in its name. With improved code
generation, we can address this issue.

Improving the Visualizer

The current visualizer is very basic. It just shows component
instances, ports, and connections. It would be useful to show
more information, including the kind of each component
instance (active, passive, or queued) and input port (async,
sync, or guarded). The current visualizer also produces some
line crossings that could be eliminated with a better layout
algorithm. Finally, we could add user control over the layout
of graph elements, as we did in a prototype that we previously
developed [27]. That element of the prototype has not yet
made it into our production release.

Some F Prime users have expressed a desire for graphical
model editing similar to what MagicDraw provides. The
challenge here is to provide an adequate user interface for
this activity, while keeping the tool simple and usable. We
envision a lightweight approach in which the graphical tool

13

generates FPP, and all the model analysis is done in the FPP
tools. Such an approach would avoid the issues we saw
with the previous MagicDraw approach (e.g., overlapping
implementation of model checking rules in a MagicDraw
plugin and in the Python autocoder; awkward fit between
MagicDraw modules and F Prime modules; lack of a source
language for representing command dictionaries).

Advanced Analysis

The FPP language and tools focus on the structure of FSW
systems. As future work, we plan to extend FPP to support
additional analysis based on (1) functional properties of com-
ponents and topologies (e.g., performance characteristics),
(2) the intended uses of components, and (3) estimated cost.

Performance analysis—We would like to extend FPP model-
ing to support static analysis of performance properties such
as timing, memory allocation, and maximum queue depth.
Manual analysis of these properties is challenging even for
small-scale systems. An analyzer integrated with FPP could
identify performance bottlenecks early, when they are less
expensive to fix. It could also let developers experiment with
different model parameters. To support this kind of analysis,
FPP component models could include performance estimates
based on profiling data. The FPP tool suite could include
tools for doing the profiling.

In collaboration with Carnegie Mellon University, we have
developed a prototype of this approach. In this prototype,
developers use annotations, discussed in Section 3, to attach
functional specifications to an FPP model. The specifications
encode probabilistic estimates of performance, such as exe-
cution time. They also specify aspects of the environment,
such as the number of available processors. The analysis
tool uses a discrete event simulation to identify scenarios that
potentially violate specified timing constraints (e.g., cycle
overruns) and memory constraints (e.g., queue overflows).

Component usage analysis—Currently FPP models encode
limited information about intended component uses via spe-
cial ports and pattern graph specifiers, as described in Sec-
tion 3. By increasing the amount of information, we can
support more analysis along these lines. For example, (1)
an instrument component I could be marked as requiring a
specific communication protocol P , and (2) a driver compo-
nent D could be marked as implementing P . The analysis
could check that I and D are properly connected. Or the user
could add I to a topology, and the system could infer that
D is required. Or the system could provide a list of driver
components Di satisfying P and ask the user to select one.

Cost analysis—We can augment FPP component models to
incorporate information pertaining to code size, complexity,
criticality, and availability. Analysis tools can use this infor-
mation to estimate implementation cost and effort. With this
capability, cost assessment becomes integrated with software
design. Such integration should reduce the manual effort
required to construct a cost estimate. It should also lead to
a better estimate.

Combined analysis—Taken together, the analysis capabilities
described above can make FPP into a powerful tool for
constructing FSW designs, analyzing FSW correctness and
performance, justifying the use of inherited components, and
estimating the cost of developing new components. These
capabilities can reduce the overall cost of developing FSW,
while making the resulting FSW more robust.

State Machine Modeling

Hierarchical state machines are common in FSW and embed-
ded programming. It is useful to model such state machines
and to use the models to generate code; this activity is
conceptually similar to the FSW modeling discussed in this
paper. When developing FSW in F Prime, we have used
tools for state machine modeling, including a MagicDraw
plugin developed at JPL [23] and tools provided by Quantum
Leaps [24].

Currently there is no direct support in FPP or F Prime for
state machine modeling. Modeling of FSW architecture and
of state machines occurs separately, and integration occurs
at the C++ level, usually by making a state machine part of
the C++ implementation of an F Prime component. We will
investigate the possibility of extending FPP to provide direct
support for hierarchical state machines.

7. RELATED WORK

General tools for model-based software engineering provide
a natural way to represent components and ports. One can
adapt these tools to represent some of the concepts in F Prime.
In Section 5 we discussed a previous approach to F Prime
modeling using MagicDraw [20] and SysML [21]. Halvorson
et al. [30] describe a similar approach.

In this work, we chose to develop a domain-specific language
(DSL) for F Prime modeling. Developing a DSL takes some
effort, but the result is well-specified and well-tailored to the
domain. Possibly the two approaches could be combined, by
having tools such as MagicDraw generate FPP code and/or
by generating a standard format such as SysML from an FPP
model.

Other free and open-source FSW frameworks include
cFS [25] and KubOS [26]. Like F Prime, these frameworks
are based on reusable components with defined interfaces.
Unlike F Prime, they both use data-driven architectures,
in which components send and receive data over a shared
network or bus. There are no explicit connections between
components. Effectively, the F Prime topology diagram is
replaced with a table of message identifiers and their uses.
Such an architecture is flexible, because it encodes structure
as data instead of code. On the other hand, it may be less
efficient and less deterministic than using explicit compile-
time connections. It also may be more opaque, because the
pattern of communication between the components is implicit
in the data. To our knowledge, neither cFS nor KubOS
provides a way to formally model the structure of an FSW
application.

8. CONCLUSION

We have presented F Prime Prime (FPP), a free, open-source
domain-specific language for modeling F Prime FSW appli-
cations. We have discussed the design and implementation
of FPP, our experiences with FPP to date, and our vision for
future work. We believe that FPP can improve the experience
of using F Prime. We also believe that FPP can serve as
an example of the benefits of FSW modeling with domain-
specific languages.

14

ACKNOWLEDGMENTS

This research occurred at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004). The authors acknowledge the following
persons: Klaus Havelund, Steve Jenkins, David Wagner,
Mitch Ingham, Bob Rasmussen, and the F Prime team for
review and feedback on the language design; Tim Canham
for suggesting pattern graph specifiers; Jordan Ishii, Rohan
Dhesikan and Josh Weadick for assistance with FPP imple-
mentation, F Prime integration, and the Ref model; Rob Ray
for developing the F Prime Visualizer; Tobias Dürschmid for
developing the F Prime analysis prototype.

REFERENCES

[1] https://nasa.github.io/fprime.

[2] https://mars.nasa.gov/technology/helicopter.

[3] https://www.jpl.nasa.gov/missions/lunar-flashlight.

[4] https://www.nasa.gov/content/nea-scout.

[5] https://fprime-community.github.io/fpp.

[6] https://fprime-community.github.io/fpp/fpp-users-
guide.html.

[7] https://fprime-community.github.io/fpp/fpp-spec.html.

[8] https://github.com/nasa/fprime.

[9] https://cmake.org.

[10] https://github.com/scala/scala-parser-combinators.

[11] https://github.com/scopt/scopt.

[12] https://www.scala-sbt.org.

[13] https://www.scalatest.org.

[14] https://github.com/fprime-community/fprime-layout.

[15] https://www.json.org/json-en.html.

[16] https://github.com/fprime-community/fprime-
visualizer.

[17] https://en.wikipedia.org/wiki/Memoization.

[18] https://graphviz.org.

[19] https://nasa.github.io/fprime/UsersGuide/guide.html.

[20] https://www.3ds.com/products-
services/catia/products/no-magic/magicdraw.

[21] https://www.omgsysml.org.

[22] https://pythonhosted.org/Cheetah.

[23] https://github.com/JPLOpenSource/SCA.

[24] https://www.state-machine.com.

[25] https://cfs.gsfc.nasa.gov.

[26] https://docs.kubos.com/1.21.0/kubos-design.html.

[27] Bocchino, R.L. et al. F Prime: An Open-Source
Framework for Small-Scale Flight Software Systems.
In Proceedings of the AIAA/USU Conference on Small
Satellites, 2018.

[28] Canham, T. The Ingenuity Mars Helicopter and Open
Source. In Proceedings of the IEEE Aerospace Confer-
ence, 2022.

[29] Fesq, L. et al. Extended Mission Technology Demon-
strations Using the ASTERIA Spacecraft. In Proceed-
ings of the IEEE Aerospace Conference, 2019.

[30] Halvorson, M. Model-Based Systems Engineering and
F′: Proof of Concept Via the Creation of an On-Orbit
Textual Command Parsing Component for the ABEX
Mission. In Proceedings of the AIAA/USU Conference
on Small Satellites, 2021.

[31] Smith, M.W. et al. On-Orbit Results and Lessons
Learned from the ASTERIA Space Telescope Mission.
In Proceedings of the AIAA/USU Conference on Small
Satellites, 2018.

BIOGRAPHY[

Robert Bocchino is a Flight Software
Engineer in the Small Scale Flight Soft-
ware Group at the NASA/Caltech Jet
Propulsion Laboratory, where he works
on both flight projects and technology
development projects. Robert was the
technical flight software lead for the AS-
TERIA CubeSat missions. Robert is a
member of the design and development
team for the F Prime flight software and

embedded systems framework. He is the lead developer for
the FPP flight software modeling language. Recently Robert
has worked on technology development projects in the areas
of spacecraft autonomy, high-performance computing, and
fault tolerance. Currently he is working on the Mars Sample
Return mission and the SPLICE technology development
project for safe and precise landing.

Jeffrey Levison is the Supervisor for
the Small Scale Flight Software Group at
the NASA/Caltech Jet Propulsion Labo-
ratory that is the delivery organization
for flight software associated with sev-
eral flight projects including the ASTE-
RIA, Lunar Flashlight and Near Earth
Asteroid CubeSat missions and the Inge-
nuity Mars Helicopter. Jeff additionally
manages the F Prime Software Product

Line maintained within the group and oversees deployments
utilizing F Prime throughout the Laboratory.

Michael Starch has been a software en-
gineer at the NASA/Caltech Jet Propul-
sion Laboratory for over a decade. In
that time he has designed and built
cloud-scale data processing systems, en-
gineered flight control software, and ad-
vocated open source software develop-
ment. Most recently he was the Mars
Helicopter Downlink and Tools lead for
Ingenuity’s first powered flight on an-

other planet. He also functions as the cognizant engineer
and community manager for the open source F′ embedded
systems framework used on a number of spacecraft includ-
ing Ingenuity itself. Michael graduated with a Bachelors
in Computer Engineering from the University of Michigan
College of Engineering in Ann Arbor, Michigan. In his free
time, Michael mentors students at a local high school, helps
organize local technical organizations, and loves anything
tech.

15

