
c© 2010 Robert L. Bocchino Jr. Chapters 3 and 5 are derived from work published in ACM conference

proceedings (OOPSLA 2009 and POPL 2011). As to that work only, the following notice applies:Copyright

c© 2009, 2011 by the Association for Computing Machinery, Inc.Permission to make digital or hard copies

of part or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, orpermissions@acm.org.

AN EFFECT SYSTEM AND LANGUAGE FOR
DETERMINISTIC-BY-DEFAULT PARALLEL PROGRAMMING

BY

ROBERT L. BOCCHINO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Associate Professor Vikram Adve, Chair and Director of Research
Professor David Padua
Associate Professor Grigore Roşu
Professor Marc Snir
Bradford Chamberlain, Cray Inc.
Associate Professor Dan Grossman, University of Washington

Abstract

This thesis presents a new, Java-based object-oriented parallel language called Deterministic Parallel Java

(DPJ). DPJ uses a noveleffect systemto guaranteedeterminism by default. That means that parallel programs

areguaranteedto execute deterministically unless nondeterminism is explicitly requested. This is in contrast

to the shared-memory models in widespread use today, such asthreads and locks (including threads in

ordinary Java). Those models are inherently nondeterministic, do not provide any way to check or enforce

that a computation is deterministic, and can even have unintended data races, which can lead to strange

and unexpected behaviors. Because deterministic programsare much easier to reason about than arbitrary

parallel code, determinism by default simplifies parallel programming.

This thesis makes several broad contributions to the state of the art in programming languages and effect

systems.First, it presents a comprehensive research agenda for achievingdeterminism by default in parallel

languages with reference aliasing and shared mutable state. It argues that an object-oriented effect system

is a good approach to managing shared memory conflicts. It also raises several technical challenges, many

of which are taken up in the rest of the thesis.

Second, this thesis presents an effect system and language for deterministic parallel programming using a

fork-join model of parallel control. With simple modular checking, and with no runtime checking overhead,

the effect system guarantees at compile time that there are no conflicting memory accesses between any

pairs of parallel tasks. The effect system supports severalimportant patterns of deterministic parallelism that

previous systems cannot express. We describe the effect system and language both formally and informally,

and prove soundness for the formal language. We also describe our evaluation showing that the language

can express a range of parallel programming patterns with good performance.

Third, this thesis extends the effect system and language for determinism to support a controlled form of

nondeterminism. Conflicting accesses are allowed only for an explicitly identified nondeterministic parallel

construct, so the language is deterministic by default. A transactional runtime provides isolation for atomic

ii

statements, while the extended effect system provides stronger compile-time safety guarantees than any

system we know of. In addition to determinism by default, thelanguage guarantees race freedom; strong

isolation for atomic statementseven if the runtime guarantees only weak isolation; and an elegant way of

composing deterministic and nondeterministic operationsthat preserves local reasoning about deterministic

operations. Again we give an informal treatment, a formal treatment, and soundness proofs. We describe

an evaluation showing that the extended language can express realistic nondeterministic algorithms in a

natural way, with reasonable performance given the transactional runtime we used. Further, by eliminat-

ing unnecessary synchronization, the effect system enables a significant reduction in the software runtime

overhead.

Fourth, this thesis describes programming techniques and furtherextensions to the effect system for

supporting object-oriented parallel frameworks. Frameworks represent an important tool for parallel pro-

gramming in their own right. They can also express some operations that the language and effect system

alone cannot, for example pipeline parallelism. We show howto write a framework API using the DPJ

effect system so that the framework writer can guarantee correctness properties to the user, assuming the

user’s code passes the DPJ type checker. We also show how to extend the DPJ effect system to add generic

types and effects, making the frameworks more general and useful. Finally, we state the requirements for a

correct framework implementation. These requirements maybe checked with a combination of DPJ’s effect

system and external reasoning. Again we give an informal treatment, a formal treatment, and soundness

proofs. We also describe the results of an evaluation showing that the techniques described can express

realistic frameworks and parallel algorithms.

iii

Acknowledgments

I am grateful to many people for supporting and contributingto the content of this thesis:

• My advisor, Vikram Adve, unwaveringly encouraged, supported, and guided this work. He also

contributed many ideas to the work.

• Sarita Adve and Marc Snir contributed many useful discussions about the benefits of determinis-

tic programming, the interaction between deterministic and nondeterministic code, and the various

mechanisms for expressing determinism and nondeterminism. Their work on our paper in HotPar

2009, together with Vikram and myself, defined the agenda forthis thesis.

• Danny Dig was extremely helpful in evaluating DPJ, and in figuring out how to explain the type

system details to a general audience. He also encouraged theuse ofForkJoinTask for the DPJ

runtime.

• Dan Grossman, Grigore Roşu, Chris Rodrigues, and Madhusudan Parthasarathy gave invaluable feed-

back on the formal aspects of the work.

• Brad Chamberlain, David Padua, and Ralph Johnson gave invaluable feedback on the language as-

pects of the work, including usability. Brad also worked closely with me on a related project involving

software transactional memory (STM) for large-scale clusters. While not directly appearing in this

thesis, that work gave me lots of insight into both STMs and parallel programming that I brought to

bear on this work.

• Adam Welc, Tatiana Shpeisman, and Yang Ni contributed insights into the performance character-

istics and semantic issues raised by software transactional memory. Adam also helped build the

transactional runtime for DPJ.

iv

• Rakesh Komuravelli, Stephen Heumann, Nima Honarmand, Patrick Simmons, Hyojin Sung, and

Mohsen Vakilian were my “users.” They learned how to programin DPJ, and they wrote, tuned,

and measured the performance of many DPJ programs. Their efforts contributed greatly to the evalu-

ation of DPJ as a language. Patrick and Stephen also helped implement the compiler code generation.

Finally, Mohsen caught and forced me to fix many tricky bugs inthe compiler.

• Jeff Overbey got us on the right path usingjavac for the DPJ compiler. He also helped get the

compiler implementation started.

• Maurice Herlihy suggested that we use the Deuce STM for the DPJ transactional runtime.

I am also grateful to the following institutions for directly or indirectly supporting the work:

• Microsoft Corporation and Intel Corporation directly funded my Research Assistantship (RA), under

the auspices of the Universal Parallel Computing Research Center (UPCRC) at the University of

Illinois.

• NSF also directly funded my RA.

• My internship at Cray Inc. supported me for a summer and helped me learn a lot about STM, parallel

computing, and language design.

• Motorola supported me as an RA for several semesters and as a summer intern. While the work

supported by Motorola does not directly appear in this thesis, it helped me learn a lot about parallel

computing (specifically vector computing).

Finally, thanks to Sonia, my family, and my friends for theircaring and support.

v

Table of Contents

List of Figures ix

List of Tables xi

Chapter 1 Introduction 1
1.1 The Need for Determinism by Default 2
1.2 Technical Challenges 6
1.3 Deterministic Parallel Java 9
1.4 Thesis Contributions and Outline 10

Chapter 2 A Research Agenda for Determinism by Default 15
2.1 Guaranteeing Determinism 16

2.1.1 Patterns of Determinism 16
2.1.2 Approaches for Checking Effects 18
2.1.3 Effect Systems 19

2.2 Encapsulating Complex Behaviors 20
2.2.1 Local Nondeterminism 21
2.2.2 Unsoundness 21

2.3 Explicit Nondeterminism 22
2.4 Usability 23
2.5 Related Work: Limiting Side Effects 25

Chapter 3 Effect System and Language for Determinism 27
3.1 Basic Capabilities 27
3.2 Region Path Lists (RPLs) 30

3.2.1 Specifying Single Regions 31
3.2.2 Specifying Sets of Regions 32
3.2.3 Subtyping and Type Casts 35

3.3 Arrays 37
3.3.1 Index-Parameterized Arrays 37
3.3.2 Subarrays 41

3.4 Commutativity Annotations 43
3.5 Evaluation 45

3.5.1 A Realistic Example 46
3.5.2 Expressiveness 48
3.5.3 Performance 50
3.5.4 Usability 51

3.6 Related Work 52

vi

Chapter 4 Formal Language for Determinism 57
4.1 Syntax and Static Semantics 58

4.1.1 Programs and Classes 59
4.1.2 RPLs .60
4.1.3 Types .. 62
4.1.4 Effects .. . 63
4.1.5 Typing Expressions 65

4.2 Dynamic Semantics 67
4.2.1 Execution State 67
4.2.2 Evaluating Programs 68
4.2.3 Judgments for Dynamic RPLs, Types, and Effects 70
4.2.4 Preservation of Type and Effect 72

4.3 Noninterference 77
4.3.1 Set Interpretation of Dynamic RPLs 77
4.3.2 Disjointness 79
4.3.3 Noninterference of Effect 81

4.4 Extending the Language 84
4.4.1 Adding Parallel Constructs 85
4.4.2 Adding Inheritance 86

Chapter 5 Effect System and Language for Determinism by Default 89
5.1 Expressing Nondeterminism 89
5.2 Enforcing Safety Properties 92
5.3 Performance: Removing Unnecessary Barriers 98
5.4 Prototype Implementation 102
5.5 Evaluation 103

5.5.1 Expressing Parallelism 104
5.5.2 Performance 105
5.5.3 Impact of Barrier Elimination 106
5.5.4 Annotation Overhead 108

5.6 Related Work 109

Chapter 6 Formal Language for Determinism by Default . 112
6.1 Overview of Language Variants 112
6.2 Simplified Deterministic Language 115

6.2.1 Static Semantics 115
6.2.2 Dynamic Semantics 118
6.2.3 Soundness .. . 123

6.3 Deterministic-by-Default Language 131
6.3.1 Static Semantics 131
6.3.2 Dynamic Semantics 134
6.3.3 Soundness .. . 137

6.4 Atomic Regions Language 141
6.4.1 Static Semantics 141
6.4.2 Dynamic Semantics 143
6.4.3 Soundness .. . 144

vii

Chapter 7 Specifying and Checking Effects for Framework APIs 145
7.1 Limitations of Region-Based Systems 145
7.2 Safe, Reusable Parallel Frameworks 147

7.2.1 Abstract Disjoint Containers 148
7.2.2 A List Node Container 149
7.2.3 Getting More Flexibility 153
7.2.4 Writing the Framework Implementation 158

7.3 Evaluation 160
7.3.1 DPJ Frameworks 161
7.3.2 Application Code 164
7.3.3 Discussion of Evaluation Results 165

7.4 Related Work 168

Chapter 8 Formal Language for Framework API Checking . 170
8.1 Syntax 170
8.2 Static Semantics 171

8.2.1 Typing Environment 171
8.2.2 Programs .. . 172
8.2.3 Regions .. . 174
8.2.4 Types .. 175
8.2.5 Effects .. . 177
8.2.6 Expressions 178
8.2.7 Capturing Types, Regions, and Effects 180
8.2.8 The Translation MappingφT . 182

8.3 Dynamic Semantics 183
8.3.1 Execution Environment 183
8.3.2 Transition Rules 184
8.3.3 The Dynamic Translation FunctionφΣ,H . 185

8.4 Soundness 186
8.4.1 Static Environments 186
8.4.2 Validity of Static Typing 186
8.4.3 Execution State 193
8.4.4 Preservation of Type and Effect 195
8.4.5 Soundness of Noninterference 199

Chapter 9 Conclusion 201

References 203

Author’s Biography 212

viii

List of Figures

3.1 Basic features of DPJ 28
3.2 Runtime heap typing from Figure 3.1 28
3.3 Extension of Figure 3.1 showing the use of region nestingand region parameters 33
3.4 Graphical depiction of the distinctions shown in Figure3.3 34
3.5 Using partially specified RPLs for effects and subtyping. 35
3.6 Heap typing from Figure 3.5 36
3.7 An array with duplicate references 38
3.8 Example using an index-parameterized array 39
3.9 Heap typing from Figure 3.8 39
3.10 Writing quicksort with thePartition operation . 41
3.11 Illustration ofcommuteswith andinvokes . 44
3.12 Using DPJ to write the Barnes-Hut force computation 47
3.13 Vector class for the Barnes-Hut force computation 48
3.14 Parallel speedups for the six benchmarks 52

4.1 Static syntax of Core DPJ 58
4.2 Example showing why we must capture partially specified RPLs 67
4.3 Dynamic syntax of Core DPJ 68

5.1 Global data and main computation for the Traveling Salesman Problem 91
5.2 Generating the next tour prefix 91
5.3 Searching all tours with a given prefix 92
5.4 Illustration of the problem of barrier removal 99
5.5 Illustration of atomic regions. 100
5.6 Inconsistent bindings of region names to region parameters 102
5.7 Self-relative speedups 106
5.8 Ratio of optimized to unoptimized runtimes 107
5.9 Reduction in barriers due to optimizations 107

6.1 Syntax of the simplified deterministic language 113
6.2 Syntax of the deterministic-by-default language (extends Figure 6.1). 114
6.3 Syntax of the atomic regions language (extends Figure 6.2). 115

7.1 Node class . 145
7.2 Using region parameters to distinguish object instances . 146
7.3 A potential race caused by cross links 147
7.4 Framework API for an abstract disjoint list node container 150

ix

7.5 Making the effects of theOperation interface generic 154
7.6 API for an abstract disjoint container with generic types and effects 157
7.7 Array implementation of a disjoint container (partial). 159
7.8 The postorder visitor from the region-based spatial tree. 162

8.1 Syntax of the formal language supporting frameworks 171

x

List of Tables

3.1 Capabilities used in the benchmarks 49
3.2 DPJ vs. Java threads performance for Monte Carlo, IDEA encryption, and Barnes Hut 51
3.3 Annotation counts for the case studies 53

5.1 Ratio of committed to started transactions 108
5.2 Annotation counts for the four benchmarks 108

7.1 Annotation counts for the framework code 166
7.2 Annotation counts for the client code 167

xi

Chapter 1

Introduction

This thesis presents a new, Java-based object-oriented parallel language called Deterministic Parallel Java

(DPJ). DPJ uses a noveleffect systemto guaranteedeterminism by defaultat compile time. That means that

parallel programs areguaranteedto execute deterministically unless nondeterminism is explicitly requested.

Further, in DPJ, nondeterminism is carefully controlled and subject to strong compile-time safety guaran-

tees, including freedom from data races. This is in contrastto the shared-memory models in widespread use

today, such as threads and locks (including threads in ordinary Java). Those models are inherently nonde-

terministic, do not provide any way to check or enforce that acomputation is deterministic, and can even

have unintended data races, which can lead to strange and unexpected behaviors. Finally, DPJ can check

that the uses of object-oriented frameworks correspond to their effect specifications, ensuring determinism

and other safety guarantees for the framework uses. Frameworks represent an important tool for parallel

programming in their own right, and can also express some operations that the language and effect system

alone cannot.

This thesis argues that if determinism by default becomes a feature of mainstream programming lan-

guages, then parallel programming will be much easier. It outlines the major technical challenges to achiev-

ing determinism by default for shared memory programs, and proposes a comprehensive research agenda

for addressing these challenges. Finally, this thesis describes solutions to three of the major challenges,

using DPJ as a prototype: (1) designing a language and effectsystem for expressing deterministic compu-

tations that are guaranteed at compile time to have no conflicting accesses between parallel tasks, without

any runtime overhead for checking determinism; (2) supporting controlled nondeterminism while retaining

strong compile-time safety guarantees, including determinism by default; and (3) checking that the uses of

object-oriented frameworks correspond to their effect specifications.

1

1.1 The Need for Determinism by Default

Determinism: Single-core processors have reached the limit of scaling, and multicore processors are now

prevalent, with the number of cores growing according to Moore’s law. As a result, parallel programming

— once a highly specialized activity — is becoming mainstream. Parallel programming languages, libraries

and tools must enable programmers to write parallel programs without a major loss of programmer pro-

ductivity compared to the sequential programs that they areused to writing. In particular, programmers

must be able to write correct programs, i.e., without a majorincrease in bugs due to the introduction of

parallelism. And programmers must be able to understand parallel programs, debug them, and tune them

for performance.

This situation presents a challenging problem for languages and related tools such as compilers and

runtime systems. Most programmers are used to thinking sequentially. In its most general form, however,

parallel programming forces them to consider interactionsbetween different concurrent tasks, usually ex-

pressed asinterleavingsof memory operations. Further, unlike the sequential case,multiple interleavings

must be considered: different interleavings can produce different results, and the precise interleaving de-

pends on the parallel schedule, which can differ from run to run. As a result, general parallel programming

causes an explosion in complexity, both for reasoning aboutprograms, and for the state space that needs to

be explored through testing or model checking. Finally, general parallel programming leads to bugs such

as data races, deadlocks, and memory consistency violations that can be difficult to find and correct. These

bugs are totally unfamiliar, and even bizarre, to the sequential programmer.

We believe that one important response to this challenge is to focus on a property of parallel languages

and programs calleddeterminism. We say that aprogramis deterministic if it produces the same externally

visible output on every execution with a given input, regardless of the parallel schedule chosen for execution.

We say that alanguageis deterministic if any legal program written in the language is deterministic. A

deterministic language has significant advantages:

• A deterministic program that has an obvious sequential equivalent can be understood without concern

for execution interleavings, data races, or complex memoryconsistency models: the program behavior

is completely defined by its sequential equivalent.

• Programmers can reason about programs, debug them during development, and diagnose error reports

2

after deployment using techniques and tools similar to those currently used for sequential programs.

• Independent software vendors can test codes as they do for sequential programs, without being con-

cerned about the need to cover multiple possible executionsfor each input. The same test suites

developed for the sequential code can be used for the parallel code.

• Programmers can use an incremental parallelization strategy, progressively replacing sequential con-

structs with parallel constructs, while preserving program behavior.

• Two separately developed but deterministic parallel components should be far easier to compose

than more general parallel code, because a deterministic component should have the same behavior

regardless of the external context within which it is executed.

Deterministic semantics can also help with parallel performance modeling. In particular, an explicitly

parallel loop hassequential semanticswith aparallel performance model: its performance will be what one

would expect by assuming that parallel loop iterations do execute in parallel. In effect, both the semantic

model and the performance model for such a program can be defined using obvious composition rules [20].

Further, deterministic programming models can enable programmers to spend more time on performance

tuning (often the determining factor in performance for real-world software) and less time finding and

eliminating insidious concurrency bugs.

In general, shared-memory parallel programs are not deterministic, for the reason stated above: different

interleavings produced by different parallel schedules can produce different results. However,many parallel

algorithms are, in fact, intended to behave deterministically. Typically these are compute-intensive algo-

rithms that accept some input and are intended to produce a single (deterministic) output. Examples can be

found in a wide variety of domains, including scientific computations, graphics, voice, video, and artificial

intelligence. For these applications, a deterministic language can simplify the writing and maintenance of

parallel programs, for the reasons stated above.

In this context it is important to note the following conventions that we adopt regarding the term “deter-

minism”:

1. In this thesis, we focus our attention onconcurrency determinism. Other sources of nondeterminism

that carry over from sequential programming (for example, calls torandom or gettimeofday)

3

are not considered, on the assumption that sequential programmers already know how to cope with

this kind of nondeterminism.

2. We mean determinism of the final result; intermediate results need not be deterministic. For example,

an integer sum reduction may produce nondeterministic intermediate results on the way to producing

a deterministic final result.

3. Unless otherwise noted, throughout this thesis, “the same result” means bitwise equivalence of the

visible program output. In some cases (e.g., floating point reductions, or comparing the contents of

two set data structures) bitwise equivalence may be too restrictive, and in those cases we will explain

more precisely what we mean by “the same result.” In particular, this issue will arise in Section 3.4,

in connection with specifying commutative updates to sets,counters, and other shared state.

Controlled nondeterminism: Of course, not all parallel programs are intended to be deterministic. Some

algorithms produce many acceptable answers, all of which satisfy some criterion of correctness. Examples

include branch-and-bound search and graph clustering algorithms. It is usually possible to write deter-

ministic versions of these algorithms (by simply picking one possible answer and excluding the others).

However, it may not be desirable torequiredeterminism for all such algorithms, particularly where fixing a

deterministic schedule would cause performance to suffer.

Therefore, we believe that while parallel programming should be deterministic in most cases, some form

of controlled nondeterminism should be allowed as well. We believe that any such nondeterminism should

have the following safety properties:

1. Race freedom and sequential consistency.No execution of a valid program should ever produce a data

race. This property is very important, even for nondeterministic codes, because it facilitates reasoning

about program semantics. For example, in the Java memory model, race freedom implies sequential

consistency, which makes parallel programs much easier to reason about. The Java memory model

has a defined semantics in the presence of data races, but it ishard to understand. In the C++ memory

model, the program semantics is not even defined in the presence of data races. So in some sense it is

impossible to reason correctly about a C++ program that contains a data race!

2. Strong isolation.The language should providestrong isolation(i.e., isolation with respect toall con-

current operations) for sections of code identified as isolated (e.g., statements markedatomic). So-

4

called “weak isolation” (i.e., isolation provided that allconflicts occur betweenatomic statements)

is not enough, because it leads back to the same concurrency problems that transactions are trying to

eliminate in the first place, i.e., unintended conflicting memory accesses that silently invalidate the

programmer’s assumptions about what the program is doing.

3. Composition of deterministic and nondeterministic operations. It should be easy to reason about

compositions of deterministic and nondeterministic constructs. In particular, we argue that a deter-

ministic computation should always behave as an isolated, sequential composition of its component

tasks, even inside a nondeterministic parallel operation.This requirement leads to novel features of

our effect system, as discussed in Chapters 5 and 6.

4. Determinism by default.Nondeterminism occurs only where requested by an explicit nondetermin-

istic operation. Thus, nondeterminism cannot occur by accident, as it can in arbitrary threaded code.

We agree with Lee [76] that this is a critical property for reasoning about parallel code.

We call any language that satisfies property 4 above (nondeterminism must be explicit) adeterministic-

by-default language. We believe that parallel programming languages should be deterministic by default,

and that such languages should also provide properties 1–3 listed above. Note that today’s widely used

parallel programming models providenoneof these four properties. Instead they are based on a “wild”

form of shared memory parallelism, where all shared-memoryinteractions are allowed, and it is up to the

programmer (via testing, code inspection, or some other method) to exclude races and other undesirable

behaviors.

Supporting object-oriented frameworks: Object-oriented frameworks are an important part of the solu-

tion for making parallel programming easier. In the framework approach, the framework writer provides

most of the code for parallel construction and manipulationof generic data structures; for generic parallel

algorithms such as map, reduce, or scan; or for generic parallel coordination patterns such as pipelines. The

user fills in the missing pieces with code (in most cases, sequential code) that is applied in parallel by the

framework. Examples include the algorithm templates in Intel’s Threading Building Blocks (TBB) [101]

and Java’sParallelArray framework [1]. Such frameworks are usually easier to reasonabout than

general parallel programming because the user only has to write sequential code, letting the framework

orchestrate the parallelism.

5

For frameworks, the property that corresponds to determinism by default for general language mecha-

nisms is checking the effect specifications of the frameworkAPI. For example,ParallelArray’s apply

method applies an arbitrary user-specified method in parallel to each element of the array. If that method

performs an unsynchronized update to a global variable, then an unexpected race will result when the frame-

work applies the function. This kind of race can be excluded if (1) the framework developer gives the API an

effect specification (for example, that the function provided toapply has no conflicting effects on shared

state); and (2) the compiler checks that the specification ismet by all code supplied by the user to the

framework. Frameworks like this can supplement a deterministic-by-default language by adding new oper-

ations that carry the same strong guarantees, such as determinism by default, as the underlying language.

For example, aParallelArray framework thatguaranteesthat no user-suppliedapply function has

interfering effects on shared state canguaranteedeterministic behavior for all uses ofapply.

1.2 Technical Challenges

Determinism: Determinism is available today for certain restricted styles of parallel programming, such

as data parallel or purely functional programs. We discuss these in more detail in Chapter 2. However,

defining an expressive and efficient language that guarantees determinism in the presence of general aliasing

of shared mutable data remains unsolved. The problem is difficult because techniques such as references

and encapsulated updates to shared state, which are expressive and efficient for sequential programs, hide

the data dependence relationships between potentially parallel sections of code.

As a result, mainstream parallel programming models today provide no special assistance for pro-

gramming deterministic algorithms. Parallel applications today primarily use threads and shared memory,

whether through libraries likepthreads, Intel’s Threading Building Blocks (TBB), and OpenMP; or mul-

tithreaded languages like Java, C#, and Cilk++. Programs written in these models can be extremely difficult

to understand and debug. A correctly written program may be deterministic, but this property is difficult

to check. This is a very important deficiency, as many applications that will need to be ported to emerging

parallel architectures are written in imperative, object-oriented languages such as C++ and Java.

One recent approach to solving this problem is to addspeculative parallelism[51, 93, 50, 128, 18, 99,

114, 124] to a language such as Java. This approach can guarantee deterministic semantics, but it either

incurs significant runtime overheads [51, 93, 50, 128], or itrequires special hardware [99, 114, 124], or it

6

works well only for coarse-grain sharing [18]. Further, speculation does not solve the fundamental difficulty

of hidden updates in parallel programs: while the program will be correct, it will not perform well unless it

is tuned to avoid synchronization or speculative conflicts;and tuning requires the programmer to understand

the patterns of sharing, interference, and synchronization in the code.

Another approach is to use a combination of static and dynamic checks. Both Jade [105] and Prometheus [11]

adopt this approach. However, in both languages, the statictype system is relatively weak, and many checks

are left to runtime. Further, there is no speculation, so if aruntime check fails, the program aborts. Thus, it is

generally not possible to guarantee at compile time or even testing time that the program has a deterministic

sequential equivalent. Multiphase Shared Arrays [42] and PPL1 [112] adopt a similar approach.

Nondeterminism: For the same reasons as discussed in connection with determinism (i.e., hidden conflict-

ing updates to shared state), parallel codes with intentional nondeterminism can suffer from problems like

data races and deadlocks. Again, mainstream parallel programming models provide no particular assistance

with avoiding these problems. The most common approach in use today is to use a race and/or deadlock

checker, such as Intel’s Thread Checker. While such checking is effective in many cases, it is slow and is

not guaranteed to find all the races and deadlocks in a program.

Several experimental approaches exist for adding safety guarantees to nondeterministic code. Transac-

tional memory [63] provides isolation and deadlock freedom, but it still permits a race if one or both of the

racing memory accesses occur outside a transaction. Further, because of overhead concerns, transactional

memory implemented in software (software transactional memory, or STM) typically guarantees onlyweak

isolation — i.e., the isolation holds only if there are no conflicts outside of transactions. Even worse, if

thereare conflicts outside of transactions, then (again, for efficiency reasons) many STM implementations

produce behaviors that can be very difficult to reason about [108].

Several researchers have described effect systems for enforcing a locking discipline in nondetermin-

istic programs, to prevent data races and deadlocks [24, 6, 68, 86], or to guarantee isolation for critical

sections [52]. Each of these efforts provides some subset ofthe four guarantees stated above for nondeter-

ministic code, but none provides all of them in the same language. Further, none of this work explores the

interaction between deterministic and nondeterministic code, or attempts to design a language for determin-

ism by default.

Checking framework uses:Current frameworks give no guarantee against conflicting memory operations,

7

and this a serious deficiency in terms of correctness and program understanding. For example, there is

nothing in theParallelArray API that prevents a user from writing anapply function that does an

unsynchronized write to a global variable, causing a race when the framework applies it in parallel to the

array, as discussed above. Today’s frameworks only issue a set of informal guidelines for how to use the

API safely, which is unsatisfactory.

While several tools and techniques exist that support writing and checking assertions at interface bound-

aries [119, 75, 89], these ideas have not yet been applied to prohibit interfering effects, i.e., concurrent

conflicting memory operations. Doing so involves several open challenges:

1. Maintaining disjointness:Useful parallel frameworks need to support parallel updates on contained

objects. For example, we would like aParallelArray of distinct objects, where the user can

provide anapply function that updates an element, and ask the framework to apply it to each distinct

object in parallel. To do this safely, the framework must ensure that the objects are really distinct;

otherwise the same object could be updated in two parallel iterations, causing a race. For a language

like Java with reference aliasing, disjointness of reference is a nontrivial property.

2. Constraining the effects of user-supplied methods:For a parallel update traversal over the objects in

a framework, disjointness of reference is necessary but notsufficient to ensure noninterference. The

framework must also ensure that the effects of the user-supplied methods do not interfere, for example

by updating a global variable, or by following a link from onecontained object to another.

3. Making the types and effects generic:Because different uses of the framework need user-supplied

methods with different effects, the framework should constrain the effects of user-supplied methods

as little as possible while retaining soundness. For example, one use ofapply may write into each

object only; while another may read shared data and write into each object. The framework should

also be generic, not specialized to a specific type of contained object. These requirements pose chal-

lenges when the framework author needs information about the type of the contained objects and the

effect of user-supplied methods in order to provide a noninterference guarantee.

8

1.3 Deterministic Parallel Java

In this thesis, we present the design and evaluation ofDeterministic Parallel Java(DPJ). DPJ extends the

sequential subset of Java with an effect system that (1) allows deterministic algorithms to be written with a

compile-time guarantee of determinism; (2) supports the composition of deterministic and nondeterministic

code with strong compile-time guarantees, including determinism by default; and (3) supports the specifica-

tion and checking of effects on framework APIs. In DPJ, the programmer partitions the heap usingregions,

which are names for sets of memory locations, and writesmethod effect summariessaying which regions

are read and written by the method. The compiler checks that the method summaries are correct (i.e., the

summary includes all the actual effects of the method) and that parallel tasks arenoninterfering(i.e., if any

two parallel tasks access the same region, then all such accesses are operations that commute with each

other, such as reads). DPJ builds on early work in types and effects [61, 56] together with recent advances

in object-oriented effect systems [59, 25, 77, 37, 80].

DPJ has the following advantages over previous approaches:

1. It can express a wide range of deterministic algorithms insuch a way that the compiler can stati-

cally guarantee determinism by default, as well as the safety properties for nondeterministic code

mentioned above.

2. Unlike speculative methods, Jade, or Prometheus, purelydeterministic code requires no complicated

runtime support or extra runtime overhead. DPJ does use a transactional runtime, but that runtime is

invoked only if the code uses nondeterministic constructs.

3. DPJ’s effect system includes novel support for importantpatterns of parallelism — such as field-

granularity updates on nested data structures and parallelarray updates — that previous effect systems

do not support.

4. DPJ supports the implementation of object-oriented frameworks that provide correctness guarantees

to their users. The framework author can check correctness properties of the framework, including

determinism, without seeing the user’s code. In any use of the framework that passes the DPJ type

checker, the properties hold. The effect system introducesnovel features to support generic parallel

frameworks, while retaining sound reasoning about effects.

9

These benefits do come at some cost in terms of programmer annotation: in particular, the programmer must

annotate types with region and/or effect information, and methods with effect information. In the technical

sections of this thesis, we include a quantitative evaluation of the annotation burden, in terms of the number

of annotations required. As discussed in Chapter 2, one of the long-term goals of this work is to explore

ways to reduce the annotation burden. We have considered twoways:

1. Developing algorithms and tools for inferring some or allof the type and effect annotations [122].

2. Supplementing or replacing some of the static checking with runtime checking. This would weaken

the guarantee and/or add overhead, but it could also simplify the annotations and/or make the language

more expressive.

Both of these issues are the subject of active research in ourgroup, but are beyond the scope of the present

thesis. The focus of this thesis is on designing an effect system that is highly expressive, while still being

usable.

Finally, while this thesis focuses on extending Java, many of the ideas should apply to other object-

oriented languages, such as C# and C++. C++ is not a type-safelanguage; in particular, there is no guar-

antee that dereferencing a pointer will access an object of the type specified by the pointer. Therefore, to

apply these ideas soundly to C++, one must do some additionalwork. One possible approach is to provide

deterministic semantics for type-safe programs, without providing any guarantee for programs that violate

type safety.Our research group is actively working on this problem, but it is beyond the scope of this thesis.

1.4 Thesis Contributions and Outline

The broad contribution of this thesis is to present a realistic language for shared-memory, object-oriented

parallel programming that (1) guarantees determinism by default at compile time, with the safety guarantees

stated in Section 1.1; (2) uses speculation only for nondeterministic computations, while adding negligible

overhead for enforcing determinism; and (3) allows the usesof object-oriented frameworks to be checked

against their effect specifications. This broad contribution subsumes several specific technical contributions.

These are stated below, in the order that they appear in the rest of this thesis.

Research agenda for determinism by default:Chapter 2 presents a comprehensive research agenda for

achieving determinism by default in imperative languages.This chapter argues that aneffect system(as used

10

in DPJ) is a good solution to the problem, and it describes contrasting approaches. It also discusses several

technical challenges raised by effect systems that are taken up in the rest of the thesis. Finally, this chapter

discusses two open issues that are not addressed in the rest of the thesis: (1) reducing programmer burden

by inferring effect annotations; and (2) supplementing static effect checking with runtime checks. Other

members of our research group are working on these problems.

Effect system and language for determinism:Chapters 3 and 4 describe an effect system and language for

determinism. The language provides explicit, fork-join parallelism usingforeach for parallel loops and

cobegin for parallel statement blocks. Data-dependent synchronization patterns (e.g., a pipelined parallel

loop [72]) cannot be expressed by this language, but these patterns can be expressed by object-oriented

frameworks, discussed below. The effect system ensures determinism at compile time by checking that no

conflicting memory accesses can occur in parallel branches of the sameforeach or cobegin. Chapter 3

gives an informal description of the entire language, and Chapter 4 gives a more formal treatment for a

simplified version of the language. This part of the thesis makes the following contributions:

1. We introduce a novel mechanism called aregion path list, or RPL, for hierarchically partitioning

the heap. Hierarchical partitioning is vital for expressing effects. For example, divide-and-conquer

parallel computations on trees naturally generate sets of effects like “writes the left subtree but not

the right subtree” or “reads fieldA of every node but writes fieldB only under this node.” RPLs

can express several patterns of effects that previous systems [61, 56, 59, 37] cannot. RPLs also allow

more flexible subtyping than previous work.

2. To support parallel update computations on arrays, we introduce anindex-parameterized array type

that allows references to provably distinct objects to be stored in an array while still permitting arbi-

trary aliasing of the objects through references outside the array. We are not aware of any statically

checked type system that provides this capability.

3. To support in-place parallel divide and conquer operations on arrays, we introduce the notion of

subarrays(i.e., one array that shares storage with another) and apartition operation. Subarrays and

partitioning provide a natural object-oriented way to encode disjoint segments of arrays, in contrast

to lower-level mechanisms like separation logic [95] that specify array index ranges directly.

4. We introduce aninvocation effect, together with simplecommutativity annotations, to permit the

11

parallel invocation of operations that interfere at the level of reads and writes, but produce the same

high-level behavior for any concurrent schedule. This mechanism supports common read-modify-

write patterns such as reduction accumulations. It also allows concurrent data structures, such as

concurrent sets and hash maps, to interoperate with the language.

5. For a core subset of the type system, we present a formal definition of the static and dynamic seman-

tics. We also prove that our system allows sound static inference about noninterference of effects.

6. We describe a prototype compiler for DPJ that performs theeffect checking as described in this thesis

and then maps parallelism down to the ForkJoinTask dynamic scheduling framework.

7. We describe an evaluation using six real-world parallel programs written in DPJ. This experience

shows that DPJ can express a range of parallel programming patterns; that all the novel type system

features are useful in real programs; and that the language is effective at achieving significant speedups

on these codes on a commodity 24-core shared-memory processor. In fact, in three out of six codes,

equivalent, manually parallelized versions written to useJava threads are available for comparison,

and the DPJ versions come close to or beat the performance of the Java threads versions.

Effect system and language for determinism by default:Chapters 5 and 6 describe extensions to the

effect system and language for determinism to add controlled nondeterminism, with the safety guarantees

stated in Section 1.1. Again we give an informal description(Chapter 5) followed by a formal treatment

(Chapter 6). This part of the thesis makes the following contributions:

1. We present a language that provides the four guarantees stated in Section 1.1at compile time. Our

language distinguishes deterministic and nondeterministic parallel tasks. Interference is allowed only

inside tasks explicitly identified as nondeterministic, sothe language is deterministic by default. As

in previous work on languages supported by transactional runtimes [62, 64], inside a nondeterministic

composition, the programmer can write a statementatomic S that runs the statementS in isolation.

However, our effect system guarantees strong isolation even if the underlying TM guarantees only

weak isolation. It also guarantees race freedom, which is not guaranteed by any TM systems. To our

knowledge, our language is the first to provide all four properties stated above for a shared-memory

parallel language.

12

2. We add a new kind of effect called anatomic effectfor tracking when memory accesses occur inside an

atomic statement. The atomic effects allow the compiler to guarantee both race freedom (property 1)

and strong isolation (property 2), by prohibiting conflicting memory operations unless each operation

is in an atomic statement.

3. We introduce new effect checking rules to enforce composition of operations (property 3) and deter-

minism by default (property 4). For composition of operations, the extended effect system disallows

interference between a deterministic operation and any other concurrent operation unless the whole

deterministic operation is enclosed in an atomic statement. For determinism by default, the inter-

ference is disallowed for deterministic parallel operations, but allowed for nondeterministic parallel

operations.

4. We introduceatomic regions, so that the programmer can identify which regions (i.e., sets of memory

locations) are allowed to be accessed in an interfering manner. For operations to other regions, the

compiler can remove or simplify the STM synchronization, because such operations never cause

conflicts.

5. We formalize our ideas using three formal languages: the first has only deterministic parallel oper-

ations, the second adds nondeterministic parallel operations, and the third adds atomic regions. We

have developed a full syntax, static semantics, and dynamics semantics for all three languages. Fur-

ther, we have formally stated the soundness properties given informally above, and prove that the

properties follow from the semantic definitions.

6. We describe our experience using the language to implement three nondeterministic algorithms:De-

launay mesh refinementfrom the Lonestar benchmarks [2], thetraveling salesman problem(TSP),

andOO7 [31], a synthetic database benchmark. Our experience showsthat porting these algorithms

from plain Java into DPJ was relatively straightforward andrequired neither redesign of existing data

structures nor restructuring of the algorithms themselves. Additionally, judicious use of atomic re-

gions eliminated a large fraction of the STM-related overhead in two out of three benchmarks.

Support for object-oriented frameworks: Chapters 7 and 8 show how to extend the DPJ effect system

to support object-oriented parallel frameworks, as discussed in Section 1.3. Again we give an informal

13

description (Chapter 7) followed by a formal treatment (Chapter 8). This part of the thesis makes the

following contributions:

1. We show how to write a framework API using the DPJ effect system as described in previous chap-

ters so that the framework writer can guarantee disjointness of reference and sound effects for user-

supplied methods, assuming the user’s code passes the DPJ type checker.

2. We show how to extend the DPJ effect system to add generic effects and generic types, making

the frameworks more general and useful. For the effects, we add constrained effect variablesto

enforce disjointness of effect. For generic types, we introducetype region parameters, which give the

framework author enough information about the types bound to generic type variables to guarantee

disjointness and soundness of effect, without knowing the exact type.

3. We give the formal semantics of a core subset of the extended language and formally state the sound-

ness results. We also prove soundness for the formal language.

4. We state the requirements for a correct framework implementation, meaning that if these require-

ments hold, then noninterference is guaranteed for the entire program. We also show how to use a

combination of the DPJ type system and external reasoning tocheck these requirements informally.

We leave as future work the formal verification of the requirements.

5. We describe an evaluation in which we used our language mechanisms to write three parallel frame-

works (representing a parallel array, tree, and pipeline) and by writing applications using these frame-

works. We found that the language mechanisms are able to capture realistic parallel algorithms. In

particular, the pipeline framework expresses a pipeline pattern that cannot be expressed directly using

DPJ’s fork-join parallel constructs. We also found that theextra annotations required by the system

are fairly simple for framework users and, while more complicated for framework writers, are not

unduly burdensome.

Chapter 9 concludes by summarizing what has been accomplished here and what remains for future research.

14

Chapter 2

A Research Agenda for Determinism by Default

As discussed in Chapter 1, this thesis argues that to simplify parallel programming, mainstream object-

oriented programming languages must become deterministicby default. In this chapter, we lay the ground-

work for the following technical chapters by outlining a broad research agenda in support of that goal. The

agenda consists of four parts:

1. How to guarantee determinism in a modern object-orientedlanguage?For reasons discussed in Sec-

tion 2.1, our philosophy is to providestaticguarantees through a combination of a type system and simple

compiler analysis when possible, and to fall back on runtimechecks only when compile-time guarantees are

infeasible. The key is to determine when concurrent tasks make conflicting accesses. The language can help

provide this capability in two ways. First, structured parallel control flow makes it easy to analyze which

tasks can execute concurrently. Second, language annotations can convey explicitly what data is accessed

or updated by a specific task.

2. How to provide sound guarantees when parts of the program either cannot be proved deterministic

or have “harmless” nondeterminism? Libraries and frameworks written by expert programmers tend to

be widely reused, carefully designed, and thoroughly tested. Such code may include components that are

not deterministic in isolation, yet can be combined to provide deterministic results. For example, a sequence

of commutative inserts to a concurrent search tree within a parallel loop can be executed in arbitrary order

and yet give deterministic results, as long as no other operation (e.g., a find) is interleaved between those

inserts. Languages should enable such libraries to expresscontracts that can be enforced by the compiler.

The system can then ensure that a client application using the library is deterministic so long as the library

implementation meets its specification.

3. How to specify explicit nondeterminism when needed?A deterministic-by-default language may need

to support transformational computations that permit morethan one acceptable answer. If so, the language

must achieve three goals. First, any nondeterministic behavior must beexplicit, e.g., using nondeterministic

15

control statements; hence the term “deterministic by default.” Second, the nondeterminism should be care-

fully controlledso that programmers can reason about possible executions with relatively few interleavings.

Third, nondeterministic code should beisolatedfrom deterministic code so that the programmer can reason

deterministically about the rest of the application.

4. How to make it easier to develop and port programs to a deterministic-by-default language? As

advocated in this chapter, determinism by default comes at some cost in terms of language annotations.

However, the cost is worth the safety and productivity benefits of determinism by default. Further, the

cost can be significantly reduced by tools and techniques that infer annotations or help the user write the

annotations.

The following sections of this chapter discuss each of theseissues in order. We conclude with a discus-

sion of broadly related work that achieves determinism by limiting or excluding side effects.

2.1 Guaranteeing Determinism

In this section, we discuss the problem ofguaranteeingthat a program produces deterministic results. As

discussed in Chapter 1, a program that is known to be deterministic is much easier to reason about than one

that is not. Determinism is also a fundamentalcorrectness propertyfor the implementation of any algorithm

with a deterministic specification. First, we classify all deterministic algorithms into three broad patterns.

Then we discuss technical approaches to enforcing determinism for the three patterns. Finally, we discuss

effect systems, which we believe are an important part of the solution to enforcing determinism.

Here we assume the computation happens entirely in memory, and we disregard I/O. There are two

reasons for this. First, as discussed in Chapter 1, we are primarily concerned with computations that take

an input, compute in parallel, and produce an output. In suchcomputations, I/O typically occurs as a

separate phase, before the parallel computation. Second, modeling I/O effects is very similar to modeling

memory effects. Therefore, the model is easily extended to concurrent computations (e.g., servers) involving

concurrent I/O, although such computations are not the primary focus of this thesis.

2.1.1 Patterns of Determinism

All deterministic parallel computations that operate on shared memory can be classified into one of three

broad patterns:

16

1. No memory conflicts.A parallel computation is deterministic if, for every pair of memory operations

in two different tasks that occur in parallel, either (1) both operations are reads, or (2) the opera-

tions access disjoint memory locations. In either case, theorder of operations has no effect on the

result. Examples include computations that read global memory and write to local storage (so-called

“embarrassingly parallel” computations), or computations that write to distinct parts of the same data

structure (e.g., a tree or array) in global memory.

2. Synchronized memory conflicts.A parallel computation is also deterministic if, for every pair of con-

flicting memory operations between parallel tasks, the operations happen in a deterministic order. For

example, thread-level speculation [114] guarantees this property, by enforcing the order of conflict-

ing operations given by a sequential execution of the program. A speculative thread is aborted and

restarted if the sequential conflict ordering is violated bythe parallel execution.

3. Confluent memory conflicts.Finally, a parallel computation may give deterministic results even if it

has parallel conflicting memory operations that occur in a nondeterministic order. This property is

sometimes calledconfluence. A simple example is a shared read-modify-write counter protected by

a lock. If the counter is incremented byn threads, the end result will ben, regardless of the order

in which the accesses occurred. A slightly more complex example is an associative reduction, e.g.,

a parallel reduction of an integer array to its sum, using concurrent read-modify-write operations on

a reduction variable. A still more complex example is a data structure such as a set or tree built up

by concurrent insert operations. In the case of a set, the same set results regardless of the order of

insertions. The same property is true of some trees. For example, the spatial tree used in the Barnes-

Hut n-body simulation [109] is uniquely determined by the bodies inserted, and independent of the

order in which they are inserted. Inserting the bodies in different orders creates different intermediate

trees, but the final tree is always the same.

For all three patterns, a fundamental challenge in guaranteeing determinism in a shared-memory im-

perative language is for the system to detect potentially conflicting memory operations (also calledeffects)

between different parallel computations in the program. Wecall this abilityeffect checking. Effect checking

can directly guarantee the first pattern of determinism stated in above (no conflicts), by detecting and pro-

hibiting such conflicts. Effect checking alone is notsufficientfor patterns two and three: pattern two needs

17

some sort of ordered runtime synchronization (either speculative or nonspeculative), and pattern three needs

some proof of confluence. However, effect checking is stillnecessaryfor patterns two and three. In pattern

two, the computation is deterministic if the conflicting effects are correctly synchronized; therefore, proving

correctness requires knowing where the conflicts are. Similarly, in pattern three, the proof of correctness

requires proving that conflicting effects are confluent. Again, we cannot get very far if there are unknown

conflicting effects.

2.1.2 Approaches for Checking Effects

Broadly, there are four known approaches for checking effects:

• Language-based approaches(discussed further in Section 2.1.3) use language extensions, usually

an extension of the type system, for detecting and/or prohibiting conflicting effects at compile time.

• Compiler-based approachesuse parallelizing compiler technology (e.g., [72, 27]) to transform se-

quential programs (with or without annotations) into parallel form.

• Software runtime approaches(e.g., [105, 128, 11, 96, 18, 14]) use software runtime checks to detect,

and possibly speculation to recover from, violations of deterministic semantics in the execution of a

parallel program.

• Hardware runtime approaches (e.g., hardware-supported thread-level speculation (TLS) [113, 99]

or DMP [43]) use hardware support to achieve the same goals but with less overhead, at the cost of

increased hardware complexity.

The four approaches involve different tradeoffs and can be combined in different ways into a composite

solution. A language-based approach has the following benefits:

• It allows a high degree of programmer control over the way that data is shared and the way that

properties like determinism are checked and enforced.

• It documentsthe available parallelism for future developers, and makesprogram behavior and perfor-

mance characteristics explicit in the code.

• It can specify properties that hold at interface boundaries, enhancing modularity. This specification

allows the compiler to check and enforce deterministic usesof libraries and frameworks using only

18

the API; the source code for the implementation is not needed, as it would be for whole-program

compiler analysis.

A compiler approach can reduce the burden of writing parallel code compared to a pure language approach.

However, for all but very regular codes auto-parallelization is quite difficult; and even where successful it

can be brittle (small code changes can destroy performance)and hard to understand.

A robust runtime can reduce or eliminate the need for the programmer or compiler to get the sharing

patterns correct. However, runtime approaches can add unnecessary overhead. For example, thread-level

speculation with no language or compiler support needs to check every single access to global memory for a

potential conflict. Further, runtime approaches can make performance characteristics opaque: synchroniza-

tions and aborts can be major performance bottlenecks, and it may not be clear from the text of the program

where those are occurring, or how to alleviate the bottlenecks. Further, runtime techniques based on a fail-

stop approach are inherently input-dependent: one input may have no conflicts between parallel tasks, while

another input has a conflict which causes the program to terminate. As discussed in Chapter 1, while these

approaches can guarantee deterministic behavior (the program will always either fail or not fail on a given

input), they generally cannot guarantee that a program willbehave according to a sequential semantics on

all runs.

Overall, explicitly parallel, language-based approachesare the only ones that provide the benefits of

performance control, explicit interfaces, modularity, documentation, and compile-time enforcement. We

therefore believe that such an approach is the most attractive in the long term. Such an approach can

be combined with limited runtime software and hardware checking to enable greater expressivity, where

needed.

2.1.3 Effect Systems

We believe that an important part of the solution to controlling sharing is a particular language mechanism

called an object-orientedeffect system[82, 30]. Effect systems provide annotations that partition the heap

and declare which parts of the heap are accessed by each task,and in what way (for example, read or write).

An effect system can easily show that two distinct objects are being created at every recursive call of a divide

and conquer pattern, so the subcomputations do not interfere.

The rest of this thesis, after this chapter, presents our work on Deterministic Parallel Java (DPJ). DPJ

19

uses a sophisticated effect system that partitions the heapinto hierarchicalregionsand uses those regions

to disambiguate accesses to distinct objects, as well as distinct parts of the same object, referred to through

data structures such as sets, arrays, and trees. DPJ’s effect system readily supports the first pattern of

deterministic parallelism (no conflicts). A simplelocal type-checker can then ensure that there are no

conflicting memory operations between concurrent tasks. Ina correct DPJ program, nondeterminism cannot

happen by accident: any such behavior must be explicitly requested by the user, and a DPJ program with no

such request has an obvious sequential equivalent. DPJ’s support for the other two patterns (synchronized

conflicts and confluent conflicts) is discussed below, in Section 2.2.

When static checks do not work, either because the analysis is not possible or the annotation burden is

not justified by the performance gains, we must fall back on runtime techniques. One approach is to use

software speculation [128], with hardware support [99] if it is available to reduce overhead . An alternative

approach is a fail-stop model that aborts the program if a deterministic violation occurs [105]. This approach

gives a weaker guarantee, but it avoids the overhead of logging and rollback. A combination of the two

approaches could also be used. For example, fail-stop checking could be used for production runs, while

speculation could be used to simplify the initial porting ofprograms by producing a guaranteed-correct

speculative version on the way to a more efficient version. The extra overhead of speculation can be tolerated

more readily during the development process. Speculation could also be used (even in production runs) for

algorithms that areinherently speculative, where new tasks must be launched speculatively or the entire

algorithm would become serial [74]. Here, the overhead of speculation may be more tolerable if it is the

only way to express the algorithm at all.

2.2 Encapsulating Complex Behaviors

In realistic programs, the guarantee of determinism may have to be weakened for parts of the program, for

performance or expressivity. However, if we can encapsulate those parts behind an interface with suitable

contracts, and guarantee that client code satisfies those contracts, then we can still provide sound guarantees

for the rest of the program. This approach is attractive because the encapsulated code can often be placed

in libraries and frameworks written by expert programmers skilled in low-level parallel programming and

performance issues.

20

2.2.1 Local Nondeterminism

As discussed in Section 2.1.1, a parallel algorithm may havememory conflicts that exhibit nondeterministic

intermediate states, while producing confluent final results. Further (e.g., in a reduction), the nondetermin-

ism in the intermediate states is often necessary for good performance. Experienced programmers should

be able to write such computations and encapsulate their code in libraries that have deterministic external

behavior, with well-defined properties.

In DPJ, we adopt this idea in the form of acommuteswith annotation telling the compiler that two

methods commute with each other, even if the effect system reports interference. For example, a concurrent

read-modify-write update to a shared counter variable is commutative, but the effect system does not know

that: it just sees interfering writes. Thecommuteswith annotation allows an experienced programmer to

provide a concurrent counter (or more sophisticated examples, such as a concurrent reduction variable, set,

or map). Thecommuteswith annotation is discussed further in chapters 3 and 4 of this thesis.

Commutativity is an important special case of confluence (confluence is more general, because it can

include more than two operations). Many confluent sequencesof operations (e.g., counter updates, set

inserts, reductions) can be built up from operations that are all pairwise commutative. Commutativity cannot

handle all cases of local nondeterminism, however. In DPJ, we encapsulate such behaviors entirely behind

an interface, as discussed in the next section.

2.2.2 Unsoundness

In realistic applications, some parts of the program may in fact be deterministic yet perform operations that

cannot feasibly be proved sound by the type system or runtimechecks. One example is a tree rebalancing.

If a data structure is known to be a tree, then this fact can support sound parallel operations, such as a divide

and conquer traversal that updates each subtree in parallel. However, rebalancing the tree in a way that

retains the guarantee may be difficult without imposing severe alias restrictions such as unique pointers.

It is also difficult for a runtime to check efficiently that thetree structure is maintained during and after a

rebalancing.

We believe a practical solution in such cases is to allow unsound operations, i.e., operations that may

break the determinism guarantee, but to encapsulate those operations inside well-defined data structures

and frameworks using traditional object-oriented encapsulation techniques (private and protected fields and

21

inner classes) supplemented by effect analysis and/or alias control. The effect and alias restrictions can help

keep track of what is happening when references in the rest ofthe code point to data inside an encapsulated

structure [30]. Then the compiler can use the guarantees provided by the data structure or framework

interface to provide sound guarantees for the rest of the program.

In DPJ, we have applied this idea by extending the effect system to support parallel frameworks. For

example, a tree framework can ensure algorithmically that all API operations on the tree (such as rebal-

ancing) maintain the tree structure. This fact can then be used to provide API operations to the user (such

as iterating over the tree in parallel and updating its elements) with sound guarantees of noninterference.

Frameworks can also support patterns two and three discussed in Section 2.1.1 above, by encapsulating syn-

chronization patterns or confluent operations that the effect system alone cannot prove deterministic. For

example, a parallel algorithm for building a spatial tree could be incorporated in a framework, again with an

algorithmic guarantee of confluence. In all these cases, theframework API and implementation cooperate

with the effect system to provide the deterministic guarantees. Chapters 7 and 8 of this thesis discuss DPJ’s

framework support.

2.3 Explicit Nondeterminism

As discussed in Chapter 1, some algorithms produce several acceptable answers. In contrast to encap-

sulated nondeterminism in the context of a deterministic program (Section 2.2), here the visible program

behavior is nondeterministic. It is probably not desirableto exclude such algorithms entirely from a parallel

programming model.

We wish to express such algorithms while achieving the following goals. First, nondeterminism is ex-

plicitly expressed, e.g., using a nondeterministic control statement. As discussed in Chapter 1, this is what

we call determinism by default. Second, nondeterminism is carefully controlled, so that the programmer

need reason about only relatively few program interleavings. Third, the nondeterministic part of the appli-

cation should not compromise the ability to reason deterministically for the rest of the application.

In DPJ, we achieve these goals in the following way:

• The language explicitly distinguishes parallel constructs that enforce determinism from those that do

not. Specifically,foreach (for a parallel loop) andcobegin (for a parallel statement block) en-

22

force noninterference between their component parallel tasks, and so guarantee determinism; while

foreach nd andcobegin nd (where “nd” stands for “nondeterministic”) allow interference be-

tween their component parallel tasks, and therefore allow nondeterminism. The language is determin-

istic by default, because a statementS executes deterministicallyunlessthe execution ofS encoun-

tered a dynamic instance offoreach nd or cobegin nd.

• For nondeterministic computations, the language supportsan atomic statementatomic S that guar-

anteesstrong isolationfor S. As discussed further in Chapter 5, because DPJ allows interferenceonly

between pairs ofatomic statements, theonly interleavings that programmers must reason about is

the interleaving ofatomic statements. All other statement orderings follow from program order

(i.e., once the order ofatomic statements is specified, program execution is deterministic).

• Again as discussed in Chapter 5,foreach andcobegin always behave deterministically,even

inside aforeach nd or cobegin nd. In particular, they behave like a sequential composition of

their component tasks in the obvious order (i.e., the one that would occur ifforeach or cobegin

were elided). This property fosters local, compositional reasoning about parallel constructs. In par-

ticular, deterministic constructs behave consistently, no matter where they occur.

Chapters 5 and 6 of this thesis discuss DPJ’s support for nondeterministic computations.

The Galois system [74] provides capabilities similar to ourforeach andforeach nd, except that

it is possible to write incorrectly synchronized programs (for example, that have data races) in Galois. Our

aim is to leverage the effect system described in this thesisto guaranteethe properties described above.

2.4 Usability

A common concern regarding language-based solutions is thecost to rewrite existing programs and to learn

new language features. We believe that (1) the costs tend to be exaggerated and the benefits underestimated;

and (2) strong technical solutions can significantly reducethe costs. We discuss both points briefly in turn.

Costs and benefits of language solutions:First, we are proposing a small set of extensions to an established

base language (such as Java or C#),not an entirely new language. This fact should mitigate the up-front

cost of both learning the new features and writing code that uses the new features. Further, the extra effort

to learn and use new language features is likely to be dwarfedby the effort required to write, port, tune,

23

and test parallel code. A well-designed language that simplifies the latter tasks can more than justify the

learning curve. Note also that because we are extending a base language, porting can be doneincrementally,

e.g., kernel by kernel.

Second, although object-oriented effect notations require some extra effort from the programmer, such

effort is not wasted. First, effect annotations on methods provide a compiler-checkableinterfacethat allows

sound, modular reasoning about program components, even inthe absence of all the source code (such

as for a library or framework). Thus, the annotations enhance modularity and composability. Second,

the reasoning required to introduce regions and effects is exactly the reasoning required to understand the

sharing patterns in the code. In fact, the region and effect mechanisms give programmers a concrete guide

for how to carry out such reasoning.

Third, nontrivial real-world applications are long-lived, and initial development or porting costs are

usually a small fraction of long-term maintenance and enhancement costs. A language that simplifies testing

and documents sharing patterns in the code reduces maintenance costs.

Fourth, current thread-based languages have woefully inadequate shared memory models. The only

memory model accepted today guarantees sequential consistency for data race-free programs, as for Java

and (soon) C++. The difficulty lies in the semantics of data races. C++ does not provide any. Java provides

semantics that are complex and fragile. If we are to move towards safe parallel languages with tractable

memory models, wemust prohibit data races for all allowed programs. A type and effect system, as

discussed in Section 2.1.3, could accomplish this goal withlow runtime overhead.

Reducing the costs:Sometechnical solutionscan further reduce the cost of using new language features:

• Inferring annotations: We are exploring how judicious use of effect inference (inferring region and

effect annotations) can reduce the programming burden of a system like DPJ [122].

• Runtime checks: The language can provide runtime checks, as described in Section 2.1.3, so that

large programs can initially be ported without all the effect annotations needed for compile-time

checking. The overheads of runtime checks can then be incrementally tuned away by introducing

effect annotations where the benefits justify the effort.

• Integrated development environment (IDE): An IDE can use sophisticatedinteractivecompiler par-

allelization technology, combined with modern refactoring technology, to assist the initial porting

24

process. Making porting a one-time effort allows such an environment to use powerful, but poten-

tially slow, interprocedural parallelization techniques(the strengths of compilers); while making it

interactive allows programmers to influence the process andavoid the problems of poor or brittle

performance (the weaknesses).

2.5 Related Work: Limiting Side Effects

As stated previously, the broad goal of this thesis is to develop a deterministic-by-default language with

expressive side effects. Parallelism is easier to express when there are no side effects, because there are

no hidden and potentially conflicting accesses to shared memory. However, the absence of side effects

requires a more restrictive programming model than is typical for an imperative, object-oriented language

with reference passing and mutable objects. Here we briefly survey contrasting approaches, in which safety

guarantees are obtained by restricting or eliminating sideeffects. Related work that is technically closer to

DPJ (e.g., other work on effect systems) will be discussed inthe relevant following chapters of this thesis,

after the technical discussions.

Data parallel languages. Data parallel languages express parallel operations on theelements of regular

data structures, such as arrays, containing numerical values. CM Fortran [40] and Fortran 90 [88] enabled

a SIMD (single instruction, multiple data) style of data parallel programming in which a single statement

can operate on an entireslice (rectangular subsection) of an array. Later languages introduced mechanisms

for specifying the distribution of data across large distributed-memory machines and operations on more

complex data structures such as sparse arrays. These languages include Fortran variants [53, 40, 131, 67,

87]; languages based on C and C++ [66, 83]; NESL [21]; , ZPL [32], and Hierarchically Tiled Arrays [19].

Data parallel language constructs can elegantly express deterministic parallelism and achieve very high

performance when the data and operations are regular; but they cannot express, or achieve poor performance

for, important features like multiple threads of control, parallelism across pointer-based data structures, and

dynamic creation and deletion of tasks or threads.

Parallel functional languages. Purely functional languages are side effect free. Parallelfunctional lan-

guages such as Concurrent Haskell [70], ML [102], of parallel functional languages use this fact to express

parallelism elegantly [79]. However, the absence of side effects means that many common programming

patterns are impractical. For example, even a simple operation such as appending to a list requires making

25

a new copy of the entire list. There has been work on understanding theeffect interferencethat results when

side effects are added to functional languages [55, 71, 126]. Recently, Dowse et al. have shown how to

model I/O in concurrent Haskell while retaining deterministic guarantees [46]. To our knowledge, none of

this work investigates language annotations for non-speculative, deterministic parallelism in the presence of

pointer-based sharing of mutable data.

Dataflow languages.In the 1970s and 1980s, many researchers proposeddataflow languagesfor program-

ming adataflow architecturein which programs were represented as dataflow graphs, exposing all data

dependences at the instruction level [94, 49]. By the 1990s,it became apparent that to achieve efficiency,

the graph nodes had to consist of many instructions, leadingback to a functional style. Today, dataflow

programming is mainly used for digital signal processing and other computations calledstream computa-

tions that are naturally expressed as subcomputations calledkernelsinteracting via a dataflow graph [69].

It appears unlikely that this approach can replace traditional imperative programming on von Neumann

architectures for general-purpose applications.

Parallel message passing languages.There has been some work on guaranteeing deterministic results for

programs written in an explicit message passing style on a distributed-memory machine. Compositional

C++ [34] provides asynch variablethat behaves like a single assignment variable in a dataflow language.

Fortran M [33] allows explicit communications viachannelsand coordinates reading and writing viatokens

that can be passed through the channels. While similar in spirit to what we are trying to achieve, these

languages use very different mechanisms that appear difficult to extend to shared memory systems.

26

Chapter 3

Effect System and Language for Determinism

This chapter describes DPJ’s effect system and language features for supporting deterministic parallelism.

As discussed in Chapter 1, the basic strategy is as follows:

1. The programmer explicitly marks which sections of code are to be run deterministically in parallel.

2. The programmer partitions the set of heap memory locations (i.e., object fields and array cells) us-

ing regions, which are sets of memory locations. The programmer also writeseffect summarieson

methods, indicating which regions are read and written by the method.

3. The compiler checks that the method summaries are correct(i.e., they include all the actual effects

of the method) and that parallel tasks arenoninterfering. That means that if any pair of parallel tasks

accesses the same region, then the accesses commute — for example, they are both reads.

The rest of this chapter proceeds as follows. Section 3.1 describes some basic capabilities that DPJ

shares with other effect systems. Section 3.2 describesregion path lists, or RPLs. RPLs represent a novel

way to partition the heap hierarchically, and are the key to DPJ’s expressive effect specifications and sub-

typing. Section 3.3 describes DPJ’s features for supporting parallel computations on arrays. Section 3.4

describes DPJ’scommutativity annotationsfor specifying that two method invocations (e.g., two updates

to a shared counter) may be applied in parallel with deterministic results, even though they have interfer-

ing reads and writes. Section 3.5 presents an evaluation of the deterministic effect system and language,

including expressivity, performance, and usability. Section 3.6 discusses related work.

3.1 Basic Capabilities

We begin by summarizing some basic capabilities of DPJ that are similar to previous work [82, 77, 59,

30, 35]. We refer to the example in Figure 3.1, which shows a simple binary tree with three nodes and a

27

1 class TreeNode<region P> {
2 region Links, L, R;
3 double mass in P;
4 TreeNode<L> left in Links;
5 TreeNode<R> right in Links;
6 void setMass(double mass) writes P { this.mass = mass; }
7 void initTree(double mass) {
8 cobegin {
9 /* Inferred effect is ’reads Links writes L’ */

10 left.mass = mass;
11 /* Inferred effect is ’reads Links writes R’ */
12 right.mass = mass;
13 }
14 }
15 }

Figure 3.1: Basic features of DPJ. New DPJ syntax is highlighted in bold face. Effects inferred by the
compiler are given in comments. Note that methodinitTree (line 7) has no effect annotation, so it gets
the default effect summary of “reads and writes the entire heap.”

TreeNode<Root>

double mass Root

TreeNode<L> leftChild Links

TreeNode<R> rightChlld Links

TreeNode<L>

double mass L

TreeNode<L> left Links

TreeNode<R> right Links

TreeNode<R>

double mass R

TreeNode<L> left Links

TreeNode<R> right Links

Figure 3.2: Runtime heap typing from Figure 3.1

methodinitTree that writes into themass fields of the left and right child nodes. As we describe more

capabilities of DPJ, we will also expand upon this example tomake it more realistic, e.g., supporting trees

of arbitrary depth.

Expressing parallelism: DPJ provides two constructs for expressing parallelism, thecobegin block and

theforeach loop. Thecobegin block executes each statement in its body as a parallel task,as shown in

lines 8–13. Theforeach loop is used in conjunction with arrays and is described in Section 3.3.1.

Region names: In DPJ, the programmer uses named regions to partition the heap, and writes method

effect summaries stating what regions are read and written by each method. Aclass region declaration

declares a new namer (called aclass region name) that can be used as a region name. For example, line 2

28

declares namesLinks, L, andR, and these names are used as regions in lines 4 and 5. A class region

name is associated with the static class in which it is declared; this fact allows us to reason soundly about

effects without alias restrictions or interprocedural alias analysis. A class region name functions like an

ordinary class member: it is inherited by subclasses, and outside the scope of its defining class, it must be

appropriately qualified (e.g.,TreeNode.L). A local region declarationis similar and declares a region

name at local scope.

Region parameters: DPJ provides class and method region parameters that operate similarly to Java

generic parameters. We declare region parameters with the keywordregion, as shown in line 1, so that

we can distinguish them from Java generic type parameters (in DPJ, type parameters always come first and

may be preceded by the keywordtype). When a region-parameterized class or method is used, region

arguments must be provided to the parameters, as shown in lines 4–5. Region parameters enable us to create

multiple instances of the same class, each with its data in a different region.

To control aliasing of region parameters, the programmer may write a disjointness constraint [30] of the

form P1 # P2, whereP1 andP2 are parameters (or regions written with parameters; see Section 3.2) that

are required to be disjoint. Disjointness of regions is fully explained in Section 3.2; in the case of simple

names, it means the names must be different. The constraintsare checked when instantiating the class or

calling the method. If the disjointness constraints are violated, the compiler issues a warning.

Partitioning the heap: The programmer may place the keywordin after a field declaration, followed by

the region, as shown in lines 3–5. An operation on the field is treated as an operation on the region when

specifying and checking effects. This effectively partitions the heap into regions: in a Java program without

arrays, like this one, the heap consists of a set of class objects, every class object has a set of fields, and

every field has a region. In this simple example, exactly three regions are used for partitioning the heap

— Links, L, andR — and every class field at runtime is in one of those regions. See Figure 3.2 for an

illustration of the runtime heap typing, assuming the root node has been instantiated withRoot. In the

following sections, we will describe anesting relationon regions that allows hierarchical partitions of the

heap, and we will also show how to handle arrays.

Method effect summaries:Every method (including all constructors) must conservatively summarize its

heap effects with an annotation of the formreads region-list writes region-list, as shown in line 6.

Every actual effect of the method must be represented by (sometimes we say “covered by”) an effect in the

29

summary. A write effect in the summary covers a read effect ora write effect to the same region in the

method, but a read effect in the summary covers only a read effect in the method. This rule ensures that the

compiler can report all read-write and write-write conflicts between different methods invoked in parallel.

When one method overrides another, the effects of the superclass method must cover the effects of the

subclass method. For example, if a method specifies awrites effect, then all methods it overrides must

specify that samewrites effect. This constraint ensures that we can check effects soundly in the presence

of polymorphic method invocation [77, 59]. The full DPJ language also includeseffect variables, to support

writing a subclass whose effects are unknown at the time of writing the superclass (e.g., in instantiating a

library or framework class); effect variables will be discussed in Chapters 7 and 8 of this thesis.

Effects on local variables need not be declared, because these effects are masked from the calling con-

text. Nor must initialization effects inside a constructorbody be declared, because the DPJ type and effect

system ensures that no other task can accessthis until after the constructor returns. Read effects on

final variables are also ignored, because those reads can never cause a conflict. A method or constructor

with no externally visible heap effects may be declaredpure.

To simplify programming and provide interoperability withlegacy code, we adopt the rule that no an-

notation means “reads and writes the entire heap,” as shown in Figure 3.1. This scheme allows ordinary

sequential Java to work correctly, but it requires the programmer to add the annotations in order to introduce

safe parallelism. In particular, methods that are never called inside a parallel code section do not require an

explicit effect summary, but methods that are called insidea parallel code section do.

Proving determinism: To type check the program in Figure 3.1, the compiler does thefollowing. First,

check that the summarywrites P of methodsetMass (line 6) is correct (i.e., it covers all effect

of the method). It is, because fieldmass is declared in regionP (line 3), and there are no other ef-

fects. Second, check that the parallelism in lines 8–13 is safe. It is, because the effect of line 10 is

reads Links writes L; the effect of line 12 isreads Links writes R; andLinks, L, and

R are distinct names. Notice that this analysis is entirely intraprocedural.

3.2 Region Path Lists (RPLs)

An important concept in effect systems isregion nesting. Region nesting supports a hierarchical partitioning

of the heap, so the effect system can express that different computations are occurring on different parts of

30

the heap. For example, to extend the code in Figure 3.1 to a tree of arbitrary depth, we need a tree of

nested regions (and the nesting must be unbounded). As discussed in Section 3.3, we can also use nesting to

express that (1) two aggregate data structures (like arrays) are in distinct regions and (2) the components of

those structures (like the cells of the arrays) are in distinct regions, each nested under the region containing

the whole structure.

Effect systems that support nested regions are generally based on object ownership [37, 30] or use

explicit declarations that one region is under another [77,59]. As discussed below, we use a novel approach

based on chains of elements calledregion path lists, or RPLs, that provides new capabilities for effect

specification and subtyping.

3.2.1 Specifying Single Regions

The region path list (RPL) generalizes the notion of a simpleregion namer. Each RPL names a single

region, or set of memory locations, on the heap. The set of all regions partitions the heap, i.e., each memory

location lies in exactly one region. The regions are arranged in a tree with a special regionRoot as the root

node. We say that one region isnested under(or simply under) another if the first is a descendant of the

second in the tree. The tree structure guarantees that for any two distinct namesr andr′, the set of regions

underr and the set of regions underr′ have empty intersection, and we can use this guarantee to prove

disjointness of memory accesses.

Syntactically, an RPL is a colon-separated list of names, called RPL elements, beginning withRoot.

Each element afterRoot is a declared region namer,1 for example,Root:A:B. As a shorthand, we can

omit the leadingRoot. In particular, a bare name can be used as an RPL, as illustrated in Figure 3.1. The

syntax of the RPL represents the nesting of region names: oneRPL is under another if the second is a prefix

of the first. For example,L:R is underL. We writeR1 � R2 if R1 is underR2. Note that the under relation

establishes ahierarchy of distinct regions; it does not specifyinclusion of regions. In particular,A andA:B

are distinct regions (so, for example,writes A doesnot imply writes A:B). In the next subsection,

we will show how to specifysets of regions(for example, “all regions underA”) that can express inclusion

relations.

We may also write a region parameter, instead ofRoot, at the head of an RPL, for exampleP:A, where

1As noted in Section 3.1, this can be a package- or class-qualified name such asC.r; for simplicity, we user throughout.

31

P is a parameter. When a class with a region parameter is instantiated at runtime, the parameter is resolved

to an RPL beginning withRoot.2 Method region parameters are resolved similarly at method invocation

time. Because a parameterP is always bound to the same RPL in a particular scope, we can make sound

static inferences about parametric RPLs. For example, for all P, P:A � P, andP:A 6= P:B if and only if

A 6= B.

Figure 3.3 illustrates the use of region nesting and class region parameters to distinguish different

fields as well as different objects. It extends the example from Figure 3.1 by adding aforce field to

theTreeNode class, and by making theinitTreemethod (line 7) set themass andforce fields of the

left and right child in four parallel statements in acobegin block (lines 9–16).

To establish that the parallelism is safe (i.e., that lines 9–16 access disjoint locations), we place fields

mass andforce in distinct regionsP:M andP:F, and the linksleft andright in a separate region

Links (since they are only read). The parameterP appears in both regions andP is bound to different

regions (L andR) for the left and right subtrees, because of the different instantiations of the parametric type

TreeNode for the fieldsleft andright. Because the namesL andR used in the types are distinct, we

can distinguish the effects onleft (lines 10–12) from the effects onright (lines 14–16). And because

the namesM andF are distinct, we can distinguish the effects on the different fields within an object from

each other (i.e., line 10 vs. line 14 and line 12 vs. line 16). Figure 3.4 shows this situation graphically. The

different bindings toP provide a “vertical partition” that distinguishes the two objects, while the different

names after the colon provide a “horizontal partition” thatdistinguishes between the fields. Moreover, DPJ’s

rules for type comparisons ensure that this kind of reasoning is sound, because the types must match in the

left- and right-hand sides of any assignment. For example, it is a compile-time error to attempt to assign a

value of typeTreeNode<L> to a variable of typeTreeNode<R>.

3.2.2 Specifying Sets of Regions

DPJ’s regions support recursive algorithms on a tree of unbounded depth. For example, consider the code

shown in Figure 3.5. Here we are operating on the sameTreeNode shown in Figs. 3.1 and 3.3, ex-

cept that we have added (1) alink field (line 7) that points to some other node in the tree and (2)a

computeForces method (line 8) that recursively descends the tree. At each node,computeForces

2As with Java generics, the region parameter information is erased at compile time and not represented at runtime, so there is
no runtime cost to this instantiation.

32

1 class TreeNode<region P> {
2 region Links, L, R, M, F;
3 double mass in P:M;
4 double force in P:F;
5 TreeNode<L> left in Links;
6 TreeNode<R> right in Links;
7 void initTree(double mass, double force) {
8 cobegin {
9 /* reads Links writes L:M */

10 left.mass = mass;
11 /* reads Links writes L:F */
12 left.force = force;
13 /* reads Links writes R:M */
14 right.mass = mass;
15 /* reads Links writes R:F */
16 right.force = force;
17 }
18 }
19 }

Figure 3.3: Extension of Figure 3.1 showing the use of regionnesting and region parameters

follows link to another node, reads themass field of that node, computes the force between that node

and this one, and stores the result in theforce field of this node. This computation can safely be done

in parallel on the subtrees at each level, because each call writes only theforce field of this, and the

operations on other nodes (throughlink) are all reads of themass, which is distinct fromforce. To

write this computation, we need to be able to say, for example, that line 13 writes only the left subtree, and

does not touch the right subtree.

Moreover, DPJ’s nested regions naturally encode this fact.Notice that we have written the types

of fields left andright TreeNode<P:L> andTreeNode<P:R> instead ofTreeNode<L> and

TreeNode<R> as before. As shown in Figure 3.6, through left-recursive substitution, every node in the

runtime tree has a different region bound to the parameter ofits type, and the RPL in the region specifies

the position in the tree. For example, the root node has typeTree<Root>, while the right child of the left

child of the root has typeTree<Root:Left:Right>. Again, DPJ’s type system ensures this reasoning

is sound. We just need a way to express effects on the different parts of the tree, which we describe below.

Partially specified RPLs: To express recursive parallel algorithms, we must specify effects onsets of

regions(e.g., “all regions underR”). To do this, we introducepartially specified RPLs. A partially specified

RPL contains the symbol* (“star”) as an RPL element, standing in for some unknown sequence of names.

An RPL that contains no* is fully specified.

33

TreeNode<Root>

TreeNode<L> left Links

TreeNode<R> right Links

TreeNode<L>

double mass L : M

double force L : F

TreeNode<R>

double mass R : M

double force R : F

...

... ...

L : * vs. R : *

* : M

vs.

* : F

Figure 3.4: Graphical depiction of the distinctions shown in Figure 3.3. The* denotes any sequence of RPL
elements; this notation is explained further in Section 3.2.2.

Distinctions from the left: In lines 11–15 of Figure 3.5, we need to distinguish the writeto this.force

(line 11) from the writes to theforce fields in the subtrees (lines 13 and 15). We can use partially specified

RPLs to do this. For example, line 8 says thatcomputeForces may read all regions underLinks and

write all regions underP that end withF.

If RPLsR1 andR2 are the same in the firstn places, and they differ in placen + 1, and neither contains

a * in the firstn + 1 places, then (because the regions form a tree) the set of regions underR1 and the

set of regions underR2 have empty intersection. In this case we say thatR1:* andR2:* aredisjoint,

and we know that effects on these two RPLs are noninterfering. We call this a “distinction from the left,”

because we are using the distinctness of the names to the leftof any star to infer that the region sets are

non-intersecting. For example, a distinction from the leftestablishes that the region setsP:F, P:L:*:F,

andP:R:*:F (shown in lines 10-15) are disjoint, because the RPLs all start with P and differ in the second

place.

Distinctions from the right: Sometimes it is important to specify “all fieldsx in any node of a tree.” For

example, in lines 10–15, we need to show that the reads of themass fields are distinct from the writes to

theforce fields. We can make this kind of distinction by using different namesafter the star: ifR1 and

R2 differ in thenth place from the right, and neither contains a* in the firstn places from the right, then a

simple syntactic argument shows that their region sets are disjoint. We call this pattern a “distinction from

the right,” because the names that ensure distinctness appear to the right of any star. For example, in lines

34

1 class TreeNode<region P> {
2 region Links, L, R, M, F;
3 double mass in P:M;
4 double force in P:F;
5 TreeNode<P:L> left in Links;
6 TreeNode<P:R> right in Links;
7 TreeNode<*> link in Links;
8 void computeForces() reads Links, *:M writes P:*:F {
9 cobegin {

10 /* reads *:M writes P:F */
11 this.force = (this.mass * link.mass) * R_GRAV;
12 /* reads Links, *:M writes P:L:*:F */
13 if (left != null) left.computeForces();
14 /* reads Links, *:M writes P:R:*:F */
15 if (right != null) right.computeForces();
16 }
17 }
18 }

Figure 3.5: Using partially specified RPLs for effects and subtyping

10–15, we can distinguish the reads of*:M from the writes toP:L:*:F andP:R:*:F.

More complicated patterns: More complicated RPL patterns likeRoot:*:A:*:B are supported by the

type system. Although we do not expect that programmers willneed to write such patterns, they sometimes

arise via parameter substitution when the compiler is checking effects.

3.2.3 Subtyping and Type Casts

Subtyping: Partially specified RPLs are also useful for subtyping. For example, in Figure 3.5, we needed to

write the type of a reference that could point to aTreeNode<P>, for any binding toP. With fully specified

RPLs we cannot do this, because we cannot write a type to whichwe can assign bothTreeNode<L>

andTreeNode<R>. The solution is to use a partially specified RPL in the type, e.g., TreeNode<*>,

as shown in line 7 of Figure 3.5. Now we have a type that is flexible enough to allow the assignment, but

retains soundness by explicitly saying that we do not know the actual region.

The subtyping rule is simple:C<R1> is a subtype ofC<R2> if the set of regions denoted byR1 is

included in the set of regions denoted byR2. We writeR ⊆ R2 to denote set inclusion for the corresponding

sets of regions. IfR1 andR2 are fully specified, thenR1 ⊆ R2 impliesR1 = R2. Note that nesting and

inclusion are related:R1 � R2 impliesR1 ⊆ R2:*. However, nesting alone doesnot imply inclusion of

the corresponding sets. For example,A:B � A, butA:B 6⊆ A, becauseA:B andA denote distinct regions.

35

Tree<Root : L>

double force Root : L : F

double mass Root : L : M

Tree<Root : L : L> left Links

Tree<Root : L : R> right Links

Tree<*> link Links

Tree<Root>

double force Root : F

double mass Root : M

Tree<Root : L> left Links

Tree<Root : R> right Links

Tree<*> link Links

Tree<Root : R>

double force Root : R : F

double mass Root : R : M

Tree<Root : R : L> left Links

Tree<Root : R : R> right Links

Tree<*> link Links

Figure 3.6: Heap typing from Figure 3.5. Reference values are shown by arrows; tree arrows are solid, and
non-tree arrows are dashed. Notice that all arrows obey the subtyping rules.

In the next chapter, we discuss the rules for nesting, inclusion, and disjointness of RPLs more formally.

Figure 3.6 illustrates one possible heap typing resulting from the code in Figure 3.5. The DPJ typing

discipline ensures the object graph restricted to theleft andright references is a tree. However, the full

object graph including thelink references is more general and can even include cycles, as illustrated in

Figure 3.6. Note how our effect system is able to prove that the updates to different subtrees are distinct, even

though (1) non-tree edges exist in the graph; and (2) those edges are followed to do possibly overlapping

reads.

Type casts: DPJ allows any type cast that would be legal for the types obtained by erasing the region

variables. This approach is sound if the region arguments are consistent. For example, given

class B<region R> extends A<R>,

a cast fromA<r> to B<r> is sound, because either the reference isB<r>, or it is not any sort ofB, which

will cause aClassCastException at runtime. However, a cast fromObject to B<r1> is potentially

unsound and could violate the determinism guarantee, because theObject could be aB<r2>, which

would not cause a runtime exception. The compiler allows this cast, but it issues a warning.

36

While unchecked downcasts fromObject can violate determinism, in practice they should not be

necessary in a DPJ program: because DPJ fully supports generic types, assigning to and fromObject

is never necessary, except for compatibility with legacy code. In particular, we were able to write all the

benchmarks discussed in Section 3.5 without any unchecked downcasts. We could add runtime checking of

region compatibility at the point of the cast, as in [24].

3.3 Arrays

DPJ provides two novel capabilities for computing with arrays: index-parameterized arraysandsubarrays.

Index-parameterized arrays allow us to traverse an array ofobject references and safely update the objects

in parallel, while subarrays allow us to dynamically partition an array into disjoint pieces, and give each

piece to a parallel subtask.

3.3.1 Index-Parameterized Arrays

A basic capability of any language for deterministic parallelism is to operate on elements of an array in

parallel. For a loop over an array of values, it is sufficient to prove that each iteration accesses a distinct array

element (we call this aunique traversal). For a loop over an array of references to mutable objects, however,

a unique traversal is not enough: we must also prove that any memory locations updated by following

references in distinct array cells (possibly through a chain of references) are distinct. Figure 3.7 illustrates

an array of objects violating this property. Proving this property is very hard in general, if assignments are

allowed into reference cells of arrays. No previous effect system that we are aware of is able to ensure

disjointness of updates by following references stored in arrays, and this seriously limits the ability of those

systems to express parallel algorithms.

In DPJ, we make use of the following insight:

Insight 1. We can define a special array type with the restriction that anobject reference valueo assigned

to cell n (wheren is a natural number constant) of such an array has a runtime type that is parameterized

by n. If accesses through celln touch only regionn (even by following a chain of references), then the

accesses through different cells are guaranteed to be disjoint.

We call such an array type anindex-parameterized array. To represent such arrays, we introduce two

37

Figure 3.7: An array with duplicate references. The small boxes are array cells, the large boxes are objects,
and the arrows are references. Traversing and following thereferences and performing parallel updates can
violate determinism, even if the traversal is unique.

language constructs:

1. An array RPL elementwritten[e], wheree is an integer expression.

2. An index-parameterized array typethat allows us to write the region and type of array celle using

the array RPL element[e]. For example, we can specify that celle resides in regionRoot:[e] and

has typeC<Root:[e]>.

At runtime, if e evaluates to a natural numbern, then the static array RPL element[e] evaluates to the

dynamic array RPL element[n].

The key point here is that we can distinguishC<[e1]> from C<[e2]> if e1 ande2 always evaluate

to unequal values at runtime, just as we can distinguishC<r1> from C<r2>, wherer1 andr2 are declared

names, as discussed in Section 3.2.1. Obviously, the compiler’s capability to distinguish such types will

be limited by its ability to prove the inequality of the symbolic expressionse1 ande2. This is possible in

many common cases, for the same reason that array dependenceanalysis is effective in many, though not

all, cases [54]. The key benefit is thatthe type checker has then proved the uniqueness of the targetobjects,

which would not follow from dependence analysis alone.

In DPJ, the notation we use for index-parameterized arrays is T[]<R>#i, whereT is a type,R is an

RPL, #i declares a fresh integer variablei in scope over the type, and[i] may appear as an array RPL

element inT or R (or both). This notation says that array celle (wheree is an integer expression) has type

T [i← e] and is located in regionR[i← e]. For example,C<r1:[i]>[]<r2:[i]>#i specifies an array

such that celle has typeC<r1:[e]> and resides in regionr2:[e]. If T itself is an array type, then nested

index variable declarations can appear in the type. However, the most common case is a single-dimensional

array, which needs only one declaration. For that case, we provide a simplified notation: the user may

38

1 class Body<region P> {
2 region Link, M, F;
3 double mass in P:M;
4 double force in P:F;
5 Body<*> link in Link;
6 void computeForce() reads Link, *:M writes P:F {
7 force = (mass * link.mass) * R_GRAV;
8 }
9 }

10

11 final Body<[_]>[]<[_]> bodies = new Body<[_]>[N]<[_]>;
12 foreach (int i in 0, N) {
13 /* writes [i] */
14 bodies[i] = new Body<[i]>();
15 }
16 foreach (int i in 0, N) {
17 /* reads [i], Link, *:M writes [i]:F */
18 bodies[i].computeForce();
19 }

Figure 3.8: Example using an index-parameterized array

Body<Root : [10]>

double force Root : [10] : F

double mass Root : [10] : M

Body<*> link Link

...

10 90

Body<Root : [90]>

double force Root : [90] : F

double mass Root : [90] : M

Body<*> link Link

Figure 3.9: Heap typing from Figure 3.8. The type of array cell i is parameterized byi. Cross-links are
possible, but if any links are followed to access other arraycells, the effects are visible.

omit the#i and use an underscore () as an implicitly declared variable. For example,C<[]>[]<[]> is

equivalent toC<[i]>[]<[i]>#i.

Figure 3.8 shows an example, which is similar in spirit to theBarnes-Hut force computation discussed

in Section 3.5. Lines 1–9 declare a classBody. Line 11 declares and creates an index-parameterized array

bodies with N cells, such that celli resides in region[i] and points to an object of typeBody<[i]>.

Figure 3.9 shows a sample heap typing, for some particular value n of N.

Lines 12–15 show aforeach loop that traverses the indicesi ∈ [0, n − 1] in parallel and initializes

cell i with a new object of typeBody<[i]>. The loop is noninterfering because the type ofbodies

39

says that cellbodies[i] resides in region[i], so distinct iterationsi andj write disjoint regions[i]

and[j]. Lines 16–19 are similar, except that the loop callscomputeForce on each of the objects.

In iterationi of this loop, the effect of line 16 isreads [i], because it readsbodies[i], together with

reads Link, *:M writes [i]:F, which is the declared effect of methodcomputeForce (line 6),

after substituting[i] for P. Again, the effects are noninterfering fori 6= j.

To maintain soundness, we just need to enforce the invariantthat, at runtime, cellA[i] never points to

an object of typeC<[j]>, if i 6= j. The compiler can enforce this invariant through symbolic analysis, by

requiring that if typeC<[e1]> is assigned to typeC<[e2]>, thene1 ande2 must always evaluate to the

same value at runtime; if it cannot prove this fact, then it must conservatively disallow the assignment. In

many cases (as in the example above) the check is straightforward.

Note that because of the typing rules, no two distinct cells of an index-parameterized array can point to

the same object. However, it is perfectly legal to reach the same object by following chains of references

from distinct array cells, as shown in Figure 3.9. In that case, in a parallel traversal over the array, either

the shared object is not updated, in which case the parallelism is safe; or a write effect on the same region

appears in two distinct iterations of a parallel loop, in which case the compiler can catch the error.

Note also that while no two cells in an index-parameterized array can alias, references may be freely

shared with other variables (including cells in other index-parameterized arrays), unlike linear types [59, 25,

26]. For example, if celli of a particular array has typeC<[i]>, the object it points to could be referred to

by cell i of any number of other arrays (with the same type), or by any reference of typeC<*>. Thus, when

we are traversing the array, we get the benefit of the alias restriction imposed by the typing, but we can still

have as many other outstanding references to the objects as we like.

The pattern does have some limitations: for example, we cannot move an element from positioni to

positionj in the arrayC<[i]>[]#i. However, we can copy the references into a different arrayC<*>[]

and shuffle those references as much as we like, though we cannot use those references to update the objects

in parallel. We can also make a new copy of elementi with type C<[j]> and store the new copy into

positionj. This effectively gives a kind of reshuffling, although the copying adds performance overhead.

Another limitation is that ourforeach currently only allows regular array traversals (includingstrided

traversals), though it could be extended to other unique traversals.

40

1 class QSort<region P> {
2 DPJArrayInt<P> A in P;
3 QSort(DPJArray<P> A) pure { this.A = A; }
4 void sort() writes P:* {
5 if (A.length <= SEQ_LENGTH) {
6 seqSort();
7 } else {
8 /* Shuffle A and return pivot index */
9 int p = partition(A);

10 /* Divide A into two disjoint subarrays at p */
11 final DPJPartitionInt<P> segs =
12 new DPJPartitionInt<P>(A, p, OPEN);
13 cobegin {
14 /* writes segs:[0]:* */
15 new QSort<segs:[0]:*>(segs.get(0)).sort();
16 /* writes segs:[1]:* */
17 new QSort<segs:[1]:*>(segs.get(1)).sort();
18 }
19 }
20 }
21 }

Figure 3.10: Writing quicksort with thePartition operation. DPJArrayInt and
DPJPartitionInt are specializations toint values. In line 12, the argumentOPEN is an enum
that says to omit the partition index from the subarrays, i.e., they are open intervals.

3.3.2 Subarrays

A familiar pattern for writing divide and conquer recursionis to partition an array into two or more disjoint

pieces and give each array to a subtask. For example, Figure 3.10 shows a standard implementation of

quicksort, which divides the array in two at each recursive step, then works in parallel on the halves. DPJ

supports this pattern with three novel features, which we illustrate with the quicksort example.

First, DPJ provides a classDPJArray that wraps an ordinary Java array and provides a view into

a contiguous segment of it, parameterized by start positionS and lengthL. In Figure 3.10, theQSort

constructor (line 3) takes aDPJArray object that represents a contiguous subrange of the caller’s array.

We call this subrange asubarray. Notice that theDPJArray object doesnot replicate the underlying

array; it stores only a reference to the underlying array, and the values ofS andL. TheDPJArray object

translates an access to elementi into an access to elementS + i of the underlying array. Ifi < 0 or i ≥ L,

then an array bounds exception is thrown, i.e., access through the subarray must stay within the specified

segment of the original array.

Second, DPJ provides a classDPJPartition, representing an indexed collection ofDPJArray ob-

41

jects, all of which point into mutually disjoint segments ofthe original array. To create aDPJPartition,

the programmer passes aDPJArray object into theDPJPartition constructor, along with some ar-

guments that say how to do the splitting. Lines 11–12 of Figure 3.10 show how to split theDPJArray

A at indexp, and indicate that positionp is to be left out of the resulting disjoint segments. Segment0

is aDPJArray representing the elements of the originalDPJArray array with indices less thanp, and

segment 1 is aDPJArray representing the elements of the original array with indices greater thanp. The

programmer can access segmenti of the partitionsegs by sayingsegs.get(i), as shown in lines 15 and

17.

Third, to support recursive computations, we need a slight extension to the syntax of RPLs. Notice that

we cannot use a simple region name, liker, for the type of a partition segment, because different partitions

can divide the same array in different ways. Instead, we allow afinal local variablev (includingthis)

of class type to appear at the head of an RPL, for examplev:r. The variablev stands in for the object

referenceo stored into the variable at runtime, which is the actual region. Using the object reference as a

region ensures that different partitions get different regions, and making the variablefinal ensures that it

always refers to the same region.

We make these “variable regions” into a tree as follows. Ifv’s type isC<R,. . .>, thenv is nested

underR; the first region parameter of a class functions like theowner parameterin an object ownership

system [39, 37]. In the particular case ofDPJPartition, if the type ofv is DPJPartition<R>, then

the type ofv.get(i) is v:[i]:*, wherev � R. Internally, theget method uses a type cast to generate

aDPJArray of typethis:[i]:* that points into the underlying array. The soundness of the type cast is

not checked by the type system, but it is hidden from the user code in such a way that all well-typed uses of

DPJPartition are noninterfering.

In Figure 3.10, the sequence of recursivesort calls creates a tree ofQSort objects, each in its own

region. Thecobegin in lines 13–17 is safe becauseDPJPartition guarantees that the segments

segs.get(0) andsegs.get(1) passed into the recursive parallelsort calls are disjoint. In the

user code, the compiler uses the type and effect annotationsto prove noninterference as follows. First, from

the type ofQSort and the declared effect ofsort (line 4), the compiler determines that the effects of

lines 15 and 17 arewrites segs:[0]:* andwrites segs:[1]:*, as shown. Second, the regions

segs:[0]:* andsegs:[1]:* are disjoint, by a distinction from the left (Section 3.2.2). Finally, the

42

effectwrites P:* in line 4 correctly summarizes the effects ofsort, because lines 6 and 9 writeP,

lines 15 and 17 write undersegs, andsegs is underP, as explained above.

Notice thatDPJPartition can create multiple references to overlapping data with different regions

in the types. Thus, there is potential for unsoundness here if we are not careful. To make this work, we

must do two things. First, ifv1 andv2 represent different partitions of the same array, thenv1.get(0)

andv2.get(1) could overlap. Therefore, we must not treat them as disjoint. This is why we put* at the

end of the typev:[i]:* of v.get(i); otherwise we could incorrectly distinguishv1:[0] from v2:[1],

using a distinction from the right. Second, ifv has typeDPJPartition<R>, thenv.get(i) has type

DPJArray<v:[i]:*> and points into aDPJArray<R>. Therefore, we must not treatv:[i]:* as

disjoint from R. Here, we simply do not include this distinction in our type system. All we say is that

v:[i]:* � R. See Section 4.3.2 for further discussion of the disjointness rules in our effect system.

3.4 Commutativity Annotations

Sometimes to express parallelism we need to look at interference in terms of higher-level operations than

read and write [74]. For example, insertions into a concurrent Set can go in parallel and preserve determin-

ism even though the order of interfering reads and writes inside theSet implementation is nondeterministic.

Another such example is computing connected components of agraph in parallel.

DPJ contains two features that address this problem. First,classes may contain declarations of the form

m commuteswithm′, wherem andm′ are method names, indicating that any pair of invocations ofthe

named methods may be safely done in parallel,regardless of the read and write effects of the methods. See

Figure 3.11(a). In effect, thecommuteswith annotation says that (1) the two invocations areatomicwith

respect to each other, i.e., the result will be as if one occurred and then the other; and (2) either order of

invocation produces the same result.

The commutativity property itself is not checked by the compiler; we must rely on other forms of

checking (e.g., more complex program logic [130] or static analysis [45, 10]) to ensure that methods declared

to be commutative really are commutative. In practice, we anticipate thatcommuteswith will be used

mostly by library and framework code that is written by experienced programmers and extensively tested.

Our effect system does guarantee deterministic results foran application using a commutative operation,

assuming that the operation is indeed

43

1 class IntSet<region P> {
2 void add(int x) writes P { ... }
3 add commuteswith add;
4 }

(a) Declaration ofIntSet class with commutative methodadd

1 IntSet<R> set = new IntSet<R>();
2 foreach (int i in 0, N)
3 /* invokes IntSet.add with writes R */
4 set.add(A[i]);

(b) Usingcommuteswith for parallelism

1 class Adder<region P> {
2 void add(IntSet<P> set, int i)
3 invokes IntSet.add with writes P {
4 set.add(i);
5 }
6 }
7 IntSet<R> set = new IntSet<R>();
8 Adder<R> adder = new Adder<R>();
9 foreach (int i in 0, N)

10 /* invokes IntSet.add with writes R */
11 adder.add(set, A[i]);

(c) Usinginvokes to summarize effects

Figure 3.11: Illustration ofcommuteswith andinvokes

Second, our effect system provides a novelinvocation effectof the forminvokes m with E. This

effect records that an invocation of methodm occurred with underlying effectsE. The type system needs

this information to represent and check effects soundly in the presence of commutativity annotations: for

example, in line 4 of Fig. 3.11(b), the compiler needs to record thatadd was invoked there (so it can

disregard the effects of otheradd invocations)and that the underlying effect of the method waswrites R

(so it can verify that there are no other interfering effects, e.g., reads or writes ofR, in the invoking code).

When there are one or more intervening method calls between aforeach loop and a commutative

operation, it may also be necessary for a method effect summary in the program textto specify that an

invocation occurred inside the method. For example, in Figure 3.11(c), theadd method is called through

a wrapper object. We could have correctly specified the effect of Adder.add aswrites P, but this

would hide from the compiler the fact thatAdder.add commutes with itself. Of course we could use

commuteswith for Adder.add, but this is highly unsatisfactory: it just propagates the unchecked com-

mutativity annotation out through the call chain in the application code. The solution is to specify the

44

invocation effectinvokes IntSet.add with writes P, as shown.

Notice that the programmer-specified invocation effect exposes an internal implementation detail (i.e.,

that a particular method was invoked) at a method interface.However, we believe that such exposure

will be rare. In most cases, the effectinvokes C.m with E will be conservatively summarized as

E (Section 4.1.4 gives the formal rules for covering effects). The invocation effect will be used only in

cases where a commutative method is invoked, and the commutativity information needs to be exposed to

the caller. We believe these cases will generally be confinedto high-level public API methods, such as

Set.add in the example given in Figure 3.11.

3.5 Evaluation

We have carried out a preliminary evaluation of the languageand type system features presented in this

chapter. Our evaluation addressed the following questions:

• Expressiveness.Can the type system express important parallel algorithms on object-oriented data

structures? When does it fail to capture parallelism and why? Are each of the new features in the DPJ

type system important to express one or more of these algorithms?

• Performance. For each of the algorithms, what increase in performance is realized in practice? This

is a quantitative measure of how much parallelism the type system can express for each algorithm.

• Usability. How much programmer effort is required to write a DPJ program, compared to plain Java?

Is the effort worth it, given the strong determinism guarantee that DPJ provides over plain Java?

To do the evaluation, we extended Sun’sjavac compiler so that it compiles DPJ into ordinary Java

source. We built a runtime system for DPJ using theForkJoinTask framework that will be added

to thejava.util.concurrent standard library in Java 1.7 [3].ForkJoinTask supports dynamic

scheduling of lightweight parallel tasks, using a work-stealing scheduler similar to that in Cilk [22]. The

DPJ compiler automatically translatesforeach to a recursive computation that successively divides the

iteration space, to a depth that is tunable by the programmer, and it translates acobegin block into one

task for every statement. Code usingForkJoinTask is compatible with Java threads so an existing multi-

threaded Java program can be incrementally ported to DPJ. Such code may still have some guarantees, e.g.,

45

the DPJ portions will be guaranteed deterministic if the explicitly threaded and DPJ portions are separate

phases that do not run concurrently.

Using the DPJ compiler, we studied the following programs: Parallel merge sort, two codes from the

Java Grande parallel benchmark suite (a Monte Carlo financial simulation and IDEA encryption), the force

computation from the Barnes-Hut n-body simulation [109], k-means clustering from the STAMP bench-

marks [90], and a tree-based collision detection algorithmfrom a large, real-world open source game engine

called JMonkey (we refer to this algorithm as Collision Tree). For all the codes, we began with a sequen-

tial version and modified it to add the DPJ type annotations. The Java Grande benchmarks are explicitly

parallel versions using Java threads (along with equivalent sequential versions), and we compared DPJ’s

performance against those. We also wrote and carefully tuned the Barnes-Hut force computation using

Java threads as part of understanding performance issues inthe code, so we could compare Java and DPJ

for that one as well.

3.5.1 A Realistic Example

We use the Barnes-Hut force computation to show how to write arealistic parallel program in DPJ.

Figure 3.12 shows a simplified version of this code. The main simplification is that theVector objects for

representing points in three-dimensional space are immutable, with final fields (so there are no effects

on these objects), whereas our actual implementation uses mutable objects. Figure 3.13 shows a partial

implementation of theVector class used in this code.

In Figure 3.12, classNode represents an abstract tree node containing a mass and position. The mass

and position represent the actual mass and position of a body(at a leaf) or the center of mass of a subtree (at

an inner node). TheNode class has two subclasses:InnerNode, representing an inner node of the tree,

and storing an array of children; andBody, representing the body data stored at the leaves, and storing a

force. TheTree class stores the tree, together with an array ofBody objects pointing to the leaves of the

tree.

The methodTree.computeForcesdoes the force computation by traversing the array of bodiesand

calling the methodBody.computeForceon each one, to compute the force between the bodythis and

subtree. If subtree is a body, or is sufficiently far away that it can be approximated as a point mass,

thenBody.computeForcecomputes and returns the pairwise interaction between the nodes. Otherwise,

46

1 /* Abstract class for tree nodes */
2 abstract class Node<region R> {
3 /* Region for mass and position */
4 region MP;
5 /* Mass */
6 double mass in R:MP;
7 /* Position */
8 Vector pos in R:MP;
9 }

10

11 /* Inner node of the tree */
12 class InnerNode<region R> extends Node<R> {
13 /* Region for children */
14 region Children;
15 /* Children */
16 Node<R:*>[]<R:Children> children in R:Children;
17 }
18

19 /* Leaf node of the tree */
20 class Body<region R> extends Node<R> {
21 /* Region for force */
22 region Force;
23 /* Force on this body */
24 Vector force in R:Force;
25 /* Compute force of entire subtree on this body */
26 Vector computeForce(Node<R:*> subtree) reads R:*:Children, R:*:MP {
27 ...
28 }
29 }
30

31 /* Barnes-Hut tree */
32 class Tree<region R> {
33 /* Region for tree */
34 region Tree;
35 /* Root of the tree */
36 Node<R> root in R:Tree;
37 /* Leaves of the tree */
38 Body<R:[_]>[]<R:[_]> bodies in R:Tree;
39 /* Compute forces on all bodies */
40 void computeForces() writes R:* {
41 foreach (int i in 0, bodies.length) {
42 /* reads R:Tree, R:*:InnerNode.Children, R:[i],
43 R:*:Node.MP writes R:[i]:Node.Force */
44 bodies[i].force = bodies[i].computeForce(root);
45 }
46 }
47 }

Figure 3.12: Using DPJ to write the Barnes-Hut force computation

47

1 /* Immutable vector representing a point in space */
2 class Vector {
3 /* Coordinates of the vector */
4 final double x, y, z;
5 public Vector(double x, double y, double z) pure {
6 this.x = x; this.y = y; this.z = z;
7 }
8 /* Add two vectors to produce a new vector representing the sum */
9 public static Vector add(Vector a, Vector b) pure {

10 return new Vector(a.x+b.x,a.y+b.y,a.z+b.z);
11 }
12 /* More vector operations not shown */
13 ...
14 }

Figure 3.13:Vector class for the Barnes-Hut force computation

it recursively callscomputeForce on the children ofsubtree and accumulates the result.

We use a region parameter on the node classes to distinguish instances of these nodes. ClassTree uses

the parameters to create an index-parameterized array of references to distinct body objects; the parallel

loop incomputeForces iterates over this array. This allows distinctions from theleft for operations on

bodies[i] (Section 3.2). We also use distinct region names for the force, mass, and children fields of the

Node classes to enable distinctions from the right.

The key fact is that, from the effect summary in line 21 and thecode in line 35, the compiler infers the

effects shown in lines 33–34. Using distinctions from the left and right, the compiler can now prove that

(1) the updates are distinct for distinct iterations of theforeach; and (2) all the updates are distinct from

the reads. Notice also how the nested RPLs allow us to describe the entire effect ofcomputeForces as

writes R:*. That is, to the outside world,computeForces just writes under the region parameter of

Tree. Thus with careful use of RPLs, we can enforce a kind of encapsulation of effects, which is important

for modular software design.

3.5.2 Expressiveness

We used DPJ to express all available parallelism in the algorithms we studied. For Barnes-Hut, the overall

program includes four major phases in each time step: tree building; center-of-mass computation; force

calculations; and position calculations. Expressing the force, center of mass, and position calculations is

straightforward, but we studied only the force computation(the dominant part of the overall computation)

48

for this work. DPJ can also express the tree-building phase,but we would have to use a divide-and-conquer

approach, instead of inserting bodies from the root via “hand-over-hand locking,” as in in [109].

Briefly, we parallelized each of the codes as follows. MergeSort uses subarrays (Section 3.3.2) to per-

form in-place parallel divide and conquer operations for both merge and sort, switching to sequential merge

and sort for subproblems below a certain size. Monte Carlo uses index-parameterized arrays (Section 3.3.1)

to generate an array of tasks and compute an array of results,followed by commutativity annotations (Sec-

tion 3.4) to update globally shared data inside a reduction loop. IDEA uses subarrays to divide the input

array into disjoint pieces, then usesforeach to operate on each of the pieces. Section 3.5.1 describes our

parallel Barnes-Hut force computation. Collision Tree recursively walks two trees, reading the trees and

collecting a list of intersecting triangles. At each node, aseparate triangle list is computed in parallel for

each subtree, and then the lists are merged. Our implementation uses method-local regions to distinguish the

writes to the left and right subtree lists. K-Means uses commutativity annotations to perform simultaneous

reductions, one for each cluster. Table 3.1 summarizes the novel DPJ capabilities used for each code.

Table 3.1: Capabilities used in the benchmarks

Merge Monte Barnes- Collision
Capability Sort Carlo IDEA Hut Tree K Means
Index-parameterized array - Y - Y - -
Distinctions from the left Y Y Y Y Y -
Distinctions from the right - - - Y - -
Recursive subranges Y - Y - - -
Commutativity annotations - Y - - - Y

Our evaluation and experience showed some interesting limitations of the current language design. To

achieve good cache performance in Barnes-Hut, the bodies must be reordered according to their proximity

in space on each time step [109]. As discussed in Section 3.5.1, we use an index-parameterized array to

update the bodies in parallel. As discussed in Section 3.3.1, this requires that we copy each body with the

new destination regions at the point of re-insertion. Chapter 7 of this thesis discusses this problem further

and proposes one solution, using object-oriented frameworks. We also believe we can ease this restriction

by adding a mechanism for disjointness checking at runtime,and this is ongoing work in our research group.

49

3.5.3 Performance

We measured the performance of each of the benchmarks on a Dell R900 multiprocessor running Red Hat

Linux with 24 cores, comprising four six-core Xeon processors, and a total of 48GB of main memory. For

each data point, we took the minimum of five runs on an idle machine.

We studied multiple inputs for each of the benchmarks and also experimented with different limits for

recursive codes. We present results for the inputs and parameter values that show the best performance,

since our main aim is to evaluate how well DPJ can express the parallelism in these codes. The sensitivity

of the parallelism to input size and/or recursive limit parameters is a property of the algorithm and not a

consequence of using DPJ.

Figure 3.14 presents the speedups of the six programs forp ∈ {1, 2, 3, 4, 7, 12, 17, 22} processors. All

speedups are relative to an equivalent sequential version of the program,with no DPJ or other multithreaded

runtime overheads. All six codes showed moderate to good scalability for all values ofp. Barnes-Hut and

Merge Sort showed near-ideal performance scalability, with Barnes-Hut showing a superlinear increase for

p = 22 due to cache effects.

Notably, as shown in Table 3.2, for the three codes where we have manually parallelized Java threads

versions available, the DPJ versions achieved speedups close to (for IDEA and Barnes Hut), or better than

(for Monte Carlo), the Java versions, for the same inputs on the same machines. We believe the Java

threads codes are all reasonably well tuned; the two Java Grande benchmarks were tuned by the original

authors and the Barnes Hut code was tuned by us. The manually parallelized Monte Carlo code exhibited a

similar leveling off in speedup as the DPJ version did beyondabout 7 cores because both have a significant

sequential component that makes copies of a large array for each parallel task. Overall, in all three programs,

DPJ is able to express the available parallelism as efficiently as a thread-based parallel programming model

that provides no guarantees of determinism or even race-freedom.

Our experience so far has shown us that DPJ itself can be very efficient, even though both the compiler

and runtime are preliminary. In particular, apart from verysmall runtime costs for the dynamic partitioning

mechanism for subarrays, our type system requires no runtime checks or speculation and thereforeadds

negligible runtime overhead for achieving determinism. On the other hand, it is possible that the type system

may constrain algorithmic design choices. The limitation on reordering the array of bodies in Barnes-Hut,

explained in Section 3.5.2, is one such example.

50

Num Monte Carlo IDEA Barnes Hut
Cores DPJ Java Ratio DPJ Java Ratio DPJ Java Ratio

2 2.00 1.80 1.11 1.95 1.99 0.98 1.98 1.99 0.99
3 2.82 2.50 1.13 2.88 2.97 0.97 2.96 2.94 1.01
4 3.56 3.09 1.15 3.80 3.91 0.97 4.94 3.88 1.27
7 5.53 4.65 1.19 6.40 6.70 0.96 6.79 7.56 0.90

12 8.01 6.46 1.24 9.99 11.04 0.90 11.4 13.65 0.84
17 10.02 7.18 1.40 12.70 14.90 0.85 15.3 19.04 0.80
22 11.50 7.98 1.44 18.70 17.79 1.05 23.9 23.33 1.02

Table 3.2: DPJ vs. Java threads performance for Monte Carlo,IDEA encryption, and Barnes Hut. The DPJ
and Java numbers are speedups, and Ratio is the DPJ number divided by the Java number.

3.5.4 Usability

Table 3.3 shows the number of source lines of code (LOC) changed and the number of annotations, relative

to the program size. Program size is given in non-blank, non-comment lines of source code, counted by

sloccount. The next column shows how many LOC were changed when annotating. The last four

columns show (1) the number of declarations using theregion keyword (i.e., class regions, local regions,

and region parameters); (2) the number of RPLs appearing as arguments toin, types, methods, and effect

summaries; (3) the number of method effect summaries, counting reads andwrites separately; and

(4) the number of commutativity annotations. As the table shows, the fraction of lines of code changed

was not large, averaging 10.7% of the original lines. The biggest number of changed lines resulted from

writing RPL arguments to types (represented in column four), followed by writing method effect summaries

(column five).

More importantly, we believe that the overall effort of writing, testing, and debugging a program with

anyparallel programming model is dominated by the time required to understand the parallelism and shar-

ing patterns (including aliases), and to debug the parallelcode. The regions and effects in DPJ provide

concrete guidance to the programmer on how to reason about parallelism and sharing. Once the program-

mer understands the sharing patterns, he or she explicitly documents them in the code through region and

effect annotations, so other programmers can gain the benefit of his or her understanding.

Further, programming tools can alleviate the burden of writing annotations. We have developed an inter-

active porting tool, DPJIZER [122], that infers many of these annotations, using iterative constraint solving

over the whole program. DPJIZER is implemented as an Eclipse plugin and correctly infers method effect

summaries for a program that is already annotated with region information. We are currently extending

51

0

4

8

12

16

20

24

0 4 8 12 16 20 24

S
p
e
e
d
u
p

Number of cores

Barnes-Hut (200,000)
Merge Sort (100 million)
IDEA Encryption (35 million)
K-Means (300,000)
Collision Tree (360,000)
Monte Carlo (60,000)
Ideal speedups

Figure 3.14: Parallel speedups for the six benchmarks. The numbers in the legend are input sizes.

DPJIZER to infer RPLs, assuming that the programmer declares the regions.

In addition, as future work, a good set of defaults could further reduce the amount of manually written

annotations. For example, although we have not explored this idea for this work, the design of DPJ could

easily be extended as follows. If the programmer does not annotate a class field, its default region could

be the RPLdefault-parameter:field-name. This default distinguishes both instances of the same class and

fields within a class. A programmer could override the defaults if further refinements are needed.

3.6 Related Work

We group the related work into five broad categories: effect systems (not including ownership-based sys-

tems); ownership types (including ownership with effects); unique references; separation logic; and runtime

checks.

Effect Systems: The seminal work on types and effects for concurrency is FX [82, 61], which adds a

region-based type and effect system to a Scheme-like, implicitly parallel language. Leino et al. [77] and

52

Total Annotated Region Effect

Program SLOC SLOC Decls RPLs Summ. Comm.

MergeSort 295 38 (12.9%) 15 41 7 0

Monte Carlo 2877 220 (7.6%) 13 301 161 1

IDEA 228 24 (10.5%) 8 22 2 0

Barnes-Hut 682 80 (11.7%) 25 123 38 0

CollisionTree 1032 233 (22.6%) 82 408 58 0

K-means 501 5 (1.0%) 0 3 3 1

Total 5615 600 (10.7%) 143 898 269 2

Table 3.3: Annotation counts for the case studies

Greenhouse and Boyland [59] first added effects to an object-oriented language. None of these systems

can represent arbitrarily nested structures or array partitioning, nor can they specify arbitrarily large sets

of regions. Also, the latter two systems rely on alias restrictions and/or supplementary alias analysis for

soundness of effect, whereas DPJ does not.

Finally, there is extensive literature on using regions forregion-based memory management [120, 121,

60]. That work primarily focuses on identifying aliasing, and not noninterference, because their goal is to

analyze lifetimes of memory objects.

Ownership Types: Though originally designed for alias control [39], object ownership has grown far be-

yond this original purpose, and many variant systems have been proposed. Here we confine our discussion

to systems that combine ownership with effects. Some ownership-based type systems have been combined

with effects to enable reasoning about noninterference. Both JOE [37, 111] and MOJO [30] have sophis-

ticated effect systems that allow nested regions and effects. However, neither has the capabilities of DPJ’s

array partitioning and partially specified RPLs, which are crucial to expressing the patterns addressed in

this thesis. JOE’sunder effect shape is similar to DPJ’s∗, but it cannot express the equivalent of our

distinctions from the right. JOE allows slightly more precision when a type or effect uses a local variable

that goes out of scope (our approach is stated precisely in rule LET for typing expressions in the next chap-

ter), but we have found that this precision is not necessary for expressing deterministic parallelism. MOJO

has a wildcard region specifier?, but it pertains to the orthogonal capability ofmultiple ownership, which

allows objects to be placed in multiple regions. Leino’s system also has this capability, but without arbitrary

nesting.

53

Most ownership systems impose a restriction on the structure of object graphs calledowner dominates,

though some do not [30, 80]. Lu and Potter [80] show how to use effect constraints to break the owner

dominates rule in limited ways while still retaining meaningful encapsulation guarantees. Theany context

of [80] is identical toRoot:* in our system, but we can make more fine-grained distinctions. For example,

we can conclude that a pair of references stored in variablesof typeC<R1:*> andC<R2:*> can never

alias, ifR1:* andR2:* are disjoint.

Several researchers [24, 6, 68] have described effect systems for enforcing a locking discipline in non-

deterministic programs, to prevent data races and deadlocks. Because they have different goals, these effect

systems are very different from ours, e.g., they cannot express arrays or nested effects.

Finally, an important difference between DPJ and most ownership systems is that we allowexplicit

region declarations, like [82, 77, 59], whereas ownership systems generally couple region creation with

object creation. We have found many cases where a new region is needed but a new object is not, so the

ownership paradigm becomes awkward. Supporting field granularity effects is also difficult with ownership.

Ownership domains[111] represent a kind of hybrid between ownership and an explicit-declaration system;

this suggests a way that DPJ could be extended if the other features of ownership (such as alias control) are

desired.

Unique References: Boyland [26] shows how to useunique referencesextended withfractional permis-

sionsto guarantee determinism for a simple language with pointers to cells containing values. Terauchi and

Aiken [117] have extended this work with a type inference algorithm that simplifies the type annotations

and elegantly expresses some simple patterns of determinism. The Plaid language [115] also builds on this

work and aims to provide a more robust language for expressing deterministic parallelism.

Unique references are a well-known alternative to effect annotations for reasoning about heap access,

and in some cases they can complement effect annotations [59, 25, 24]. Unique references have different

strengths and limitations from effect systems. For example, compared to DPJ’s indexed parameterized array,

an array of unique references can be used to update the objects in parallel and can be reshuffled. However,

in the strongest form of unique references, the array is subject to the restriction that no other reference in

the entire program may point to any of the objects referred toin the array. This restriction is too severe to

be practical for many deterministic programs. While several researchers have examined relaxed uniqueness

properties for specific applications [47, 38], designing a realistic deterministic language that uses unique

54

references is an open problem. As future work, it would be interesting to explore the tradeoffs between

DPJ’s effect mechanisms and uniqueness constraints for expressing determinism.

Separation Logic: Separation logic [103] (SL) is a potential alternative to effect systems for reason-

ing about shared resources. O’Hearn [95] and Gotsman et al. [58] use SL to check race freedom, though

O’Hearn includes some simple proofs of noninterference. Parkinson [98] has extended C# with SL predi-

cates to allow sound inference in the presence of inheritance. Raza et al. [100] show how to use separation

logic together with shape analysis for automatic parallelization of a sequential program.

While SL is a promising approach, applying it to realistic programs poses two key issues. First, SL is

a low-levelspecification language: it generally treats memory as a single array of words, on which notions

of objects and linked data structures must be defined using SLpredicates [103, 95]. Second, SL approaches

generallyeither require heavyweight theorem proving and/or a relatively heavy programmer annotation

burden [98]or are fully automated, and thereby limited by what the compiler can infer [58, 100].

In contrast, we chose to start from the extensive prior work on regions and effects, which is more mature

than SL for OO languages. As noted in [103], type systems and SL systems have many common goals

but have developed largely independently; as future research it would be useful to understand better the

relationship between the two.

Runtime Checks: A number of systems enforce some form of disciplined parallelism via runtime checks.

Jade [105] and Prometheus [11] use runtime checks to guarantee deterministic parallelism for programs

that do not fail their checks. Jade also supports a simple form of commutativity annotation [104]. Multi-

phase Shared Arrays [42] and PPL1 [112] are similar in that they rely on runtime checks that may fail if

determinism is violated. None of these systems checks nontrivial sharing patterns at compile time.

Speculative parallelism [18, 51, 128] can achieve determinism with minimal programmer annotations,

compared to DPJ. However, speculation generally either incurs significant software overheads or requires

special hardware [99, 78, 124]. Grace [18] reduces the overhead of software-only speculation by running

threads as separate processes and using commodity memory protection hardware to detect conflicts at page

granularity. However, Grace does not efficiently support essential sharing patterns such as (1) fine-grain

access distinctions (e.g., distinguishing different fields of an object, as in Barnes-Hut); (2) dynamically

scheduled fine-grain tasks (e.g.,ForkJoinTask); or (3) concurrent data structures, which are usually

finely interleaved in memory. Further, unlike DPJ, a speculative solution does not document the paralleliza-

55

tion strategy or show how the code must be rewritten to exposeparallelism.

Kendo [96], DMP [43], and CoreDet [17] use runtime mechanisms to guarantee equivalence to some

(arbitrary) serial interleaving of tasks; however, that interleaving is not necessarily obvious from the program

text, as it is in DPJ. Further, Kendo’s guarantee fails if theprogram contains data races, DMP requires special

hardware support, and CoreDet has higher overhead (but stronger guarantees) than Kendo. SharC [13] uses

a combination of static and dynamic checks to enforce race freedom, but not necessarily deterministic

semantics, in C programs.

Aviram et al. [14] have recently proposed an approach in which a memory consistency model called

deterministic consistencyis enforced by the operating system using runtime mechanisms similar to software

distributed shared memory (SDSM). In this approach, each thread receives its own copy of the shared

address space at the point where the thread is created, and writes are local by default; merging of writes

occurs in a deterministic order only at synchronization points identified in the program (for example, at the

end of a parallel loop). While deterministic consistency isa promising approach, the overhead is high for

fine-grain sharing patterns (as it is for Grace). Further, itis arguable that copying input state at the beginning

of a computation, merging output at the end, and communicating through explicit synchronization points

is reminiscent of a functional or message passing style, as discussed in Section 2.5, rather than true shared

memory. By contrast, DPJ strives to keep the model close to familiar imperative shared memory.

Burckhardt et al. [29] describe a programming model conceptually similar to that of Aviram et al., but

supported by a user-level runtime. Again, each parallel task gets its own copy of shared data, and updates are

merged deterministically at task join points. This mechanism seems well suited for some parallel patterns,

such as a parallel reduction or a long-running background task that must occasionally interact with the main

tasks. However, it does not seem well suited to many of the patterns that DPJ can express, such as disjoint

updates on concurrent data structures. Further, it is not clear if this model actually provides anyguarantee

of parallelism: joins can be conditional on reading shared state, and the authors say they used this feature to

write a program that produces nondeterministic results.

Finally, a determinism checker [106, 48] instruments code to detect determinism violations at runtime.

This approach is not viable for production runs because of the slowdowns caused by the instrumentation,

and it is limited by the coverage of the inputs used for the dynamic analysis. However, it is sound for the

observed traces.

56

Chapter 4

Formal Language for Determinism

In this chapter we formalize a core subset of the language described in Chapter 3, calledCore DPJ. We also

prove that the Core DPJ effect system issound, in the sense that the static type and effect annotations allow

sound reasoning about noninterference at runtime. To make the formal presentation more tractable and to

focus attention on the important aspects of the language, wemake the following simplifications:

1. We present a simple expression-based language, omittingmore complicated aspects of the real DPJ

language such as statements and control flow.

2. Our language has classes and objects, but no inheritance.

3. Region namesr are declared at global scope, instead of at class scope. Every class has one region

parameter, and every method has one formal parameter.

4. To avoid dealing with integer variables and expressions,we require that array indices are natural

numbers.

Removing the first simplification adds complexity but raisesno significant technical issues. Adding in-

heritance raises standard issues for formalizing an object-oriented language. We omit those here in order

to focus on the novel aspects of our system, but we describe them informally in Section 4.4. Removing

simplifications 3 and 4 is purely a matter of bookkeeping. We have chosen to make Core DPJ a sequential

language, in order to focus on our mechanisms for expressingeffects and noninterference. In Section 4.4,

we discuss how to extend the formalism to model thecobegin andforeach constructs of DPJ. In Chap-

ter 6, we also describe such an extension formally (forcobegin) for a variant language with simpler

mechanisms for expressing noninterference, that also expresses nondeterministic computations.

The rest of this chapter proceeds as follows. In Section 4.1,we present the syntax and static semantics

of Core DPJ. In Section 4.2, we present the dynamic executionsemantics and prove the key property of

57

Programs P R∗ C∗ e
Region Names R region r

Classes C class C<ρ> { F ∗ M∗ comm∗}
RPLs R Root | ρ | v | R:r | R:[i] | R:*
Fields F T f in Rf

Types T C<R> | T[]<R>#i
Methods M T m(T x) E { e }

Effects E ∅ | reads R | writes R | invokes C.m with E | E ∪ E
Expressions e let x=e in e | this.f=v | this.f | v[n]=v | v[n] | v.m(v) | v |

new C<R> | new T[n]<R>#i
Variables v this | x

Commutativity comm m commuteswithm

Figure 4.1: Static syntax of Core DPJ.C, ρ, f , m, x, r, andi are identifiers, andn is a natural number.Rf

denotes a fully specified RPL (i.e., containing no*).

type and effect preservation, which says that static types and effects bound their dynamic counterparts.

In Section 4.3, we define disjointness of regions and noninterference of effect, and we prove the main

soundness property of DPJ, namely that expressions with noninterfering static effects can be executed in

either order with identical results. Finally, in Section 4.4, we informally describe how to extend the core

language to add inheritance and explicit parallelism.

4.1 Syntax and Static Semantics

Figure 4.1 defines the syntax of Core DPJ. The syntax consistsof the key elements described in Chapter 3

(region path lists, effects, and commutativity annotations) hung upon a toy language that is sufficient to

illustrate the features yet reasonable to formalize. A program consists of a number of region declarations,

a number of class declarations, and an expression to evaluate. Class definitions are similar to Java’s, with

the restrictions noted above. As in Chapter 3, we denote a fully specified region path list (RPL) asRf and

a general RPL asR.

The static typing is done with respect to an environmentΓ, where each element ofΓ is one of the

following:

• A binding (v, T) stating that variablev has typeT . These elements come into scope when a new

variable (let variable or formal parameter) is introduced.

• A constraintρ ⊆ R stating that region parameterρ is in scope and included in regionR. These ele-

ments come into scope when we capture the type of a variable used for an invocation (see Section 4.1.5

58

for more details).

• An integer variablei. These elements come into scope when we are evaluating an array type or new

array expression.

Formally, we write that as follows:

Γ ::= (v, T) | ρ ⊆ R | i | Γ ∪ Γ

4.1.1 Programs and Classes

Valid programs: The judgment⊢ P means that programP is valid. The judgment holds if the classes of

P are valid, and the main expression ofP is well typed with typeT and effectE in the empty environment:

⊢ P PROGRAM ∀C.(⊢ C) ∅ ⊢ e : T, E

⊢ C∗ e

Valid classes:The judgment⊢ C means that class definitionC is valid. The judgment holds if the fields and

methods ofC are valid. We check these facts in the environment that bindsthis to the enclosing class.

⊢ C

CLASS

Γ = (this, C<ρ>) ∀F.(Γ ⊢ F) ∀M.(Γ ⊢M)

⊢ class C<ρ> { F ∗ M∗ }

Valid fields: The judgmentΓ ⊢ F means that fieldF is valid in environmentΓ. The judgment holds if the

type and region ofF are valid inΓ.

⊢ F FIELD Γ ⊢ T Γ ⊢ R

Γ ⊢ T f in R

Valid methods: The judgmentΓ ⊢ M means that methodM is valid in environmentΓ. The judgment

holds if the method’s return type, formal parameter type, and effect are valid inΓ; its body type-checks in

Γ ∪ {(x, Tx)}; and the body’s type and effect are, respectively, a subtypeof the declared return type and a

59

subeffect of the declared effect:

⊢M METHOD Γ ⊢ Tr, Tx, E Γ′ = Γ ∪ {(x, Tx)} Γ′ ⊢ e : T ′, E′ Γ′ ⊢ T ′ � Tr Γ′ ⊢ E′ ⊆ E

Γ ⊢ Tr m(Tx x) E { e }

Valid commutativity annotations: The judgmentΓ ⊢ commmeans that commutativity annotationcomm

is valid in environmentΓ. The judgment holds if the methods named in the annotation are both defined

methods of the enclosing class.

Γ ⊢ comm COMM (this, C<ρ>) ∈ Γ defined(C.m) defined(C.m′)

Γ ⊢ m commuteswithm′

Heredefined(C.m) means that a method namedm is defined in classC.

4.1.2 RPLs

Valid RPLs: The judgmentΓ ⊢ R says that RPLR is valid in environmentΓ. The rules for making the

judgment formally define RPLs, as described informally in Section 3.2. First, an RPL is valid if it isRoot,

a variablev in scope, or a parameterρ in scope:

Γ ⊢ R RPL-ROOT

Γ ⊢ Root

RPL-VAR (v, C<R>) ∈ Γ

Γ ⊢ v

RPL-PARAM -1 (this, C<ρ>) ∈ Γ

Γ ⊢ ρ

RPL-PARAM -2 ρ ⊆ R ∈ Γ

Γ ⊢ ρ

Second, a declared region namer, and array index element[i], or a star* may be appended to a valid RPL

to make another valid RPL:

Γ ⊢ R RPL-INDEX Γ ⊢ R i ∈ Γ

Γ ⊢ R:[i]

RPL-NAME Γ ⊢ R region r ∈ P

Γ ⊢ R:r

RPL-STAR Γ ⊢ R

Γ ⊢ R:*

The basic idea here is that all the rules but RPL-STAR define fully specified RPLsRf ; and adding a star to

an RPL refers to all RPLs under that one (see the next subsection).

60

Nesting Relation:The judgmentΓ ⊢ R � R′ says thatR is nested underR′; it establishes the tree structure

of RPLs. More information on the tree structure is given in Section 4.3.1.

We formally define the nesting relation as follows. First, the relation is reflexive and transitive:

Γ ⊢ R � R′ UNDER-REFLEXIVE

Γ ⊢ R � R

UNDER-TRANSITIVE Γ ⊢ R � R′ Γ ⊢ R′ � R′′

Γ ⊢ R � R′′

Next, every RPL is nested underRoot:

Γ ⊢ R � R′ UNDER-ROOT

Γ ⊢ R � Root

If variablev is bound to typeC<R>, thenv is nested underR:

Γ ⊢ R � R′ UNDER-VAR (v, C<R>) ∈ Γ

Γ ⊢ v � R

Adding r, [i], or* to the end of an RPL preserves nesting:

Γ ⊢ R � R′ UNDER-NAME Γ ⊢ R � R′

Γ ⊢ R:r � R′

UNDER-INDEX Γ ⊢ R � R′

Γ ⊢ R:[i] � R′

UNDER-STAR Γ ⊢ R � R′

Γ ⊢ R:* � R′

Finally, inclusion implies nesting:

Γ ⊢ R � R′ UNDER-INCLUDE Γ ⊢ R ⊆ R′

Γ ⊢ R � R′

Inclusion Relation: The judgmentΓ ⊢ R ⊆ R′ says thatR is included inR′. That means that the set of

dynamic regions represented by the static RPLR is included in the set of dynamic regions represented by

R′. More information on the set inclusion interpretation is given in Section 4.3.1. We formally define the

61

relationship on static RPLs as follows. First, the relationship is reflexive and transitive:

Γ ⊢ R ⊆ R′ INCLUDE-REFLEXIVE

Γ ⊢ R ⊆ R

INCLUDE-TRANSITIVE Γ ⊢ R ⊆ R′ Γ ⊢ R′ ⊆ R′′

Γ ⊢ R ⊆ R′′

Next, if R is nested underR′, thenR is included inR′:*:

Γ ⊢ R ⊆ R′ INCLUDE-STAR Γ ⊢ R � R′

Γ ⊢ R ⊆ R′:*

If R is included inR′, thenR:r andR:[i] are both included inR′:r:

Γ ⊢ R ⊆ R′ INCLUDE-NAME Γ ⊢ R ⊆ R′

Γ ⊢ R:r ⊆ R′:r

INCLUDE-INDEX Γ ⊢ R ⊆ R′

Γ ⊢ R:[i] ⊆ R′:[i]

If the environment says thatρ is included inR, thenρ is in fact included inR.

Γ ⊢ R ⊆ R′ INCLUDE-PARAM ρ ⊆ R ∈ Γ

Γ ⊢ ρ ⊆ R

Finally, if R is included in a fully specified RPLRf , thenRf is also included inR:

Γ ⊢ R ⊆ R′ INCLUDE-FULL Γ ⊢ R ⊆ Rf

Γ ⊢ Rf ⊆ R

4.1.3 Types

Valid Types: The judgmentΓ ⊢ T says that typeT is valid in environmentΓ. If C is a defined class andR

is a valid RPL, thenC<R> is a valid type:

Γ ⊢ T TYPE-CLASS defined(C) Γ ⊢ R

Γ ⊢ C<R>

62

To check an array typeT[]<R>#i in Γ, we checkT andR in the environment plusi:

Γ ⊢ T TYPE-ARRAY Γ ∪ {i} ⊢ T, R

Γ ⊢ T[]<R>#i

Subtyping: The judgmentΓ ⊢ T � T ′ says thatT is a subtype ofT ′. If R is included inR′, thenC<R> is

a subtype ofC<R′>:

Γ ⊢ T � T ′ SUBTYPE-CLASS Γ ⊢ R ⊆ R′

Γ ⊢ C<R> � C<R′>

If R is included inR′ andT equalsT ′ up to differing names of integer variables, thenT[]<R>#i is a

subtype ofT ′[]<R′>#i′:

Γ ⊢ T � T ′ SUBTYPE-ARRAY Γ ∪ {i} ⊢ R ⊆ R′[i′ ← i] T ≡ T ′

Γ ⊢ T[]<R>#i � T ′[]<R′>#i′

Here≡means identity up to the names of integer variablesi. It follows from the reflexivity and transitivity

of the inclusion relation on RPLs (Section 4.1.2) that subtyping is reflexive and transitive.

4.1.4 Effects

Valid Effects: The judgmentΓ ⊢ E means thatE is a valid effect in environmentΓ. The empty effect is

valid:

Γ ⊢ E EFFECT-EMPTY

Γ ⊢ ∅

If R is a valid region, thenreads R andwritesR are both valid effects:

Γ ⊢ E EFFECT-READS Γ ⊢ R

Γ ⊢ reads R

EFFECT-WRITES Γ ⊢ R

Γ ⊢ writes R

If m is a defined method ofC andE is a valid effect, theninvokesC.m with E is a valid effect:

Γ ⊢ E EFFECT-INVOKES defined(C.m) Γ ⊢ E

Γ ⊢ invokes C.m with E

63

Finally, the union of two valid effects is a valid effect:

Γ ⊢ E EFFECT-UNION Γ ⊢ E Γ ⊢ E′

Γ ⊢ E ∪ E′

Subeffects:The judgmentΓ ⊢ E ⊆ E′ says thatE is asubeffectof E′. Intuitively, that meansE′ contains

all the effects ofE, i.e., we can useE′ as a (possibly conservative) summary ofE. The subeffect relation is

reflexive and transitive:

Γ ⊢ E ⊆ E′ SE-REFLEXIVE Γ ⊢ E ⊆ E SE-TRANSITIVE Γ ⊢ E ⊆ E′ Γ ⊢ E′ ⊆ E′′

Γ ⊢ E ⊆ E′′

The empty effect is a trivial subeffect of every effect:

Γ ⊢ E ⊆ E′ SE-EMPTY

Γ ⊢ ∅ ⊆ E

If R is included inR′, thenreadsR is a subeffect ofreadsR′, and similarly forwritesR andwrites

R′:

Γ ⊢ E ⊆ E′ SE-READS Γ ⊢ R ⊆ R′

Γ ⊢ reads R ⊆ reads R′

SE-WRITES Γ ⊢ R ⊆ R′

Γ ⊢ writes R ⊆ writes R′

Also, writes cover reads:

Γ ⊢ E ⊆ E′ SE-READS-WRITES Γ ⊢ R ⊆ R′

Γ ⊢ reads R ⊆ writes R′

Next we have two rules for the invocation effect. First, ifE′ coversE, then an invocation of some method

with E′ covers an invocation of the same method withE:

Γ ⊢ E ⊆ E′ SE-INVOKES-1 Γ ⊢ E ⊆ E′

Γ ⊢ invokes C.m with E ⊆ invokes C.m with E′

64

Second, we can conservatively summarize the effectinvokesC.m with E as justE:

SE-INVOKES-2

Γ ⊢ invokes C.m with E ⊆ E

Finally, we have the obvious rules for subeffects of unions and unions of subeffects:

Γ ⊢ E ⊆ E′ SE-UNION-1 Γ ⊢ E ⊆ E′

Γ ⊢ E ⊆ E′ ∪ E′′

SE-UNION-2 Γ ⊢ E′ ⊆ E Γ ⊢ E′′ ⊆ E

Γ ⊢ E′ ∪ E′′ ⊆ E

4.1.5 Typing Expressions

Every well-typed expression has atypeand aneffect. The type is the familiar static type from Java, plus

the region information in the class types. The effect summarizes the heap effects that may occur when the

expression is evaluated. The following rules govern the typing of expressions.

Let expressions:To typelet x=e in e′, we typee, bind x to the type ofe, and typee′. If x appears in

the type or effect ofe′, we weaken it toR:* to generate a type and effect for the whole expression that are

valid in the outer scope but still cover the actual type and effect. The type of the expression is the type ofe′,

and the effect is the union of the effects of evaluatinge ande′:

LET Γ ⊢ e : C<R>, E Γ ∪ {(x, C<R>)} ⊢ e′ : T ′, E′

Γ ⊢ let x=e in e′ : T ′[x← R : *], E ∪E′[x← R:*]

Field access:To type field access, we look in the environment to get the typeof the enclosing class, check

that everything is well formed according to the class definition, and report the read effect on the declared

region of the field:

FIELD-ACCESS T f in Rf ∈ def(C) (this, C<param(C)>) ∈ Γ

Γ ⊢ this.f : T,reads Rf

Hereparam(C) means the region parameterρ in the definition of classC. Note that there is no need to

substitute for the class formal parameter in the resulting type or effect, because in this simple language we

allow field access only throughthis.

65

Field assignment: Field assignment is similar, except that we enforce subtyping for the assignment, and

we report a write effect:

FIELD-ASSIGN (this, C<param(C)>) ∈ Γ (v, T) ∈ Γ T ′ f in Rf ∈ def(C) Γ ⊢ T � T ′

Γ ⊢ this.f=z : T,writes Rf

Array access and assignment:Array access and assignment are almost identical to field access and as-

signment, except that we substitute the index for the index variable in computing the type and effect:

ARRAY-ACCESS (v, T[]<R>#i) ∈ Γ

Γ ⊢ v[n] : T [i← n],reads R[i← n]

ARRAY-ASSIGN {(v, T[]<R>#i), (v′, T ′)} ⊆ Γ Γ ⊢ T ′ � T [i← n]

Γ ⊢ v[n]=v′ : T ′,writes R[i← n]

Method invocation: To type method invocationv.m(v′), we find the classC bound tov in the environ-

ment and find the definition ofm in C (if m is undefined, then the typing fails). Next we need to translate

the declared types and effect ofm to the current environment. We do this with two substitutions. The sub-

stitutionσ takesthis to v and the declared parameter ofC to the RPLR appearing in the type ofv. We

useσ to translate the declared return type and effect ofm, reporting an invocation effect with that type and

underlying effect. The substitutionσ′ is similar, but it takesparam(C) to a fresh parameterρ, called the

capture parameter. We useσ′ to translate the type ofm’s formal argumentx to the current environment,

and we check that the type ofv′ is a subtype of this translated type, in an environment in which the capture

parameter is contained inR.

INVOKE {(v, C<R>), (v′, T)} ⊆ Γ Tr m(Tx x) E { e } ∈ def(C) σ = {this 7→ v, param(C) 7→ R}

σ′ = {this 7→ v, param(C) 7→ ρ} Γ ∪ {ρ ⊆ R} ⊢ T � σ′(Tx)

Γ ⊢ v.m(v′) : σ(Tr),invokes C.m with σ(E)

The capture parameter represents that the actual type ofv at runtime isC<ρ>, where all we know about

ρ is ρ ⊆ R. This technique is similar to how Java handles the capture ofa generic wildcard [57]. Note that

simply usingσ to translate the formal parameter type would not be sound. Tosee why, consider the example

66

1 region r
2 class C<P> {
3 C<P> f in Root;
4 C<Root:*> weaken(C<P> x) { x }
5 C<P> assign(C<P> x) writes Root { f = x }
6 C<Root:*> unsound(C<Root:*> x) writes Root {
7 // Inferred type of x1 is C<Root:*>
8 let x1 = weaken(new C<Root>) in
9 // Whoops! Assigning C<Root:r> to C<Root>

10 x1.assign(new C<Root:r>)
11 }
12 }

Figure 4.2: Example showing why we must capture partially specified RPLs

shown in Figure 4.2:

Without the capture parameter, the real typeC<Root> of the formal parameterx of assign is weakened

too far toC<Root:*> in line 8, and the assignment ofC<Root:r> to x is (erroneously) allowed. With

the capture parameter, we can see that we are trying to assignC<Root:r> to C<P>, where all we know

aboutP is P ⊆ Root:*. This unsound assignment is disallowed by the rule given above.

Variables and new objects:The rules for typingv andnew T are obvious:

VAR (v, T) ∈ Γ

Γ ⊢ v : T, ∅

NEW-CLASS Γ ⊢ C<R>

Γ ⊢ new C<R> : C<R>, ∅

NEW-ARRAY Γ ⊢ T[]<R>#i

Γ ⊢ new T[n]<R>#i : T[]<R>#i, ∅

4.2 Dynamic Semantics

4.2.1 Execution State

The syntax for entities used in the dynamic semantics is shown in Figure 4.3. At runtime, we have dynamic

RPLs (dR), dynamic types (dT) and dynamic effects (dE), corresponding to static RPLs (R), types (T) and

effects (E) respectively. Dynamic RPLs and effects are not recorded ina real execution, but here we thread

them through the execution state so we can formulate and prove soundness results [37]. We also have object

referenceso, which are the actual values computed during the execution.

The dynamic execution state consists of (1) a heapH, which is a partial function taking object references

67

RPLs dR Root | o | dR:r | dR:[i] | dR:[n] | dR:*
Types dT C<dR> | dT[]<dR>#i

Effects dE ∅ | reads dR | writes dR | invokes C.m with dE | dE ∪ dE

Figure 4.3: Dynamic syntax of Core DPJ

to objects; and (2) a dynamic environmentΣ, which is a set of elements of the form(v, o) (variablev is

bound to referenceo) or (ρ, dR) (region parameterρ is bound to RPLdR). The dynamic environment

Σ defines a natural substitution on RPLs, where we replace the variables with references and the region

parameters with RPLs as specified in the environment. We denote the application of this substitution to

RPL R asΣ(R). We extend this notation to types and effects in the obvious way. Notice that we get the

syntax of Figure 4.3 by applying the substitutionΣ to the syntax of Figure 4.1.

An object is a function taking field names (for class objects)or nonnegative integers (for arrays) to

object references. Every object referenceo ∈ Dom(H) has a type, and we writeH ⊢ o : dT to mean that

the referenceo has typedT with respect to heapH. An object referenceo either maps to an object, in which

caseH(o) is an object corresponding to the type ofo, or it does not map to any object, in which caseH(o)

is undefined. In the latter case, we say thato is anull reference. We define null references this way because

we need to track the actual types of different references to establish soundness. In an actual implementation

that does not do this tracking, we can use a single valuenull for every null reference. Dereferencing a

null reference at runtime causes the execution to fail by getting stuck. We do not explicitly model null

dereference errors or exceptions.

4.2.2 Evaluating Programs

We write the evaluation rules in large-step semantics notation, using the following evaluation function:

(e,Σ,H)→ (o,H ′, dE),

wheree is an expression to evaluate,Σ andH give the dynamic context for evaluation,o is the result of

the evaluation,H ′ is the updated heap, anddE represents the effects of the evaluation. The programP

is an implicit parameter that we omit for conciseness and readability. Notice thatΣ does not appear on

the right-hand side, because we do not need to retain the dynamic environment as global state. A program

evaluates to referenceo with heapH and effectdE if its main expression ise and(e, ∅, ∅) → (o,H, dE).

68

Let expressions:To evaluatelet x=e in e′, we evaluatee to o, bindo to x, and evaluatee′, updating the

heap and collecting effects as we go:

DYN-LET (e, Σ, H)→ (o, H ′, dE) (e′, Σ ∪ {(x, o)}, H ′)→ (o′, H ′′, dE′)

(let x=e in e′, Σ, H)→ (o′, H ′′, dE ∪ dE′)

Field access:To evaluate field access, we look up the object bound tothis in Σ, and we read its fieldf ,

recording the read of the declared region after translatingit to the dynamic context:

DYN-FIELD-ACCESS (this, o) ∈ Σ H ⊢ o : C<dR> T f in Rf ∈ def(C)

(this.f, Σ, H)→ (H(o)(f), H,reads Σ(Rf))

Field assignment:Field assignment is similar, except that we update the heap and record a write effect:

DYN-FIELD-ASSIGN {(this, o), (v, o′)} ⊆ Σ H ⊢ o : C<dR> T f in Rf ∈ def(C)

(this.f=v, Σ, H)→ (o, H [o 7→ H(o)[f 7→ o′]],writes Σ(Rf))

f : A → B is a function, thenf [x 7→ y] denotes the functionf ′ : A ∪ {x} → B ∪ {y} defined by

f ′(a) = f(a) if a 6= x andf ′(x) = y.

Array access and assignment:Array access and assignment are nearly identical to field access and assign-

ment, except that we use the array indexn to access the array, and we substituten for the index variablei

in computing the region:

DYN-ARRAY-ACCESS (v, o) ∈ Σ H ⊢ o : dT[]<dR>#i

(v[n], Σ, H)→ (H(o)(n), H,reads dR[i← n])

DYN-ARRAY-ASSIGN {(v, o), (v′, o′)} ⊆ Σ H ⊢ o : dT[]<dR>#i

(v[n]=v′, Σ, H)→ (o′, H [o 7→ H(o)[n 7→ o′]],writes dR[i← n])

Method invocation: To evaluate method invocationv.m(v′), we find the bindings ofv andv′ in Σ, create

69

a new environment for the invocation, evaluate the method body, and record the invocation effect:

DYN-INVOKE H ⊢ o : C<dR> Tr m(Tx x) E { e } ∈ def(C)

(e, {(this, o), (param(C), dR), (x, o′)}, H)→ (o′′, H ′, dE)

(v.m(v′), {(v, o), (v′, o′)} ∪Σ, H)→ (o′′, H ′,invokes C.m with dE)

Variables: To evaluate a variable expression, we just get the referenceout ofΣ:

DYN-VAR (v, o) ∈ Σ

(v, Σ, H)→ (o, H, ∅)

New objects:To evaluatenew T , we translateT to dT usingσ, after eliminating any* from T , e.g.,new

C<Root:*> is the same asnew C<Root>; this rule ensures that all object fields are allocated in fully

specified RPLs. We then create a fresh object and a fresh reference of the appropriate type.

DYN-NEW-CLASS o 6∈ Dom(H) H ′ = H ∪ {(o, new(C))} H ′ ⊢ o : C<Σ(R[:*← ǫ])>

(new C<R>, Σ, H)→ (o, H ′, ∅)

DYN-NEW-ARRAY o 6∈ Dom(H) H ′ = H ∪ {(o, new(T[n]))} H ′ ⊢ o : Σ(T)[]<Σ(R[:*← ǫ])>#i

(new T[n]<R>#i, Σ, H)→ (o, H ′, ∅)

new(C) is the function taking each field of classC with type T to a null reference of typeΣ(T), and

new(T[n]) is the function taking eachn′ ∈ [0, n − 1] to a null reference of typeΣ(T).

4.2.3 Judgments for Dynamic RPLs, Types, and Effects

To state and prove the preservation result (Section 4.2.4),we need to establish judgments for dynamic RPLs,

types, and effects corresponding to the static judgments defined in Sections 4.1.2 through 4.1.4. As before,

⊆ and� are reflexive and transitive.

Dynamic RPLs: The rules for valid dynamic RPLs are similar to the rules for static RPLs (Section 4.1.2),

except that we do not allow region parameters in dynamic RPLs; and instead of the rule DYN-RPL-VAR,

70

we have the rule DYN-RPL-REF, which requires a valid reference:

DYN-RPL-ROOT

H ⊢ Root

DYN-RPL-REF H ⊢ o : T

H ⊢ o

DYN-RPL-INDEX H ⊢ dR

H ⊢ dR:[i|n]

DYN-RPL-NAME H ⊢ dR region r ∈ P

H ⊢ dR:r

DYN-RPL-STAR H ⊢ dR

H ⊢ dR:*

In rule DYN-RPL-INDEX, we write[i|n] to indicate that an index variablei or a numerical indexn can

appear in that position. Index variablesi appear in the RPLsR of dynamic array typesT[]<R>#i; they

are always substituted away when the array is accessed through an indexn, via rules DYN-ARRAY-ACCESS

and DYN-ARRAY-ASSIGN.

The nesting relationship for dynamic RPLs is similar to the corresponding relationship for static RPLs

(Section 4.1.2), except that instead of the rule DYN-UNDER-VAR, we have the rule DYN-UNDER-REF,

which says that an object reference is under the RPL of its type:

DYN-UNDER-ROOT

H ⊢ dR � Root

DYN-UNDER-REF

H ⊢ o : C<dR>

H ⊢ o � dR

DYN-UNDER-NAME

H ⊢ dR � dR′

H ⊢ dR:r � dR′

DYN-UNDER-INDEX

H ⊢ dR � dR′

H ⊢ dR:[i|n] � dR′:[i|n]

DYN-UNDER-STAR

H ⊢ dR � dR′

H ⊢ dR:* � dR′

DYN-UNDER-INCLUDE

H ⊢ dR ⊆ dR′

H ⊢ dR � dR′

The inclusion relationship for dynamic RPLs is similar to the rules for static RPLs (Section 4.1.2),

except that we do not have any region parameters:

DYN-INCLUDE-STAR

H ⊢ dR � dR′

H ⊢ dR ⊆ dR′:*

DYN-INCLUDE-NAME

H ⊢ dR ⊆ dR′

H ⊢ dR:r ⊆ dR′:r

DYN-INCLUDE-INDEX

H ⊢ dR ⊆ dR′

H ⊢ dR:[i|n] ⊆ dR′:[i|n]

Dynamic Types and Effects: The rules for dynamic types and effects are nearly identicalto their static

counterparts. Instead of writing out all the rules, which would be tedious and not all that enlightening, we

describe how to generate them via simple substitution from the rules given in Sections 4.1.3 and 4.1.4. For

71

every rule given in those sections, do the following:

1. Append DYN- to the front of the name.

2. ReplaceΓ with H and[i] with [n].

3. ReplaceR with dR, T with dT , andE with dE.

Applying this transformation to all the rules in Sections 4.1.3 and 4.1.4 yields the rules for valid dynamic

types, dynamic subtypes, valid dynamic effects, and subeffects. For example, here are the rules for valid

types and subtypes, generated via the substitution above from the rules stated in Section 4.1.3.

DYN-TYPE-CLASS defined(C) H ⊢ dR

H ⊢ C<dR>

DYN-SUBTYPE-CLASS H ⊢ dR ⊆ dR′

H ⊢ C<dR> � C<dR′>

The rest of the rules are similar.

4.2.4 Preservation of Type and Effect

In this section we show that the static types and effects bound the dynamic types and effects.

Valid environments: We first define the concept of a valid environment. An environment Γ is valid if its

variables are bound to valid types and its parameters are constrained to be under valid RPLs:

ENV ∀(v, T) ∈ Γ.Γ ⊢ T ∀ρ ⊆ R ∈ Γ.Γ ⊢ R

⊢ Γ

Technically, a valid environment should also be well-defined, in the sense that every variable has at most

one binding. We omit this requirement from the definition of valid environments, because it obviously holds

by the way that environments are constructed in the typing rules.

Next we have a lemma showing that, for a well-typed program, typing an expression in a valid environ-

ment yields a valid type and a valid effect:

Lemma 4.2.1. For a well-typed program, letΓ be a valid environment, and lete be an expression such that

Γ ⊢ e : T,E. ThenΓ ⊢ T andΓ ⊢ E.

Proof. Use induction on the height of the derivation. We can prove the claim directly in the following cases:

72

VAR, NEW-CLASS, and NEW-ARRAY: Obvious.

FIELD-ACCESS: Γ ⊢ T andΓ ⊢ Rf by rule Field.Γ ⊢ reads Rf by rule EFFECT-READS.

FIELD-ASSIGN: Γ ⊢ T because⊢ Γ and(v, T) ∈ Γ. Γ ⊢ writesRf by rules FIELD and EFFECT-

WRITES.

ARRAY-ACCESS: Similar to FIELD-ACCESS.

ARRAY-ASSIGN: Similar to FIELD-ASSIGN.

INVOKE: By rule METHOD, we have{(this, C<param(C)>)} ⊢ Tr, Em. Because⊢ Γ and(v,C<R>) ∈

Γ, we haveΓ ⊢ R. Therefore we haveΓ ⊢ σ(Tr), σ(Em), because it is clear from the rules in Section 4.1.2

that a valid RPL results when we replaceρ with a valid RPL in a valid RPL. The invocation effect is valid

by rule EFFECT-INVOKES.

Now consider the inductive case:

LET: The claim is true for the first judgment on the top of the rule by the induction hypothesis (IH).

ThereforeΓ ⊢ C<R>, so⊢ Γ ∪ {(x,C<R>)}, and the claim is also true for the second judgment on the

top of the rule by the IH. Any RPL appearing inT ′ or E′ must either not containx at all, or must consist of

x followed by a sequence of elementsr or *. Therefore, substitutingR:* for x results in a valid RPL, so

σ(T ′) andσ(E′) are valid inΓ. Finally, E ∪ σ(E′) is valid inΓ by rule EFFECT-UNION.

Valid dynamic environments: A valid dynamic environment is the dynamic analog of a valid static envi-

ronment:

Definition 4.2.2 (Valid dynamic environments). A dynamic environmentΣ is valid with respect to heapH

(H ⊢ Σ) if the following hold:

1. For every binding(v, o) ∈ Σ, H ⊢ o : dT .

2. For every binding(ρ, dR) ∈ Σ, H ⊢ dR.

3. If (this, o) ∈ Σ, thenH ⊢ o : C<dR>, and(param(C), dR) ∈ Σ.

This definition says that the bindings are to valid references and RPLs, and that the actual region of the

object bound tothis is consistent with the binding for the class parameter specified in the environment.

We can now define valid heaps:

73

Definition 4.2.3 (Valid heaps). A heapH is valid (⊢ H) if for eacho ∈ Dom(H), one of the following

holds:

1. (a)H ⊢ o : C<dR> and (b)H ⊢ C<dR> and (c) for each fieldT f in Rf ∈ def(C), if H(o)(f) is

defined, thenH ⊢ H(o)(f) : dT andH ⊢ dT andH ⊢ dT � T [o← this][dR← param(C)]; or

2. (a) H ⊢ o : dT[]<dR>#i and (b)H ⊢ dT[]<dR>#i and (c) if H(o)(n) is defined, thenH ⊢

H(o)(n) : dT ′ andH ⊢ dT andH ⊢ dT ′ � dT [i← n].

This definition says that every object reference is well typed with a valid type, and every field of every

object and every cell of every array contains a reference with a valid type that is bounded by its static type,

translated to the dynamic environment.

Next we defineH ⊢ Σ � Γ (“Σ instantiatesΓ in H”):

Definition 4.2.4(Instantiation of static environments). A dynamic environmentΣ instantiates a static envi-

ronmentΓ (H ⊢ Σ � Γ) if ⊢ Γ, ⊢ H, andH ⊢ Σ; the same variables appear inDom(Γ) as inDom(Σ);

and for each pair(v, T) ∈ Γ and(v, o) ∈ Σ, H ⊢ v : dT andH ⊢ dT � Σ(T).

This definition specifies a correspondence between static typing environments and dynamic execution

environments, such that we can use the typing in the static environment to draw sound inferences about

execution in the dynamic environment. Next we need some standardsubstitution lemmas, which say that

under the correspondence established above, judgments about static RPLs, types, and effects carry over to

their dynamic translations:

Lemma 4.2.5. If H ⊢ Σ � Γ andΓ ⊢ R, thenH ⊢ Σ(R); and similarly for typesT and effectsE.

Proof. Use induction on the height of the derivationΓ ⊢ R. In the base case, we used one of rules RPL-

ROOT, RPL-VAR, RPL-PARAM -1, or RPL-PARAM -2. If we used RPL-ROOT, thenR = Σ(R) = Root,

and the result follows by DYN-RPL-ROOT. If we used RPL-VAR, then by Definition 4.2.4,Σ substitutes

a valid reference forv, so we can use DYN-RPL-REF to establish the result. If we used an RPL-PARAM

rule, thenR = P , and again by Definition 4.2.4,Σ takesρ to a valid dynamic RPL.

In the inductive case, either (1)R = R′ : r, Σ(R) = Σ(R′):r, and RPL-NAME is the last rule in the

derivation; or (2)R = R′:[i], Σ(R) = Σ(R′):[i], and RPL-INDEX is the last rule in the derivation; or

(3) R = R′:*, Σ(R) = Σ(R′):*, and RPL-STAR is the last rule. In any case, the IH gives usH ⊢ Σ(R′),

74

and we can use DYN-RPL-NAME, DYN-RPL-INDEX, or DYN-RPL-STAR to complete the derivation of

H ⊢ Σ(R).

The result for types and effects follows from the fact that the rules for valid types and effects are identical

in the static and dynamic cases, up to substituting valid dynamic RPLs for valid static RPLs.

Lemma 4.2.6. If H ⊢ Σ � Γ andΓ ⊢ R � R′, thenH ⊢ Σ(R) � Σ(R′); and similarly forΓ ⊢ R ⊆ R′,

Γ ⊢ T � T ′ andΓ ⊢ E ⊆ E′.

Proof. It suffices to prove the results forR � R′ and R ⊆ R′; the results for types and effects then

follow from the exact correspondence (Section 4.2.3) between the static and dynamic rules for subtyping

and subeffect. Use induction on the height of the derivationΓ ⊢ R � R′ or Γ ⊢ R ⊆ R′.

For nesting, in the base case, we used one of rules UNDER-ROOT, DYN-UNDER-VAR, or reflexivity. In

the case of UNDER-ROOT or reflexivity the claim is obvious. In the case of DYN-UNDER-VAR, from the

rule we haveΓ ⊢ v � R and(v,C<R>) ∈ Γ; and byH ⊢ Σ � Γ, we have(v, o) ∈ Σ with H ⊢ o : C<dR>

andH ⊢ dR ⊆ Σ(R). The result follows by rules DYN-UNDER-REF and DYN-UNDER-INCLUDE. For

inclusion, in the base case we used either reflexivity or ruleINCLUDE-PARAM . For reflexivity, the claim is

obvious, and for INCLUDE-PARAM , the claim follows from Definition 4.2.4.

Now consider the inductive case. For nesting, we used UNDER-NAME, UNDER-INDEX, UNDER-STAR,

or UNDER-INCLUDE as the last rule in the derivation, and the claim follows straightforwardly from the IH

and the corresponding rule for dynamic RPLs. Similarly for inclusion using INCLUDE-STAR, INCLUDE-

NAME, INCLUDE-INDEX, or INCLUDE-FULL as the last rule. In the case of INCLUDE-FULL , we must have

dR = dR′, so the result follows by the reflexivity of the inclusion relation.

Finally, we state and prove the type and effect preservationresult. Note that the initial heapH is valid

by Definition 4.2.4 and the assumptionH ⊢ Σ � Γ.

Theorem 4.2.7(Preservation). For a well-typed program, ifΓ ⊢ e : T,E andH ⊢ Σ � Γ and(e,Σ,H)→

(o,H ′, dE), then (a)⊢ H ′; and (b) H ′ ⊢ dT � Σ(T), whereH ′ ⊢ o : dT ; and (c) H ′ ⊢ dE; and (d)

H ′ ⊢ dE ⊆ Σ(E).

Proof. The derivation of(e,Σ,H) → (o,H ′, dE) is by the rules given in Section 4.2.2. Consider each

possibility for the last rule in the derivation. We can show the claim directly in the following cases:

75

DYN-VAR: (a) holds because the heap does not change. (b) holds because of rule Var, and by Defini-

tion 4.2.4. (c) and (d) trivially hold.

DYN-NEW: By rule New, we haveΓ ⊢ C<R>. ThereforeH ′ ⊢ C<Σ(R)> by Lemma 4.2.5; and

because omitting stars from a valid RPL yields a valid RPL by rule RPL-STAR, H ′ ⊢ C<Σ(σ(R))>.

Further, we are extending the heap with a valid reference, and we initialize all the object fields with null

references of the correct type. This establishes (a). (b) holds becauseH ⊢ Σ(σ(R)) ⊆ Σ(R) by repeated

applications of rules DYN-INCLUDE-STAR and DYN-INCLUDE-NAME. (c) and (d) trivially hold.

DYN-FIELD-ACCESS: (a) holds because the heap does not change. (b) holds because ⊢ H. (c) holds

becauseΓ ⊢ Rf by rule FIELD, and by Lemma 4.2.5. (d) holds by comparing the reported effect in rule

FIELD-ACCESSwith the actual effect in rule DYN-FIELD-ACCESS.

DYN-FIELD-ASSIGN: (b) holds by rule FIELD-ASSIGN and by Definition 4.2.4. (a) holds because rule

FIELD-ASSIGN requiresΓ ⊢ T � T ′, and by the transitivity of subtyping. (c) holds becauseΓ ⊢ Rf by

rule Field. (d) holds by comparing the reported effect in rule FIELD-ASSIGN with the actual effect in rule

DYN-FIELD-ASSIGN.

DYN-ARRAY-ACCESS: Similar to DYN-FIELD-ACCESS.

DYN-ARRAY-ASSIGN: Similar to DYN-FIELD-ASSIGN.

Now consider the possibilities for the inductive case:

DYN-LET: First, apply the IH to the left-hand reduction on the top of rule LET. This yieldsH ′ ⊢ dT �

T , wheredT is the dynamic type ofo, andT is the static type ofe. That result impliesH ′ ⊢ Σ∪{(x, o)} �

Γ ∪ T , which allows us to apply the IH to the right-hand reduction on the top of LET. Now (a) and (c) hold

by the IH and the correspondence between the top of rules LET and DYN-LET. Further, by the IH, (b) holds

for the type ofe′, so it also holds for the weaker type obtained by substituting R:* for x in rule LET. A

similar argument for the effects establishes (d).

DYN-INVOKE: Let Σ′ be the dynamic environment we used to evaluate the method body e in rule DYN-

INVOKE, and letΓ′ be the environment we used to typee in rule METHOD. We need to showH ⊢ Σ′ � Γ′.

The only hard part is showingH ⊢ dT ′ � Σ′(Tx), whereH ⊢ o′ : dT ′; we do this as follows. By

hypothesis,H ⊢ dT ′ � Σ(T ′), whereΣ is the dynamic environment appearing on the bottom of rule

DYN-INVOKE, andT ′ is the type of variablev′ in the environmentΓ appearing on the bottom of rule

INVOKE. Now construct the dynamic environmentΣ′′ = Σ ∪ {(ρ, dR)}, whereρ is the capture parameter

76

appearing in rule INVOKE, anddR is the RPL in the type ofo as shown in rule DYN-INVOKE. Then

H ⊢ Σ′′ � Γ ∪ {ρ ⊆ R}, so from rule INVOKE and by Lemma 4.2.6, we haveΣ′′(T ′) � Σ′′(σ′(Tx)).

Becauseρ is a fresh parameter that does not appear inT ′, on the LHS we haveΣ(T ′) = Σ′′(T ′). And

becauseσ′ takesparam(C) to ρ andΣ′′ takesρ to dR, while Σ′ takesparam(C) to dR, on the RHS we

haveΣ′′(σ′(Tx)) = Σ′(Tx). Putting all this together yieldsH ⊢ dT ′ � Σ(T ′) � Σ′(Tx), which is the result

we wanted.

Now by the induction hypothesis, rule METHOD, and Lemma 4.2.6, we have (a)⊢ H ′; (b) H ′ ⊢ dT ′′ �

Σ′(Tr), whereH ′ ⊢ o′′ : dT ′′; (c)H ′ ⊢ dE; and (d)H ′ ⊢ dE ⊆ Σ′(E), whereTr is the return type ofm and

E is the declared effect ofm. We just need to showH ′ ⊢ Σ′(Tr) � Σ(σ(Tr)) andH ′ ⊢ Σ′(E) ⊆ Σ(σ(E)),

whereσ is the substitution specified in rule INVOKE. Because neitherTr norE contains the variablex (see

rule METHOD), the substitutionΣ′ is effectively{(this, o), (param(C), dR)}, while the substitutionΣ◦σ

is {(this, o), (param(C),Σ(R))} Further, becauseH ′ ⊢ Σ � Γ, we haveH ′ ⊢ dR ⊆ Σ(R). Therefore

the types and effects are the same up to substituting a covering RPL fordR on the RHS, so the required

subtyping and subeffect relations hold.

4.3 Noninterference

In this section we establish the main soundness results of Core DPJ. First we explain the set interpretation

of dynamic RPLs, which is essential to reasoning about disjointness. Then we define adisjointness relation

on RPLs, and we show that effects on disjoint RPLs imply disjoint effects on the heap. Then we define

noninterference of effect, which is the essential criterion for checking that two sections of code may be safely

executed in parallel. Finally, we prove that if two expressions have noninterfering static effect summaries,

then their order may be interchanged without affecting the final result.

4.3.1 Set Interpretation of Dynamic RPLs

In this section we explain the set interpretation of dynamicRPLs. A fully specified RPLRf names a region

of the heap. Given a heapH and a valid dynamic RPLdR, we define theset of regionsassociated withdR

as follows:

Definition 4.3.1. Let⊢ H andH ⊢ dR. ThenS(dR,H) is defined as follows:

77

1. S(dRf ,H) = {dRf}.

2. S(dR:r,H) = {dRf:r | dRf ∈ S(dR,H)}.

3. S(dR:[n],H) = {dRf:[n] | dRf ∈ S(dR,H)}.

4. S(dR:*,H) = {dRf |H ⊢ dRf � dR}.

Intuitively, the definition says that a fully specified RPL names a single region;dR:r appendsr to all

the regions ofdR; dR:[n] appends[n] to all the regions ofdR; anddR:* names all the regions under

dR.

Now we establish some essential properties of RPLs interpreted as sets. The first property says that the

set of RPLs underdRf:r is distinct from the set of RPLs underdRf:r′; and similarly fordRf:[n] and

dRf:[n′]. This establishes the tree structure of dynamic RPLs.

Lemma 4.3.2.If r 6= r′, thenS(dRf:r:*,H)∩S(dRf:r′:*,H) = ∅. If n 6= n′, thenS(dRf:[n]:*,H)∩

S(dRf:[n′]:*,H) = ∅.

Proof. We prove the first statement; the proof of the second statement is identical, using[n] instead of

r. By part 4 of Definition 4.3.1, it suffices to show that ifH ⊢ dR′f � dRf:r, then it is impossible to

deriveH ⊢ dR′f � dRf:r′. From the rules in Section 4.2.3, there are three ways to do the first derivation:

(1) dR′f = dRf:r; or (2) dR′f = o andH ⊢ o : C<dRf:r>; or (3) R′f satisfies one of the first two

possibilities with namesr appended. In the first case it is clear from the RPL syntax thatwe cannot have

H ⊢ dR′f � dRf:r′. In the second case, sinceo has only one type, we could only haveH ⊢ dR′f � dRf:r

if H ⊢ dRf:r � dRf:r′. To get this we would have to apply rule UNDER-NAME repeatedly until we got

to o′ such thatdRf begins witho′ andH ⊢ o′ � dRf:r′. But this would mean thato′ would have to appear

in its own type, which is impossible from the way we constructdynamic types (Section 4.2.2). Finally, in

case (3), appending namesr would just require that we use rule DYN-UNDER-NAME until we got back to

case (1) or (2).

Next we establish that the RPL inclusion relation agrees with set inclusion:

Lemma 4.3.3. If H ⊢ dR ⊆ dR′, thenS(dR,H) ⊆ S(dR′,H), where the second occurrence of⊆

represents set inclusion.

78

Proof. Use induction on the height of the derivationH ⊢ dR ⊆ dR′. In the base case, we used reflexivity,

and the claim is obvious. Otherwise, the last rule was one of transitivity, DYN-INCLUDE-STAR, DYN-

INCLUDE-NAME, or DYN-INCLUDE-INDEX. In the case of transitivity, the result follows by the IH together

with the fact that set inclusion is transitive. In the case ofDYN-INCLUDE-STAR, we need to show that if

H ⊢ dR � dR′, thenS(dR,H) ⊆ S(dR′:*,H); but this follows by Definition 4.3.1 and the transitivity

of the nesting relation. Finally, in the case of DYN-INCLUDE-NAME or DYN-INCLUDE-INDEX, the result

follows directly from the IH and Definition 4.3.1.

4.3.2 Disjointness

We define the disjointness relation for static RPLs (Γ ⊢ R # R′) as follows. First, we have “distinctions

from the left”: given two fully specified RPLs that start withthe same elements then diverge at the last

element, any RPL under the first is disjoint from any RPL underthe second. These rules reflect the tree

structure of RPLs:

DISJOINT-LEFT-NAME r 6= r′ Γ ⊢ R � Rf:r Γ ⊢ R′ � Rf:r′

Γ ⊢ R # R′

DISJOINT-LEFT-INDEX i 6= i′ Γ ⊢ R � Rf:[i] Γ ⊢ R′ � Rf:[i′]

Γ ⊢ R # R′

DISJOINT-LEFT-NAME-INDEX Γ ⊢ R � Rf:r Γ ⊢ R′ � Rf:[i]

Γ ⊢ R # R′

Second, we have “distinctions from the right”: any two RPLs that differ in the same position before a star

from the right are disjoint:

DISJOINT-RIGHT-NAME r 6= r′

Γ ⊢ R:r # R′:r′

DISJOINT-RIGHT-INDEX i 6= i′

Γ ⊢ R:[i]# R′:[i′]

DISJOINT-RIGHT-NAME-INDEX

Γ ⊢ R:r # R′:[i]

79

Disjointness is symmetric, as may be seen from the symmetry of the rules. We extend the relation to dynamic

RPLs (generating rules DYN-DISJOINT-LEFT-NAME, etc.) in the same way described in Section 4.2.3.

We can now establish that RPL disjointness implies disjointness of the region sets.

Proposition 4.3.4. If H ⊢ dR # dR′, thenS(dR,H) ∩ S(dR′,H) = ∅.

Proof. If we used one of the DYN-DISJOINT-RIGHT rules to prove disjointness, then there can be no ele-

ment in the intersection because of the syntactic difference between the elements in the two sets. Otherwise,

we a used DYN-DISJOINT-LEFT rule. A simple induction shows that ifH ⊢ dR � dRf , then for all

dR′f ∈ S(dR,H), H ⊢ dR′f � dRf . The result then follows from Lemma 4.3.2.

Next we defineregion(o, f,H), the region of fieldf of class objecto ∈ Dom(H), andregion(o, n,H)

then region of celln of arrayo ∈ Dom(H). This definition formalizes the idea that regionsR in the field

declarationsT f in R partition the heap:

Definition 4.3.5 (Region of a field or array cell). If H ⊢ o : C<dR> and T f in Rf ∈ def(C), then

region(o, f,H) = Rf [this← o][param(C) ← dR]. If H ⊢ o : dT[]<dR>#i, thenregion(o, n,H) =

dR[i← n].

Note thatregion(o, f,H) is fully specified (i.e., it is a region), because only fully specified RPLs are

allowed in evaluatingnew expressions (rule DYN-NEW-CLASS). Similarly for region(o, n,H).

Proposition 4.3.6. At runtime, disjoint regions imply disjoint locations. That is, if

H ⊢ region(o, f,H)# region(o′, f ′,H),

then eithero 6= o′ or f 6= f ′; and if H ⊢ region(o, n,H)# region(o′, n′,H), then eithero 6= o′ or n 6= n′.

This claim follows directly from Proposition 4.3.4 and the fact that the class definition together with the

region binding in the type ofnew specifies exactly one fully specified region for each object field at the time

the object is created.

80

4.3.3 Noninterference of Effect

We define the noninterference relation for static effects (Γ ⊢ E # E′) as follows. The noninterference

relation is symmetric:

NI-SYMMETRIC Γ ⊢ E # E′

Γ ⊢ E′ # E

Pairs of reads always commute:

NI-READ

Γ ⊢ reads R #reads R′

Read-write and write-write pairs commute only if the locations are disjoint:

NI-READ-WRITE Γ ⊢ R # R′

Γ ⊢ reads R #writes R′

NI-WRITE Γ ⊢ R # R′

Γ ⊢ writes R #writes R′

An invocation effect commutes with another effect if the underlying effect of the invocation commutes with

that effect:

NI-I NVOKES-1 Γ ⊢ E # E′

Γ ⊢ invokes C.m with E # E′

Two invocation effects commute if they are declared to commute, regardless of their underlying effects:

NI-I NVOKES-2 m commuteswithm′ ∈ def(C)

Γ ⊢ invokes C.m with E #invokes C.m′ with E′

Finally, we have the obvious rules for empty sets and set unions:

NI-EMPTY

Γ ⊢ ∅# E

NI-UNION Γ ⊢ E # E′′ Γ ⊢ E′ # E′′

Γ ⊢ E ∪ E′ # E′′

We extend the relation to dynamic effects as described in Section 4.2.3.

Now we can prove that expressions with noninterfering effects commute. First we definebasic effects,

which are the actual effects produced by program execution:

81

Definition 4.3.7. A basic effect is one of the following:readsRf , writesRf , or invokesC.m with

dE′′, wheredE′′ is a possibly empty union of basic effects.

Lemma 4.3.8. If (e,Σ,H)→ (o,H ′, dE), thendE is a possibly empty union of basic effects.

Proof. Obvious from the rules given in Section 4.2.2.

Next we formally define what it means for a commutativity annotation m commuteswith m′ to be

correct:

Definition 4.3.9. For a programP, an annotationm commuteswith m′ appearing in classC of P is

correct if for every pair of heapsH andH ′ and objectso ando′ in H such that executingo.m and then

o′.m′ with initial heapH produces heapH ′, executing the methods in reverse order (i.e.,o′.m′ theno.m)

in initial heapH also produces heapH ′.

Informally, m andm′ commute if the order in which they appear in the program execution is irrelevant.

Note that we define commutativity in terms of physical heap state, which is somewhat stronger than we

might want in a real application: for example, we might want to treat two methods as commutative if either

order of execution produces the same abstract data structure, with possibly different internal representations.

The formalism given here could easily be extended to represent higher-level notions of equivalent heap state,

such as equivalent data structures with different internalrepresentations.

Now we can state a proposition about the dynamic effects produced by program execution: if we evaluate

e thene′ with the same dynamic environmentΣ, and if the dynamic effects produced by the two evaluations

are noninterfering, thene ande′ arecommutative, i.e., we get the same result as if we evaluatee′ thene:

Proposition 4.3.10.If all annotationsm commuteswithm′ appearing inP are correct and(e,Σ,H)→

(o,H ′, dE) and(e′,Σ,H ′)→ (o′,H ′′, dE′) andH ′′ ⊢ dE # dE′, then there existsH ′′′ such that(e′,Σ,H)→

(o′,H ′′′, dE′) and(e,Σ,H ′′′)→ (o,H ′′, dE).

Proof. First, note that the rules in Section 4.2.2 faithfully record the heap effects of expression evaluation:

whenever we read a region, we record a read effect to that region (DYN-FIELD-ACCESS); whenever we write

a region, we record a write effect to that region (DYN-FIELD-ASSIGN); and whenever we invoke a method,

we record an invocation with all the effects that occurred during the evaluation of the method body (DYN-

INVOKE). Further, by rules NI-EMPTY and NI-UNION, it is clear that two effects are noninterfering if and

82

only if their component basic effects are pairwise noninterfering. Thus it suffices to prove the proposition

in the case where each ofdE anddE′ is a basic effect.

Note that the invocation effect is recursive (invocation effects can appear in the effectdE′′ in invokes

C.m with dE′′). So use induction on the total number of times thatinvokes appears indE anddE′. In

the base case of zero times, the result is obvious from the noninterference rules, Proposition 4.3.6, and the

semantics of read and write. In the inductive case, eitherdE or dE′ (or both) is an invocation effect, and

we must have used either DYN-NI-I NVOKES-1 or DYN-NI-I NVOKES-2 to proveH ⊢ dE # dE′. Assume

without loss of generality thatdE = invokesC.m with dE′′. If we used DYN-NI-I NVOKES-1, then

we haveH ⊢ dE′′# dE′, and by the IH all the operations that createddE′′ can be interchanged with the

operation that createddE′. Therefore the method invocation that produceddE can be interchanged with the

operation that produceddE′. If we used DYN-NI-I NVOKES-2, then by Definition 4.3.9, the operations can

be interchanged without changing the resulting heap state.

By extending this result to static effects, we obtain the main soundness property of Core DPJ:

Theorem 4.3.11.If Γ ⊢ e : T,E andΓ ⊢ e′ : T ′, E′ andΓ ⊢ E # E′ andH ⊢ Σ � Γ and (e,Σ,H) →

(o,H ′, dE) and (e′,Σ,H ′) → (o′,H ′′, dE′), then there existsH ′′′ such that(e′,Σ,H) → (o′,H ′′′, dE′)

and(e,Σ,H ′′′)→ (o,H ′′, dE).

Proof. By Proposition 4.3.10, it suffices to prove thatH ′′ ⊢ dE # dE′, and again we can assume thatdE

anddE′ are basic. By Theorem 4.2.7, we have (a)H ′′ ⊢ dE ⊆ Σ(E) andH ′′ ⊢ dE′ ⊆ Σ(E′), and by

Lemma 4.2.6, we have (b)H ′′ ⊢ Σ(E)# Σ(E′). Now consider the possibilities fordE anddE′. Again we

use induction on the total number of times thatinvokes appears indE anddE′. In the base case of zero

times, there are three possibilities, up to reordering:

1. dE = reads dRf , dE′ = reads dR′f : Obvious because pairs of reads always commute.

2. dE = reads dRf , dE′ = writes dR′f : By (a) together with rules DYN-SE-READS, DYN-SE-

READS-WRITES, and DYN-SE-WRITES, there exists an effectreads dR or writes dR in Σ(E)

such thatH ⊢ dRf ⊆ dR, and there exists an effectwrites dR′ in Σ(E′) such thatH ⊢ dR′f ⊆

dR′. By (b) and the rules for noninterference of effect, we haveH ′′ ⊢ dR # dR′. Lemma 4.3.3 and

Proposition 4.3.4 then establish thatdRf anddR′f are distinct regions.

83

3. dE = writes dRf , dE′ = writes dR′f : Nearly identical to case 2, except that only DYN-SE-

WRITES is used, and both effects are covered by a write.

In the inductive case, there are a further three possibilities, again up to reordering:

4. dE = reads Rf , dE′ = invokes C.m with dE′′: By the rules for subeffects, together with (a),

dE is covered by eitherreads dR or writes dR in Σ(E); and eitherinvokesC.m with dE′′′

appears inΣ(E′) with H ′′ ⊢ dE′ ⊆ dE′′′ (rule Dyn-SE-Invokes-1), orH ′′ ⊢ dE′′ ⊆ Σ(E′) (rule

Dyn-SE-Invokes-2). In the first case, by rule DYN-NI-I NVOKES-1, we have that the covering read

or write effect is disjoint fromdE′′′, and by the IH we have thatreads Rf is disjoint fromdE′′,

which gives the result, again by rule DYN-NI-I NVOKES-1. In the second case, the IH gives the result

directly.

5. dE = writesRf , dE′ = invokesC.m with dE′′: Same as case 4, except thatdE is covered

only by a write effect.

6. dE = invokes C.m with dE′′, dE′ = invokes C ′.m′ with dE′′′: If we used rule NI-

Invokes-1 to prove that the two covering effects are noninterfering, then this case reduces to the

IH. Otherwise, each ofdE anddE′ is covered by an invocation effect, and the two effects are non-

interfering by rule NI-Invokes-2. In this case, we haveC = C ′, m commuteswithm′ ∈ def(C),

andH ′′ ⊢ E′′# E′′′. ThereforeH ′′ ⊢ dE # dE′, again by rule NI-Invokes-2.

Theorem 4.3.11 says that if two expressions have noninterfering staticeffects, then their actual runtime

effects are noninterfering as well. Therefore, we can use the static effect information to reason soundly

about noninterference at runtime.

4.4 Extending the Language

In this section, we informally discuss how to extend Core DPJas follows: (1) adding parallel constructs to

the sequential language; and (2) adding inheritance.

84

4.4.1 Adding Parallel Constructs

As discussed in Chapter 3, the actual DPJ language includesforeach for parallel loops andcobegin for

a block of parallel statements. We can easily add an expressioncobegin(e,e′) that says to executee and

e′ in the same environment, in an unspecified order, with an implicit join at the end of the execution. We can

simulateforeach by composing expressionsei in parallel and evaluating each one in environmentdEi

containing the binding(I, i), whereI is an induction variable defined in the scope of theforeach, andi is

a natural number. In all cases we extend the static typing rules to say that for any pair of expressionse and

e′ as to which the order of execution is unspecified, then the effects ofe ande′ must be noninterfering (Sec-

tion 4.3.3). It follows directly from Theorem 4.3.11 that parallel composition of noninterfering expressions

produces the same result as sequential composition of thoseexpressions. This guarantees determinism of

execution regardless of the order of parallel execution, which is exactly the result we wanted.

However, there is one subtlety here that we should not overlook. Because we used large-step semantics

to define the dynamic semantics (Section 4.2.2), there areby definitionno interleavings between the exe-

cutions of two expressionse ande′: we either executee thene′ or e thene′. This means we essentially

get atomicity of expression execution “for free.” In a real program execution, there may be arbitrary inter-

leavings between the effects of parallel code sections. To simulate these interleavings, we could use a more

complicated execution model, such as small-step semantics, to model the global effect of each individual

step of expression execution, instead of treating the entire expression as a unitary effect.

Notice, however, what we actually showed in the course of proving Theorem 4.3.11: that if expressions

e ande′ have noninterfering static effects, then the individual basic effects generated by their executions are

pairwise commutative. It is therefore straightforward to show that if we adopted a more fine-grain execution

model (such as small-step semantics), then we could use the commutativity of the individual basic effects

to establish the commutativity of the groups of basic effects generated by executinge ande′. In fact, this is

essentially what we did in proving Theorem 4.3.11, just without explicitly modeling the interleavings in the

rules for dynamic execution.

Finally, in Chapter 6, we give just such a small-step semantics model for a simpler deterministic lan-

guage. There we explore the interactions between deterministic and nondeterministic execution, so it is

important to model the parallel execution. Here, by contrast, our purpose is to develop type and effect

mechanisms for noninterference. So we defer the detailed model of parallel execution to the later chapter.

85

4.4.2 Adding Inheritance

Syntax and Static Semantics:We add inheritance to the syntax and static semantics of CoreDPJ as

follows. First, we extend the definition of valid types to account for the inheritance hierarchy. We add

the typeObject, and we change the class definitions to the formclass C<ρ> extends T , whereT

is a type that is valid in the environment containingρ ⊆ Root:*. We put a relation� on class names

that represents the class hierarchy in the obvious way; formally, it is the reflexive, transitive closure of the

relation given byC � C ′ if class C<ρ> extends C ′<R> ∈ P.

Next, in order to describe the semantics of inheritance, we need to be able to translate types, effects,

and RPLs written in terms of the parameters of a superclass down to the subclass. To do this, we use the

parameter substitutions implied by theextends clauses to define acontext translation operatortransC←C′

that rewritesparam(C) in terms ofparam(C ′) if C � C ′: First, if C = C ′, then transC←C′(ρ) = ρ.

Second, ifclass C<ρ> extends C ′<R> ∈ P, thentransC←C′(param(C ′)) = R. Third, if C � C ′ �

C ′′, then

transC←C′′(param(C ′′)) = transC←C′(transC′←C′′(param(C ′′))),

where we extendtransC←C′ in the obvious way to an operation on RPLs. We also extendtransC←C′ in the

obvious way to an operation on types and effects.

Now we just have to amend the rules for the static semantics toaccount for the fact that RPLs, types,

and effects may be inherited from superclasses, and that inherited entities must be translated to the context

in which they are used:

1. To the rules for subtyping (Section 4.1.3), add the following rules. First, every type is a subtype of

Object. Second, ifC ′ � C, thenC ′<R> is a subtype ofC<σ(transC′←C(param(C)))>, where

σ = {param(C ′) 7→ R}.

2. Methods are inherited or overridden by subclasses as in Java. In the rule METHOD (Section 4.1.1),

check that ifC ′.m overridesC.m, then (1) the parameter and return types match after applying

transC′←C to the types appearing inC.m; and (2) the declared effect ofC ′.m is a subeffect of

transC′←C(E), whereE is the declared effect ofC.m.

3. In rule FIELD-ACCESS, look for T f in Rf ∈ def(C ′), with C � C ′, and record effectreads

transC←C′(Rf); and similarly for FIELD-ASSIGN. In rule INVOKE, look for Tr m(Tx x) E { e } ∈

86

def(C ′), with C � C ′. UsetransC←C′(Tr) instead ofTr; and similarly forTx andE.

Dynamic Semantics:To extend the dynamic semantics, we addObject as a valid dynamic type. We also

extend the rules for valid dynamic types and subtypes as described in Section 4.2.3, using the extensions to

the static type rules described above. Again, we have to account for the fact that RPLs, types, and effects

may be inherited from superclasses:

1. In rule DYN-FIELD-ACCESS, look forT f inRf ∈ def(C ′), with C � C ′, and record effectreads

Σ(transC←C′(Rf)); and similarly for rule DYN-FIELD-ASSIGN.

2. In rule INVOKE, look for Tr m(Tx x) E { e } ∈ def(C ′), for C � C ′, and record effectinvokes

C ′.m with dE.

3. In rule New, the type ofo′ is C<Σ(σ(transC′←C′′(R)))>, whereC ′ is the class in the type ofo, and

C ′′ is the class in whose definition thenew expression actually appears.

Noninterference and Soundness:We extend rule NI-Invokes-2 (Section 4.3.3) so that two invocation

effects commute if the methodsC.m andC.m′ are declared to commuteor either of the methods overrides

a method that is declared to commute.Formally, if m commuteswithm′ ∈ def(C), then it is assumed

that C ′.m commutes withC ′′.m′ for all C ′ � C andC ′′ � C, and these facts must be guaranteed by

the implementations of subclasses ofC. In this sense the commutativity annotation is “inherited.” This

rule is necessary to ensure sound inference about commutativity in the presence of polymorphic method

invocation.

We extend the operatortransC′←C to static environments as follows. If(this, C<param(C)>) ∈ Γ,

thentransC′←C(Γ) is defined to be

{(this, C ′<param(C ′)>)} ∪ {(v, transC′←C(T))|(v, T) ∈ Γ ∧ v 6= this}

∪ {ρ ⊆ transC′←C(R)|ρ ⊆ R ∈ Γ}.

Intuitively, we replaceC<param(C)> with C ′<param(C ′)> in the binding ofthis and translate the

RHS of all bindings and constraints to the environment ofC ′. It is straightforward to show that for every

essential relationship (valid RPLs, types, and effects; nesting, inclusion, subtyping, etc.) that holds inΓ,

87

the same is true intransC′←C(Γ) for the entities after translation bytransC′←C . Lemma 4.2.1 then follows

immediately for the extended language.

Next we extend Definition 4.2.4 (instantiation of static environments by dynamic environments) as fol-

lows: H ⊢ Σ � Γ if this is bound to classC in Γ, this is bound to classC ′ in Σ, andH ⊢ Σ �

transC′←C(Γ) according to Definition 4.2.4 as given in Section 4.2.4. The extended definition accounts

for the fact that the class of the actual object bound tothis at runtime may be a subclass of the statically

enclosing class of the method we are executing. It is straightforward to extend the proofs of Lemmas 4.2.5

and 4.2.6 and Theorem 4.2.7 under this extended definition.

The definitions and results in Section 4.3.1 and 4.3.2 do not depend on the extended language, so those

carry through unchanged. The proof of Proposition 4.3.6 is obvious once we extend rule NI-Invokes-2 as

described above. The proof of Theorem 4.3.11 then goes through exactly as stated in Section 4.3.3.

88

Chapter 5

Effect System and Language for Determinism by Default

This chapter describes DPJ’s mechanisms for controlled nondeterminism, building on the effect system and

language described in the previous chapters. Section 5.1 explains the new language mechanisms for creating

parallel tasks with possibly nondeterministic results, using the Traveling Salesman Problem algorithm as an

example. Section 5.2 explains the new effect system features that cooperate with aweakly isolatedtrans-

actional runtime (in our implementation, an STM) to enforcethe safety properties described in Chapter 1.

Section 5.3 describes additional effect system features that improve the performance of the transactional

runtime by allowing the compiler to remove unnecessary synchronization overhead. Section 5.4 describes

a prototype compiler implementing the techniques. Section5.5 describes an evaluation of the techniques

using three nondeterministic parallel benchmarks. Finally, Section 5.6 discusses related work.

5.1 Expressing Nondeterminism

To express nondeterministic computations, we introduce the following new language mechanisms:

1. foreach nd: We add a nondeterministic parallel loop, denotedforeach nd. Thend denotes

“nondeterministic.” It is the same asforeach discussed in previous chapters, except that inter-

ference is allowed between the loop iterations offoreach nd. Executing these loop iterations in

parallel therefore may permit nondeterministic results.

2. cobegin nd: We add a nondeterministic parallel statement composition,denotedcobegin nd. It

is the same ascobegin except that again, interference is allowed between the tasks.

3. Atomic statements:We introduce anatomic statementwith the syntaxatomic S, whereS is a

statement. A statementatomic S indicates thatS is to be run as ifall other concurrent execution

were suspended whileS is executing. This is called strong isolation [84, 108].

89

We also extend the effect system to enforce the safety properties stated above (including strong isolation).

The safety properties and the effect system extensions are discussed further in the next section.

We illustrate the new language features with a running example of the traveling salesman problem, or

TSP. TSP is the well-known problem of finding a shortest cyclein a weighted graph that visits all the nodes

once (i.e., a Hamiltonian cycle). TSP can be solved bybranch and bound search, a common algorithm

for solving optimization problems and a classic example fornondeterministic computation. A branch and

bound algorithm divides the search space into sets of possibilities (the “branch”) and “bounds” each set by

estimating how far it is from the optimization goal. Branches that are no better than previously explored

ones are discarded, while ones that are potentially better are explored.

Figures 5.1–5.3 show simplified Java-like pseudocode for TSP. For now we discuss only the mechanisms

for task creation and synchronization; the region and effect annotations for proving safety properties are

discussed in the next section. The global data structures (lines 1–13) include a weighted graph that is the

input to the program; a priority queue for storing the paths being explored; and a “best” (i.e., shortest) tour,

which is refined as the computation progresses, eventually storing the answer. The main computation loop

(lines 15–23) illustratesforeach nd. It iterates in parallel over several worker tasks. Each task generates

a prefix to search (using the pseudocode in Figure 5.2) and searches it (using the pseudocode in Figure 5.3),

until there are no more prefixes to search. The prefix generation occurs in isolation because of theatomic

statement at lines 18–20 of Figure 5.1.

Figure 5.2 shows the code for generating a prefix. If there is any useful work remaining on the priority

queue, the worker task removes a prefix from the queue. If the prefix already contains enough edges, it

returns that prefix to be solved. Otherwise, it generates newprefixes by adding one edge to that prefix,

putting it on the priority queue, and repeating (lines 8–13). Notice that all the worker threads are calling

generateNextPrefix (and therefore reading and writing the priority queue) concurrently. Atomic

access to the queue is therefore essential for correctness.

Note that while the calls togenerateNextPrefix are effectively serialized, each worker can start

its call tosearchAllToursWithPrefix as soon as its call togenerateNextPrefix is done, in a

pipelined manner. This pattern can achieve good speedups because most of the work in this code is done in

searchAllToursWithPrefix.

90

1 /* Regions for partitioning data */
2 region ReadOnly, atomic Mutable;
3

4 /* Graph we are working on; immutable */
5 Graph<ReadOnly> graph in ReadOnly = the TSP graph;
6

7 /* Priority queue for tour prefix paths */
8 final PriorityQueue<Path<ReadOnly>, Mutable> priorityQueue =
9 new PriorityQueue<Path<ReadOnly>, Mutable>();

10 priorityQueue.add(new Path<ReadOnly>(startNode));
11

12 /* The answer */
13 Path<ReadOnly> bestTour in Mutable = infinite path;
14

15 foreach_nd(int i in 0, NWORKERS) {
16 Path<ReadOnly> prefix = null;
17 while (true) {
18 atomic { prefix = generateNextPrefix(); }
19 if (prefix == null) break;
20 }
21 }

Figure 5.1: Global data and main computation for the Traveling Salesman Problem

1 Path generateNextPrefix() reads ReadOnly writes Mutable {
2 while (!priorityQueue.isEmpty() &&
3 priorityQueue.best().length() < bestTour.length()) {
4 Path<ReadOnly> prefix = priorityQueue.removeBest();
5 if (prefix.nodeCount() > PREFIX_CUTOFF) {
6 return prefix;
7 } else {
8 for (each edge edge that can be added to prefix
9 while staying under bestTour.length()) {

10 Path<ReadOnly> newPrefix =
11 new Path<ReadOnly>(prefix, edge);
12 priorityQueue.add(newPrefix);
13 }
14 }
15 }
16 return null;
17 }

Figure 5.2: Generating the next tour prefix

91

1 void searchAllToursWithPrefix(Path<ReadOnly> prefix)
2 reads ReadOnly writes atomic Mutable {
3 for (each Hamilton cycle tour in graph with prefix prefix) {
4 atomic {
5 if (tour.length() < bestTour.length()) {
6 bestTour = tour;
7 }
8 }
9 }

10 }

Figure 5.3: Searching all tours with a given prefix

Figure 5.3 shows the code for searching tours starting with agiven prefix. The construction of the tours

is read-only on the graph, so no synchronization is needed for access to the graph. The only synchronization

needed is for the concurrent read-modify-write access tobestTour, at lines 5–7, which also must be

atomic.

5.2 Enforcing Safety Properties

As discussed in Chapters 1 and 2, our goal is to enforce, at compile time, four safety guarantees for the

extended language with nondeterminism: (1) freedom from data races; (2) strong isolation for statements

markedatomic; (3) sequential equivalence for deterministic parallel constructs; and (4) determinism by

default. We now discuss several extensions to the deterministic effect system described in Chapters 3 and 4

that allow these four properties to be enforced.

Data race freedom and strong isolation:We use the following strategy to ensure both data race freedom

and strong isolation:

1. A transactional runtime guarantees at least weak isolation ofatomic statements.

2. The effect system ensures that for any pair of conflicting memory accesses, both of the accesses occur

insideatomic statements. This requirement ensures strong isolation, because no conflicts between

unguarded memory accesses andatomic statements are allowed. It also ensures race freedom,

because no conflicts between pairs of unguarded accesses areallowed.

Part 1 of our strategy is familiar from previous work on language mechanisms supported by transactional

runtimes [62, 8, 65, 44]. Part 2 is new, and it leads to two significant advantages. First, our strategy guaran-

92

tees strong isolation even if the underlying implementation guarantees only weak isolation. This property

is very important, because it allows our language to be builton top of a standard software transactional

memory (STM) implementation. Typically, STM guarantees weak isolation, because the overhead of guar-

anteeing strong isolation in software is prohibitive. Second, our strategy prohibits all data races. Even TM

systems with strong isolation generally allow data races between pairs of accesses, both of which occur

outside any transaction.

Effect system extensions.To ensure that pairs of conflicting accesses both occur insideatomic statements

(part 2 above), we extend the DPJ effect system described in Chapter 3 as follows:

1. Internally, the compiler distinguishes read and write effects as eitheratomic(meaning the effect oc-

curred inside anatomic statement) ornon-atomic(meaning the effect occurred outside anyatomic

statement).

2. To support sound reasoning about atomic effects across method invocations, we extend the syntax of

DPJ’s method effect summaries to denote whether effects areatomic. An atomic effect is denoted by

writing the keywordatomic before the RPL. For example, an effectwrites R1, atomic R2

denotes a non-atomic write toR1 and an atomic write toR2.

3. We extend DPJ’s rules for subeffects so a non-atomic effect covers an atomic effect, but not vice

versa.

4. In checking aforeach nd or cobegin nd statement, interference is allowed between the com-

ponent parallel tasks only between pairs of effects that areeither mutually noninterfering or both

atomic.

Together, these rules ensure that any pair of conflicting accesses both occur inatomic statements. The

first three rules ensure that atomic effects are reported only where there is, in fact, an enclosingatomic

statement. The fourth rule disallows interference withoutatomic effects, i.e., without enclosingatomic

statements.

TSP example.The TSP example discussed in the previous section illustrates the effect system extensions.

As shown in line 2 of Figure 5.1, two regions are used to hold the data:ReadOnly for fields that will not

93

be modified during the computation, andMutable for those that will be. The type

PriorityQueue<Path<ReadOnly>, Mutable>

of the priority queue indicates that the queue contains objects of typePath<ReadOnly>, and that the

internal data used to represent the queue itself is in regionMutable. Here are examples of how the four

rules stated above are used to check the correctness of the TSP example:

1. In Figure 5.3, the read effect on regionReadOnly is not atomic, because it is generated in the

test condition of thefor loop, outside theatomic statement. However, the write effect on region

Mutable is atomic, because it is generated by the assignment to the variablebestTour at line 6,

inside theatomic statement.

2. The effect summary in line 2 of Figure 5.3 says that the write effect onMutable is atomic (but the

read effect onReadOnly is not).

3. It would be permissible (but conservative) to rewrite theeffect summary in line 2 of Figure 5.3 as

reads ReadOnly writes Mutable,

becausewrites Mutable coverswrites atomic Mutable, which is the actual effect gen-

erated in line 6. However, it would be a compile-time error towrite reads atomic ReadOnly,

because the effect onReadOnly is not atomic.

4. In theforeach nd at lines 15–23 of Figure 5.1, the effects onReadOnly are all reads, and

Mutable andReadOnly are distinct regions. Therefore, the only interfering effects across itera-

tions of the loop are the atomic writes toMutable generated by the calls togenerateNextPrefix

andsearchAllToursWithPrefix. The first call occurs inside anatomic section, so it gener-

ates atomic effects. The second call occurs outside an atomic section, but as noted above, the write

effect in the signature ofsearchAllToursWithPrefix is marked atomic (line 2 of Figure 5.3.

On the other hand, if theatomic statement at line 18 of Figure 5.1 were removed, or the write effect

in line 2 of Figure 5.3 were made non-atomic, then a compile-time error would occur in checking the

foreach nd loop.

94

Programmer benefit.Together, race-freedom and strong isolation convey the following benefits to the pro-

grammer in this language:

1. Sequential consistency.Because there are no data races, the Java memory model guarantees a sequen-

tially consistent execution. That means the observed execution is consistent with program order (i.e.,

the order of execution defined by the program text).

2. Reduced interleavings.Because code occurring outside anatomic statement is either noninterfering

or not parallel by definition in this language, a program’s execution is determined by only two things:

(1) the actual order of execution of concurrent, interfering atomic statements, and (2) program order.

Further, program order does not introduce any schedule dependence over and above (1). Therefore,

the only source of non-equivalent interleavings is from different orderings of concurrent, interfering

atomic statements.

The first property is important because it is well known that sequentially consistent executions are much

easier to reason about than non-sequentially consistent ones. The second property is important because many

programmers (and testing tools) analyze program behavior by reasoning about the possible interleavings (or

schedules) of parallel operations. Reducing the effectivenumber of interleavings makes such reasoning

easier.

Sequential equivalence for deterministic constructs:As discussed more formally in the next chapter,

a basic property of DPJ as described in Chapter 3 is thatcobegin andforeach behave exactly like a

program-ordered sequential composition of their component tasks. We wish to preserve this property for the

extended language that includescobegin nd andforeach nd. We view this property as essential for

allowing local, compositional reasoning about the interactions between deterministic and nondeterministic

operations.

To guarantee this property, we incorporate the following two rules in the type system:

1. Interference is allowed only between parallel branches of a foreach nd or cobegin nd. No

interference is allowed between parallel branches of acobegin orforeach, even if the interfering

accesses are both guarded byatomic sections.

2. Inside aforeach nd or cobegin nd, interference is allowed between acobegin statement and

other parallel code only if the entirecobegin statement is enclosed in anatomic statement. This

95

ensures that everycobegin executes as if it were an isolated, sequential statement, even inside a

foreach nd or cobegin nd.

The motivation for the first rule is fairly obvious. For example, we wish to disallow code like this:

x = 0
cobegin {

atomic x = 1; // S1
atomic x = 2; // S2

}

Even though the writes to variablex are enclosed inatomic statements (so there is no data race), the

order of execution of the statementsS1 andS2 is nondeterministic, as is the final result. The point of

cobegin is to indicate deterministic composition, so we just disallow such interference. In the typing

rules, the rule for checkingcobegin/foreach is then exactly the same as in Chapter 3, while the rule

for cobegin nd/foreach nd is as stated above (interference is allowed, but only where guarded by

atomic statements). The next chapter gives these rules formally.

The motivation for the second rule is perhaps more surprising. To see the motivation, consider the

following program:

z = 0;
cobegin_nd {

cobegin {
atomic x = z; // S1
atomic y = z; // S2

}
atomic z = 1; // S3

}

In our view, this program has a serious problem: it destroys the property we want to carry over from the

deterministic language, i.e., thatcobegin behaves like a program-ordered sequential composition of its

component tasks. According to the semantics ofcobegin nd andcobegin, the statements could be

executed in the orderS2, S3, S1, producing the resultx = 1, y = 0. This result is impossible for a

sequentially consistent execution of the program obtainedby erasing thecobegin: for that program,S1

must occur beforeS2; and so ifx equals 1, thenS3must have executed beforeS1 andS2, andymust equal

1 as well. In effect, the presence of the interfering write toz in the othercobegin nd branch exposes

the fact that the order of execution ofS1 andS2 was different forcobegin than it could be for ordinary

sequential composition.

96

Because we want programmers to be able to reason aboutcobegin as program-ordered sequential

composition, we disallow this program. Specifically, we require that theentire cobegin statement ex-

ecute as an isolated operation (as if it were surrounded entirely by atomic) whenever it occurs inside

cobegin nd. We express this requirement in the effect system by simply “ignoring” anyatomic state-

ments occurring inside thecobegin, for purposes of computing the effect of the entirecobegin. For

example, in the fragment above, thecobegin branches generate atomic effects onx, y, andz at the point

of the assignments. However, when those component effects are accumulated into the effect of the entire

cobegin, they are transformed into non-atomic effects, so the effect of the entire cobegin is anon-atomic

read ofz and a pair ofnon-atomicwrites tox andy. In particular, because the read ofz is non-atomic

in the first branch of thecobegin nd, the conflicting write toz in the second branch is disallowed (even

though it is atomic). Again, these rules are stated more formally in the next chapter.

Notice the following (slightly different) programs that a programmermaywrite in our language. First,

if the entirecobegin is enclosed in anatomic statement, then the effects of thecobegin are made

atomic again, and the composition is allowed:

z = 0;
cobegin_nd {

atomic cobegin { x = z; y = z; }
atomic z = 1;

}

This code is permissible, because theatomic statement in the first branch of thecobegin nd guarantees

that thecobegin executes in isolation, despite the interference with the second branch.

Second, a programmer who truly wants both interference and interleaving can write acobegin nd

instead of acobegin:

z = 0;
cobegin_nd {

cobegin_nd { atomic x = z; atomic y = z; }
atomic z = 1;

}

Because the inner parallelism is created bycobegin nd, and notcobegin, the effects onx, y, andz are

reported as atomic effects to the outercobegin nd, and so the interference is allowed.

Determinism by default: The typing rules discussed above also guarantee the following property: evalu-

ation of any isolated statement that does not dynamically execute aforeach nd or cobegin nd yields

97

a fixed output heap state for a fixed input heap state, up to inessential details like the addresses of objects

on the heap. From the discussion above, an isolated statement is (1) anyatomic statement,cobegin, or

foreach; or (2) any statement not occurring inforeach nd or cobegin nd (including the entire pro-

gram); or (3) any statement that does not dynamically execute anatomic statement (because if a statement

executes noatomic statement, then the type system ensures that it runs with no interference from any

other parallel statement). We call this propertydeterminism by default, because it says that nondeterminism

occurs only where explicitly requested viaforeach nd orcobegin nd. We view this property as essen-

tial to any language that allows the composition of deterministic and nondeterministic parallel constructs.

This property is stated and proved formally in the next chapter.

5.3 Performance: Removing Unnecessary Barriers

To enforce isolation ofatomic statements, we elect to use a Software Transactional Memory(STM) run-

time system [63] because it provides weak atomicity with simple programmer annotations, better compos-

ability than locks, and potentially better scalability than locks because of optimistic rather than pessimistic

synchronization. One key drawback of STMs is the overhead due to transactional read and write barriers

for every load or store to shared data (e.g., see [129]). These barriers are small sections of code, often

automatically inserted by a transaction-aware compiler, that invoke the STM runtime to implement some

transactional concurrency control protocol. The barrierscan either read and write shared memory directly

(so-calledin-place updateSTM) andundoall transactional operations when a transaction aborts; orthey

can buffer updates into a private data structure (so-calledwrite bufferingSTM) and apply all the buffered

changes into shared memory when a transaction successfullycommits. In both cases, barriers can incur

significant overhead, and minimizing them is essential for performance.

The DPJ effect system can help with this problem. Although the purpose of the system to this point has

been to enforce safety guarantees such as determinism and race freedom, we observe that we can leverage

the DPJ effect system to remove STM barriers that are not necessary, because the accesses guarded by the

barriers can never cause a transactional conflict. To do this, we need some slight extensions to the DPJ

effect system. As described to this point, the effect systemis designed to report interferenceat the points

where parallelism is created, e.g., at acobegin or cobegin nd. Effects are generated at the point of

use, then propagated back to the parallel task creation via the method effect summaries. However, to safely

98

remove TM synchronization, we must ensure that the code never causes interference in any use. This is a

slightly different property, as illustrated in Figure 5.4.That figure shows a simple program with a method

setX that atomically updates a variablex, a methodsetXY that atomically updates variablesx andy, and

a main method that callssetX andsetY in parallel. If the whole program is represented in the figure,

then the write toy in line 16 needs no synchronization, because it does not interfere with anything in the

cobegin nd at lines 5–8. However, there is no way to tell that from the body of methodsetXY, because it

is a property of theusesof the method. Further, nothing in the effect system described to this point encodes

this property.

1 class BarrierRemoval {
2 region X, Y;
3 int x in X, y in Y;
4 void work() {
5 cobegin_nd {
6 setX(1);
7 setXY(0);
8 }
9 }

10 void setX(int x) writes atomic X {
11 /* This write needs synchronization */
12 atomic this.x = X;
13 }
14 void setXY(int x, int y) writes atomic X, Y {
15 atomic {
16 /* This write needs synchronization */
17 this.x = x;
18 /* This write does not */
19 this.y = y;
20 }
21 }
22 }

Figure 5.4: Illustration of the problem of barrier removal.Whether the writes in lines 11, 17, and 19 need
synchronization depends on how they are used. Here, the usesin lines 6–7 dictate that lines 11 and 17 need
synchronization, but line 19 does not.

Atomic regions: Fortunately, we can encode this information with some simple extensions to the effect sys-

tem. We extend the effect system to distinguish between two kinds of regions: those that may interfere (and

so need barriers everywhere) and those that cannot (and so donot need synchronization barriers anywhere).

We call the first kind of region anatomic region, and the second kind anon-atomic region. Atomic regions

are not limited to access inside an atomic statement: both kinds of regions can be accessed either inside or

outside an atomic statement. However, only access to atomicregions is guarded by the transactional runtime

99

1 class AtomicRegions {
2 region atomic X, Y;
3 int x in X, y in Y;
4 void work() {
5 cobegin_nd {
6 setX(1);
7 setXY(0);
8 }
9 }

10 void setX(int x) writes atomic X {
11 atomic this.x = x;
12 }
13 void setXY(int x, int y) writes atomic X, atomic Y {
14 atomic {
15 this.x = x;
16 this.y = y;
17 }
18 }
19 }

Figure 5.5: Illustration of atomic regions.

inside an atomic statement.

We extend the syntax of region declarations so that the programmer can put the keywordatomic

before the region name, indicating that the declared regionis atomic. This syntax is illustrated in line 2 of

Figure 5.5 (for regionX) as well as line 2 of Figure 5.1 for regionMutable in the TSP example.

We also slightly change the rules for atomic effects from what is described in the previous section:

now, only operations on atomic regions generate atomic effects. Operations on non-atomic regions never

generate atomic effects, even inside a transaction. For example, in Figure 5.5, only regionX is declared

atomic (line 2), so the write to regionY in line 16 generates a non-atomic effect, even though it occurs

inside an atomic statement. Notice that the effect summary in line 13 now reports the write effect onY as

non-atomic, as it must according to the rules stated in the previous section. Similarly, in the TSP example,

the read of regionReadOnly in Figure 5.3 generates a non-atomic effect, even though it is inside the

atomic block at line 4. The write to regionMutable generates an atomic effect.

These rules allow the compiler to perform the following optimizations for transactional operations on

non-atomic regions:

1. A read operation on a non-atomic region never interferes with anything, and has no effect on the

heap. Therefore, it needs no special TM code generation at all; it can be implemented as an ordinary

100

read operation. This optimization completely eliminates all STM overhead for transactional reads on

non-atomic regions.

2. A write operation on a non-atomic region also never interferes with anything, so it cannot cause a

transaction abort and does not need any synchronization. For example, in a TM that uses write-

versioning, the version for that variable need not be updated. And in a TM that acquires locks before

writing, no lock need be acquired. However, because the enclosing transaction could be aborted, in a

TM implementation that uses in-place writes and undo logging, the old value must still be logged, so

that it can be restored on abort. In a TM that uses write buffering, the new value must still be written

to the write buffer.

For example, in Figure 5.5, the compiler can avoid updating aversion or taking a lock for the write in line 16.

In the TSP example, no TM overhead at all is generated by any read to regionReadOnly (for example the

read access to the TSP graph in line 3 of Figure 5.3). While this optimization does not remove all TM

overhead for writes, it still produces substantial savingsbecause (1) transactional reads often outnumber

transactional writes; (2) locking and versioning represent a substantial part of the TM overhead on writes;

and (3) even in cases where there are no actual conflicts, unnecessary TM locking or versioning can lead to

false conflicts due to hash collisions, causing more aborts and impeding scalability. We will say more about

the performance impact of the optimizations in Section 5.5.

Atomic region parameters: Because region parameters function as RPLs, we also let thembe declared

atomic or non-atomic. Then the same code generation rules apply as discussed above: reads and writes

on non-atomic region parameters generate non-atomic effects, and transactional barriers are removed or

simplified for accesses to non-atomic region parameters.

However, to ensure soundness, we must be careful about the interaction between region names and

region parameters. To see the problem, consider the code in Figure 5.6. Regionr is declared atomic

(line 2), so the effects onr in lines 7–8 are also atomic, and are allowed to interfere. However, inside the

body ofsetX (lines 11–13), parameterR is not declared atomic, so the write in line 12 does not get any

synchronization barrier, even whensetX is used in a transaction, as in lines 7–8. (As explained more fully

in the next section, when a method is used in a transaction, itis cloned, and barriers are inserted for all its

accesses to atomic regions.) Therefore, this code cannot becorrectly compiled according to the rules stated

above.

101

1 class AtomicRegionParams<region R> {
2 atomic region r;
3 int x in R;
4 void work(AtomicREgionParams<r> arp) {
5 cobegin_nd {
6 /* writes atomic r */
7 atomic arp.setX(0);
8 /* writes atomic r */
9 atomic arp.setY(1);

10 }
11 }
12 void setX(int x) writes R {
13 /* writes R */
14 this.x = x;
15 }
16 }

Figure 5.6: Inconsistent bindings of region names to regionparameters. As explained in the text, this code
is disallowed.

The solution we adopt is to disallow this code. Specifically,we require that bindings of regions to

parameters be consistent: only atomic regions may be bound to atomic region parameters, and similarly for

non-atomic regions and parameters. This rule ensures that the actual runtime region bound to a parameter

is atomic if and only if the parameter is declared atomic. Therefore, the compiler can soundly use the

parameter declaration to do code generation.

This solution does impose one important limitation. If a programmer wishes to use a class region

parameter as an atomic region in some context and a non-atomic region in some other context, then the

class must becloned: the programmer must create two copies of the class, one withthe atomic parameter

and one with the non-atomic parameter. A similar limitationapplies to method region parameters. An

alternative approach is to have the compiler automaticallyclone the classes and methods, similarly to what

C++ already does for templates. This would complicate the implementation, and we have not done it for the

prototype implementation discussed in the next section, but it does not raise any significant technical issues.

An alternative would be to introduce polymorphism over whether a class region parameter is atomic.

5.4 Prototype Implementation

To implement the nondeterminism support, we extended the DPJ compiler described in Section 3.5. We

implemented atomic blocks using the Deuce STM library [4]. We used the well-respected Transactional

102

Locking II (TL2) algorithm [44]. TL2 is a write-buffering (i.e., lazy versioning) algorithm with optimistic

reads. Deuce supports concurrency control at the object field level, and it uses a lightweight custom reflec-

tion mechanism to access object fields inside transactions.

We selected this STM system for pragmatic reasons of ease of implementation, and because it im-

plements a well-known high-performance STM algorithm. We have not attempted to maximize absolute

performance in our implementation; it could probably be improved by using a different STM system, such

as one integrated with the JVM. Our method is applicable to other types of STM systems and algorithms

(including those utilizing in-place updates).

For each atomic block, the compiler generates code to execute the body of the atomic block as a transac-

tion, retrying until the transaction commits successfully. Nested atomic blocks are flattened. Methods that

are transitively callable within atomic blocks are cloned;versions containing barriers are used when they

are called within atomic blocks. Within atomic blocks, the compiler inserts normal read and write barriers

for accesses to fields in atomic regions. As discussed in section 5.3, the compiler omits barriers for read

accesses to non-atomic regions, and it generates logging-only barriers for write accesses.

We modified the TL2 implementation in Deuce to support these optimized logging-only barriers. How-

ever, because TL2 is a write-buffering algorithm, we would have to use read-barriers to obtain correct values

in the read-after-write cases. To avoid read barriers entirely, we modified the algorithm to perform in-place

updates for these locations, and we maintain a separate undolog to revert the effects of such updates in case

the transaction aborts. Reads to such locations do not need barriers because they can now obtain their values

directly from the original memory location.

5.5 Evaluation

The ideas presented in this thesis raise four key questions for experimental investigation: (1) Can the lan-

guage express nondeterministic algorithms in a natural way? (2) Can the algorithms expressed in the lan-

guage give good performance? (3) How effective is the optimization of STM barriers? (4) What is the

annotation overhead of the language?

We used four nondeterministic algorithms to evaluate thesequestions: two different versions of TSP,

Delaunay mesh triangulation from theLonestar Benchmarks[2], andOO7, a synthetic database benchmark

that has been used in previous studies of parallel performance [127, 108]. These codes are discussed further

103

below.

5.5.1 Expressing Parallelism

Traveling Salesman Problem: We studied two versions of the TSP algorithm, which we callTSP-PQ

andTSP-R. TSP-PQ is the algorithm described in Section 5.1. As discussed there, the algorithm proceeds

in two phases: the first phase breaks the problem up into subproblems and adds them to a priority queue,

and the second phase concurrently removes items from the queue and processes each one using sequential

recursive search. The priority queue orders the work, so that more promising subtrees are explored first.

TSP-R is a variant that eliminates the priority queue and uses recursion to express the entire algorithm.

At each level of the tree, the algorithm computes a bound for each subtree and compares the bound against

the global current best tour. Bounds that are definitely no better than the current best are excluded, while

bounds that may be better are explored recursively. The recursion occurs in parallel until a specified depth

of the tree; in our studies we used a depth varying with the logof the number of threads. TSP-R is a simpler

algorithm than TSP-PQ, but it potentially suffers from morecontention, as the global best tour must be read

before every recursive descent into a subtree to avoid exploring too many bad paths. By contrast, because

TSP-PQ uses a priority queue to order the paths, it can read the global best tour less often (once per tree

level).

We adapted both versions of TSP from code that was used in previous studies of STM performance [108,

107]. Our TSP-PQ code uses the identical algorithm to the original code, and expresses the parallelism in

the same way. The original code had a data race, and we added one extra atomic block to eliminate that

race. Our TSP-R code is a transformation of TSP-PQ that eliminates the priority queue, checks the bound

at each level of the tree, and parallelizes the recursion.

Delaunay Mesh Refinement:This code uses Chew’s algorithm [36, 74] to find and eliminate“bad tri-

angles,” i.e., those that do not satisfy some quality constraint from a Delaunay triangulation of a mesh of

points. The program is nondeterministic since different orders of processing of bad elements lead to differ-

ent meshes, although all such meshes satisfy the quality constraints [36]. The program uses aforeach nd

loop, and each iteration of the loop spawns a new worker thread (at most one per core). Each worker thread

has a private worklist of bad triangles. In each iteration ofthe worklist loop, the worker selects one bad tri-

angle from the work list, forms acavityaround it, re-triangulates the cavity, and adds any new bad triangles

104

back to the worklist. Cavity finding and re-triangulating code sections access the shared mesh data structure

and are enclosed in atomic blocks.

OO7: OO7 simulates a number of clients, each performing a fixed number of queries on an in-memory

database. Each query is enclosed in an atomic block. The performance metric is the throughput (queries

per unit time), and we measure how this scales by varying the number of clients while keeping the number

of queries performed by each one constant. The program uses aforeach nd loop, with one iteration

corresponding to each client. We configured it to use a numberof clients equal to the number of worker

threads, so there is always one thread per client. Thus, the total amount of work performed is proportional

to the number of threads.

Summary: We successfully expressed all the parallelism that did not use data races in these four nonde-

terministic algorithms. As discussed above, we eliminateda race in TSP-PQ that was presumably there to

avoid synchronization; we could have also written TSP-R with a similar race. The four codes do not use

any deterministic algorithms but such algorithms do not incur any runtime performance overheads in our

language; such overheads are dominated by that of atomic sections in nondeterministic components. We

studied the performance and expressivity of the language for deterministic algorithms in Chapter 3.

5.5.2 Performance

To evaluate performance, we measured the self-relative speedup (i.e., the speedup compared to running the

transactional code on one thread) achieved by the three codes. We focused on self-relative speedup rather

than absolute speedup because (a) optimizing the code generation for atomic statements has not been a

focus of this thesis, and (b) the Deuce STM, although using a goodalgorithm, lacks many many essential

performance features of a high performance Java STM [107]. Self-relative speedups have the effect of

“factoring out” some of the performance impact of the STM implementation while capturing the scalability

of the benchmarks.

We ran and measured the codes on a 24-core system using four Intel Xeon E7450 processors (each

with six cores), running Windows Server 2008. Figure 5.7 shows the self-relative speedups with barrier

optimizations enabled, using running times for Delaunay and TSP, and throughput scaling for OO7. Because

the runtimes are nondeterministic, we averaged 5–10 runs for each data point, using an interquartile method

to exclude a few extreme outliers. For both TSP variants, we used the one-thread version of TSP-PQ,

105

which was the faster of the two, as the baseline. Both versions of TSP show good scaling, and OO7 shows

moderately good scaling, throughout the range of numbers ofthreadst we examined. TSP-R shows better

(superlinear) speedup for smallert; this is because the parallel algorithm is very efficient in that range: it

rules out subtrees quickly, and so visits only about1/4 of the tree nodes att = 2 compared tot = 1.

However, the scaling curve for TSP-R flattens out ast increases, most likely due to higher contention than

TSP-PQ.

The speedup curve for Delaunay is poor: it flattens out and reaches only 3x on 22 threads. We profiled

the code to understand the source of this behavior and tracedit to the methodSystem.identityHashcode()

in the JVM. This standard Java function is extensively used in Deuce to index into lock tables. We observed

that the time spent in this function grows with the number of threads. In Delaunay, which has large trans-

actions, this overhead negatively affected the speedup curve. This problem can by solved by modifying the

JVM, but we leave that (and other optimizations foratomic) to future work.

0

5

10

15

20

0 4 8 12 16 20 24

S
p
e
e
d
u
p

Number of worker threads

TSP-R
TSP-PQ
OO7
Delaunay

Figure 5.7: Self-relative speedups. For OO7, we scaled the amount of work with the number of worker
threads, and measured speedup based on throughput scaling (number of queries done per unit time). The
barrier optimization was enabled for all of these benchmarks.

5.5.3 Impact of Barrier Elimination

We compared the performance of two versions of the parallel code for each benchmark: with and without the

barrier simplification optimization for non-atomic regions. Figure 5.8 shows the improvement in running

time for the optimized code compared to the unoptimized code. Figure 5.9 shows the reduction in the

number of dynamically-executed barriers due to our optimizations.

106

0

0.2

0.4

0.6

0.8

1

1.2

TSP-PQ TSP-R Delaunay OO7

O
p
t/
u
n
o
p
t
ti
m
e

1

2

3

4

7

12

17

22

Figure 5.8: Ratio of optimized runtimes (with barrier elimination) to unoptimized runtimes (without barrier
elimination). A value lower than 1 means the optimization increased performance.

0%

25%

50%

75%

100%

1 7 12 22 1 7 12 22 1 7 12 22 1 7 12 22

P
e
r
c
e
n
t
o
f
to
ta
l
b
a
r
r
ie
r
s

Remaining

Simplified

Eliminated

TSP-PQ TSP-R Delaunay OO7

Figure 5.9: Reduction in barriers due to optimizations, showing the proportion of barriers from the unopti-
mized version that are eliminated entirely, simplified to log-only write barriers, or that remain as full barriers
in the optimized version, for each of the three benchmarks with 1, 7, 12, and 22 worker threads.

The optimization has a substantial impact on performance for three of the four benchmarks (TSP-PQ,

Delaunay, and OO7). The performance improvements correlate well with the barrier reductions. The op-

timizations give essentially no improvement for TSP-R, because the transactions are very short (reads and

read-modify-write operations on the best tour). As a result(1) there are few if any barriers to remove; and

(2) transactional overhead is not a significant component ofthe overall runtime. On the other hand, TSP-PQ,

OO7, and Delaunay use longer transactions, providing more opportunities for reducing overhead.

Our optimizations can eliminate barriers both by actually removing barrier operations on certain state-

ments and also by reducing the number of times that transactions must be retried. The latter effect occurs

because removing unnecessary barriers reduces the number of false conflicts incurred by the STM system.

As shown in Table 5.1, this effect is more pronounced with larger numbers of worker threads, so our op-

timizations not only reduce scalar overheads but also improve scalability. For example, in Delaunay, the

107

Delaunay OO7
threads opt unopt opt unopt

2 0.999 0.944 0.944 0.932
3 0.975 0.848 0.877 0.872
4 0.998 0.810 0.822 0.560
7 0.993 0.647 0.700 0.210
12 0.996 0.405 0.539 0.100
17 0.995 0.291 0.442 0.071
22 0.994 0.244 0.369 0.071

b

Table 5.1: Ratio of committed transactions to started transactions for Delaunay and OO7. Lower numbers
indicate more aborted transactions. For both versions of TSP, all numbers are 1.000.

Total Annotated Region Effect
Program SLOC SLOC Decls RPLs Params Summ.
TSP-PQ 433 77 (17.8%) 2(1) 101(4) 6(2) 14/20
TSP-R 200 34 (17%) 2(1) 42(4) 2(0) 6/12
OO7 1570 105 (6.7%) 4(1) 76(7) 6(0) 52/104
Delaunay 1994 302 (15.1%) 3(1) 374(3) 21(7) 165/216

Total 4197 518 (12.3%) 11(4) 593(18) 35(9) 237/352

Table 5.2: Annotation counts for the four benchmarks. In themiddle columns, the numbers in parentheses
represent the number of annotations markedatomic. In the last column,x/y means ofy total method
definitions in the program,x were annotated with effect summaries.

optimization changed this ratio from 0.944 to 0.999 on 2 threads but from 0.244 to 0.944 on 22 threads.

5.5.4 Annotation Overhead

Table 5.2 provides a quantitative measure of the annotationoverhead of writing the four benchmarks in

our language. Column 1 after the vertical bar shows the totalnumber of non-blank, non-comment lines of

source code, counted bysloccount. Column 2 gives the count of annotated lines, as an absolute number

and as a percentage of the total lines. The following three columns show the number of region declarations,

RPLs (including arguments toin, arguments to types and methods, and arguments to effect summaries),

and region parameters. The number of annotations markedatomic is shown in parentheses after the main

number. The last column shows the number of effect summariesbefore the slash, and the number of method

definitions after the slash.

While the average number of annotated lines (12.3%) is nontrivial, we believe it is not unduly high, given

the strong safety properties of the programming model. As inour prior work [23], most of the RPL annota-

tions were arguments to types. The overhead could be reducedby inferring some of the annotations [122],

108

but we leave that for future work.

Our approach does impose the limitation that if a programmerwishes to use a class region parameter

as an atomic region in some context and a non-atomic region insome other context, then the class must be

cloned: the programmer must create two copies of the class, one withthe atomic parameter and one with

the non-atomic parameter. The cloning is required because different barriers must be generated for methods

of the class that operate transactionally on the parameter,depending on whether the region bound to the

parameter is atomic. The cloning could be done automatically by the compiler, similarly to what C++ does

for templates. While we have not implemented this approach,we believe it does not raise any significant

technical issues.

In the benchmarks we studied, only Delaunay required class cloning. In Delaunay, we needed both

atomic and non-atomic versions of the list and map structures used in the benchmark.

5.6 Related Work

We group the related work into five categories: type and effect systems; language support for STM correct-

ness; compiler and runtime support for STM correctness; compiler and runtime support for optimizing STM

overheads; and general work on nondeterministic parallel programming models.

Type and Effect Systems: Several researchers have described effect systems for enforcing a locking

discipline in nondeterministic programs that prevents data races and deadlocks [24, 6, 68] or guarantees

isolation for critical sections [52]. Matsakis et al. [85] have recently proposed a type system that guarantees

race-freedom for locks and other synchronization constructs using a construct called an “interval” for ex-

pressing parallelism. While there is some overlap with our work in the guarantees provided (race freedom,

deadlock freedom, and isolation), the mechanisms are very different (explicit synchronization vs. atomic

statements supported by STM). Further, these systems do notprovide determinism by default. Finally, there

is no other effect system we know of that provides both race freedomandstrong isolation together.

STM Correctness (Language): STM Haskell [64] provides an isolation guarantee, but for a pure

functional language that uses monads to limit effects to thetransactional store, unlike our imperative shared-

memory language. Moore and Grossman [91] and Abadi et al. [5]use types and effects to guarantee strong

isolation for an imperative language, but their languages permit races where neither access occurs in a

transaction. Finally, none of these languages allows both transactional and non-transactional effects to the

109

same memory, as our language does.

Beckman et al. [15] show how to use a form of alias control called access permissions[26] to verify

that the placement of atomic blocks in a threaded program respects the invariants of a specification written

by the programmer — for example, that a condition is checked and acted upon atomically. This approach

is complementary to ours: we provide guarantees of race freedom, strong isolation, and determinism by

default for all programs in our language; on top of that one could check that additional programmer-specified

invariants are satisfied.

STM Correctness (Compiler and Runtime): Several STMs guarantee strong isolation by preventing

interference between transactions and non-transactionalaccesses at runtime. Most of these systems use

a combination of sophisticated static whole-program analysis, runtime optimizations, and other runtime

techniques like page protection to optimize strong isolation [108, 107, 28, 7]. While these techniques

can significantly reduce the cost of strong isolation, they cannot completely eliminate it. In contrast, our

language-based approach provides strong isolation without imposing extra runtime overhead.

Reducing STM Overheads: Much research has been devoted to reducing the cost of compiler-

generated STM barriers on transactional memory accesses. Early work [8, 65] showed how to eliminate

several classes of transactional overhead including redundant barriers, barriers for accesses to provably im-

mutable memory locations, and certain barriers for accesses to objects allocated in a transaction. Recent

work by Afek et al. [9] uses the logic of program reads and writes within a transaction to reduce STM

overhead: for example, a shared variable that is read several times can be be read once and cached locally.

These optimizations complement ours, as they target different kinds of STM overhead from our work.

Beckman et al. [16] show how to use access permissions to remove STM synchronization overhead.

While the goals are the same as ours, the mechanisms are different (alias control vs. type and effect anno-

tations). The two mechanisms have different tradeoffs in expressivity and power: for example, Beckman et

al.’s method can eliminate write barriers only if an object is accessed through a unique reference, whereas

our system can eliminate barriers for access through sharedreferences, so long as the access does not cause

interfering effects. However, alias restrictions can express some patterns (such as permuting unique refer-

ences in a data structure) that our system cannot. As future work, it would be interesting to explore these

tradeoffs further.

Finally, several researchers have eliminated STM overheadfor accesses to thread-local data using whole-

110

program static escape analysis [108] and programmer annotations to specify code blocks that do not require

instrumentation [129]. Unlike our work, this work either requires whole-program analysis, or it relies on

unverified programmer annotations.

Nondeterministic Parallel Programming: Several research efforts are developing parallel models for

nondeterministic codes with irregular data access patterns, such as Delaunay mesh refinement. Galois [74]

provides a form of isolation, but with iterations of parallel loops (instead of atomic statements) as the

isolated computations. Concurrency is increased by detecting conflicts at the level of method calls, instead

of reads and writes, and using semantic commutativity properties. Lublinerman et al. [81] have proposed

object assembliesas an alternative model for expressing irregular, graph-based computations.

These models are largely orthogonal to our work. In Galois, strong isolation holds if all shared data is

accessed through well-defined APIs, but this property is notenforced, either statically or at runtime. We

believe that our type and effect mechanisms could be appliedto Galois to ensure this property. The object

assemblies model may have stronger isolation guarantees than Galois, but it is very specialized to irregular

graph computations, in contrast to the more general fork-join model we present here.

Kulkarni et al. [73] have recently proposedtask typesas a way of enforcing a property they callpervasive

atomicity. This work shares with ours the broad goal of reducing the number of concurrent interleavings the

programmer must consider. However, Kulkarni et al. adopt anactor-inspired approach, in which data is non-

shared by default, and sharing musk occur through special “task objects.” This is in contrast to our approach

of allowing familiar shared-memory patterns of programming, but using effect annotations to enforce safety

properties. Finally, none of the work discussed above provides any deterministic-by-default guarantee.

111

Chapter 6

Formal Language for Determinism by Default

To make precise the ideas discussed in the previous chapter,this chapter presents three variants of the same

formal language, each one building on the last:

1. The first variant, which we call thesimplified deterministic language, is the same as Core DPJ dis-

cussed in Chapter 4, with two exceptions. First, we have simplified the effect system to focus on the

important elements for this Chapter. In particular, we simplify the RPLs, and we omit arrays, vari-

able regions, and commutativity annotations. Second, the simplified deterministic language explicitly

models parallel execution.

2. The second variant, which we call thedeterministic-by-default language, adds nondeterministic par-

allel composition, atomic expressions, and atomic effectsto the simplified deterministic language.

These features formalize the new language features introduced in the previous chapter.

3. The third variant, which we call theatomic regions language, adds atomic regions for removing or

simplifying transactional barriers.

Without loss of generality, we includecobegin andcobegin nd only in these simple languages; the

treatment forforeach andforeach nd is similar.

6.1 Overview of Language Variants

We first explain the syntactic structure of all three languages, and we summarize the soundness guarantees

that each one provides. In the following subsections, we explain the formal semantics of each language vari-

ant, state the soundness guarantees more formally, and prove that the guarantees follow from the semantic

definitions.

112

Programs P ::= R∗ C∗ e
Classes C ::= class C<ρ> { F ∗ M∗ }

Region Names R ::= region r
Fields F ::= T f in R

Methods M ::= T m(T x) E { e }
Regions R ::= r | ρ

Types T ::= C<R>
Effects E ::= ∅ | reads R | writes R | E ∪ E

Expressions e ::= this.f | this.f=e | e.m(e) | v | new T | seq(e,e) | cobegin(e,e)
Variables v ::= this | x

Figure 6.1: Syntax of the simplified deterministic language. C, ρ, f , m, andx are identifiers.

Simplified deterministic language: Figure 6.1 gives the syntax of the simplified deterministic language.

A programP consists of zero or more region declarations, zero or more class definitions, and an expression

to evaluate. A classC consists of a class nameC, a region parameterρ, zero or more field declarations,

and zero or more method declarations. A fieldF specifies a type, a field name, and a region. A method

M consists of a return type, a method name, a formal parameter type, a formal parameter, an effect, and an

expression to evaluate. A regionR is either a region namer or a region parameterρ. A type T is a class

instantiated with a region parameter,C<R>. An effectE is a possibly empty union of read effects and write

effects on regions.

For expressionse, we model field access, field assignment, method invocation,variables, new objects,

sequential composition (seq), and deterministic parallel composition (cobegin). A variablev isthis or

a method formal parameterx. The operational semantics of the first five expressions in Figure 4.1 is exactly

as in Java. The last two expressions evaluate both componentexpressions (either sequentially or in parallel)

and return the value of the second component as the value of the entire expression.

The simplified deterministic language provides the following semantic guarantees, stated more formally

as Theorems 6.2.9 and 6.2.10 in Section 6.2. They follow fromthe fact that the executions of the two

branches of anycobegin expression are required to be noninterfering:

1. Equivalence ofcobegin andseq: In terms of the final result (final value produced and final heap

state), there is no difference between executingcobegin(e,e′) andseq(e,e′). As a consequence,

the entire program is guaranteed to behave like a sequentialprogram (the one that results by replacing

cobegin everywhere withseq).

2. Determinism:If an expressione evaluates to completion, then the value it produces is deterministic.

113

Effects E ::= . . . | atomic reads R | atomic writes R
Expressions e ::= . . . | cobegin nd(e,e) | atomic e

Figure 6.2: Syntax of the deterministic-by-default language (extends Figure 6.1).

Moreover, the final state of the heap locations accessed bye is deterministic, and ife is evaluated in

a sequential context (i.e., not inside acobegin), then the entire final heap state is deterministic.1 In

particular, the final heap produced by a terminating execution of the whole program is deterministic.

Deterministic-by-default language:Figure 6.2 shows the additional syntax for the deterministic-by-default

language. We extend the syntax of effects to recordatomic effects. We also add (1)cobegin nd, which

is the same ascobegin, except that it allows interference guarded by atomic expressions; and (2) ex-

pressionsatomic e, which signal that expressione should be executed inisolation, that is, as if it were

executed all at once, with no interleavings from the rest of the execution.

The deterministic-by-default language provides the following semantic guarantees, stated more formally

as Theorems 3–6 in Section 6.3:

1. Race freedom and sequential consistency:Program execution contains no data race. This result fol-

lows because the effect system requires that all parallel interference occur between pairs of accesses

guarded by atomic expressions. Further, in the Java memory model, race freedom implies sequen-

tial consistency, i.e., one can reason about execution as aprogram-orderedinterleaving of memory

operations.

2. Strong isolation:For the same reason that the program is race free, expressions atomic e execute

e in isolation,even if the underlying implementation guarantees only weakisolation. Moreover, the

effect system disallows any interference between thecobegin and concurrent operations that would

violate isolation of thecobegin. Therefore, everycobegin expression executes in isolation. To-

gether, race freedom and strong isolation imply that execution is a sequentially consistent interleaving

of isolated expressions.

3. Equivalence ofcobegin andseq: Becausecobegin(e,e′) executes in isolation, it is equivalent

1If e is evaluated in a parallel context, then the state of other locations not accessed bye depends on the scheduling of the
parallel computations that access those locations. For example, supposee changes the value of variablex from 0 to 1, e

′ changes
the value of variabley from 0 to 1, ande ande

′ are executed in parallel. Then at the end of executinge the value ofx will always
be0; but the value ofy at that point will depend on whethere

′ has executed yet.

114

Regions R ::= . . . | atomic region r
Classes C ::= . . . | class C<atomic ρ> { F ∗ M∗ }

Figure 6.3: Syntax of the atomic regions language (extends Figure 6.2).

to an isolated execution ofseq, i.e.,atomicseq(e,e′). For the deterministic-by-default language,

we makecobeginbehave likeatomicseq, and not justseq, to guarantee thatcobeginexecutes

deterministically,even inside acobegin nd.

4. Determinism by default:Both atomic and cobegin expressions execute deterministically in the same

sense as discussed for the simplified deterministic language,even inside acobegin nd, unlessthey

contain a dynamic instance ofcobegin nd.

Atomic regions language: The third variant of the formal language allows some regionsto be marked

atomic, andonly operations on those regions generate atomic effects. Operations on non-atomic regions

never generate atomic effects, even in an atomic expression. Figure 6.3 shows the new syntax.

The execution semantics of this language variant is identical to that of the deterministic-by-default

language, except that the compiler can distinguish, and potentially optimize, operations within an atomic

expression that never interfere with concurrent tasks. In Section 5.4, we discussed a prototype compiler that

uses these rules to optimize our STM by omitting or simplifying barriers (inside an atomic expression) for

such noninterfering operations.

6.2 Simplified Deterministic Language

This section gives the formal semantics and soundness results for the simplified deterministic language.

6.2.1 Static Semantics

The typing is with respect to an environmentΓ, which is a possibly empty union of elements(v, T) stating

that variablev has typeT :

Γ ::= ∅ | (v, T) | Γ ∪ Γ

Programs and Classes:The rules for valid programs and classes are nearly identical to those given in

115

Chapter 4, except that in this simplified language there are no commutativity annotations.

⊢ P

PROGRAM

∀C.(⊢ C) ∅ ⊢ e : T, E

⊢ C∗ e

⊢ C

CLASS

Γ = (this, C<ρ>) ∀F.(Γ ⊢ F) ∀M.(Γ ⊢M)

⊢ class C<ρ> { F ∗ M∗ }

Γ ⊢ F

FIELD

Γ ⊢ T Γ ⊢ R

Γ ⊢ T f in R

Γ ⊢M

METHOD

Γ ⊢ Tr Γ ⊢ Tx Γ ⊢ E Γ ∪ (x, Tx) ⊢ e : Tr, E
′ Γ ⊢ E′ ⊆ E

Γ ⊢ Tr m(Tx x) E { e }

Regions and Types:The rules for valid regions and types are simplified from Chapter 4. There are no rules

for subtyping in the static semantics, because in this simplified language, we require identity of types at

assignments.

Γ ⊢ R

REGION-NAME

region r ∈ P

Γ ⊢ r

REGION-PARAM

(this, C<ρ>) ∈ Γ

Γ ⊢ ρ

Γ ⊢ T

TYPE

class C<ρ> { F ∗ M∗ } ∈ P Γ ⊢ R

Γ ⊢ C<R>

Valid effects: The rules for valid effects, subeffects, and noninterfering effects are also a subset of the rules

from Chapter 4. Again, the subeffect relation is reflexive and transitive, and the noninterference relation is

symmetric (obvious rules omitted).

Γ ⊢ E

EFFECT-EMPTY

Γ ⊢ ∅

EFFECT-READS

Γ ⊢ R

Γ ⊢ reads R

EFFECT-WRITES

Γ ⊢ R

Γ ⊢ writes R

EFFECT-UNION

Γ ⊢ E Γ ⊢ E′

Γ ⊢ E ∪ E′

Γ ⊢ E ⊆ E′

SE-EMPTY

Γ ⊢ ∅ ⊆ E

SE-READS-WRITES

Γ ⊢ reads R ⊆ writes R

SE-UNION-1

Γ ⊢ E ⊆ E′

Γ ⊢ E ⊆ E′ ∪ E′′

SE-UNION-2

Γ ⊢ E′ ⊆ E Γ ⊢ E′′ ⊆ E

Γ ⊢ E′ ∪ E′′ ⊆ E

116

Γ ⊢ E # E′

NI-EMPTY

Γ ⊢ ∅# E

NI-READS

Γ ⊢ reads r #reads r′

NI-WRITES

r 6= r′

Γ ⊢ writes r #writes r′

NI-READS-WRITES

r 6= r′

Γ ⊢ reads r #writes r′

NI-UNION

Γ ⊢ E # E′′ Γ ⊢ E′ # E′′

Γ ⊢ E ∪ E′ # E′′

Expressions:As in Chapter 4, every expression has a type and an effect. ThejudgmentΓ ⊢ e : T,E means

that expressione is well typed with typeT and effectE in environmentΓ.

Basic operations from Chapter 4:Field access and assignment, method invocation, variable access, and new

objects all work the same way as described in Chapter 4. Thereare no arrays orlet expressions in this

language.

Γ ⊢ e : T,E

FIELD-ACCESS

(this, C<ρ>) ∈ Γ F (C, f) = T f in R

Γ ⊢ this.f : T,reads R

FIELD-ASSIGN

(this, C<ρ>) ∈ Γ Γ ⊢ e : T, E F (C, f) = T f in R

Γ ⊢ this.f=e : T, E ∪ writes R

INVOKE

Γ ⊢ e : C<R>, E Γ ⊢ e′ : σC<R>(Tx), E′ M(C, m) = Tr m(Tx x) Em { e′′ }

Γ ⊢ e.m(e′) : σC<R>(Tr), E ∪ E′ ∪ σC<R>(Em)

VARIABLE

(v, T) ∈ Γ

Γ ⊢ v : T, ∅

NEW

Γ ⊢ T

Γ ⊢ new T : T, ∅

In rule INVOKE, the substitutionσC<R> substitutesR for the region parameterρ of classC.

Sequential composition:To type a sequential composition expressionseq(e,e′), we type the component

expressionse ande′. The type of the expression is the typeT ′ of e′. The effect is the union of the effectsE

andE′ of e ande′.

Γ ⊢ e : T,E SEQ Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′

Γ ⊢ seq(e,e′) : T ′, E ∪ E′

117

Deterministic parallel composition:Typing deterministic parallel compositioncobegin(e,e′) is the

same as for sequential composition, except that we require the effects ofe ande′ to be noninterfering.

Γ ⊢ e : T,E COBEGIN Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ E # E′

Γ ⊢ cobegin(e,e′) : T ′, E ∪ E′

6.2.2 Dynamic Semantics

Execution Environment: We extend the static expression syntax (Section 6.1), to represent computations.

In addition to an expression from the static syntax, an expression can also be an object referenceo; or

a local execution state(e,Σ, E), whereΣ is a dynamic environment (defined below); orei, wherei is a

unique identifier:

e ::= . . . | o | (e,Σ, E) | ei

The additional expressions have the following meanings:

• Object referenceso are the values produced by reducing expressions.

• A local execution state(e,Σ, E) records an expressione to evaluate, an environmentΣ containing

the bindings for the free variables ine, and the effectE of reducinge.

• The identifiersi are “tags” that allow us to refer unambiguously to subexpressions that are undergoing

reduction.

Reducing local execution state “in place” allows us to retain the recursive structure of an execution history,

as opposed to, e.g., flattening everything into threads. This in turn makes it easier to state and prove the

desired properties of the execution.

As in Chapter 4, we define a dynamic environmentΣ that maps variablesv to referenceso:

Σ ::= ∅ | (v, o) | Σ ∪ Σ

An objectO is a mapping from field namesf to object referenceso:

O ::= ∅ | f 7→ o | O ∪O

118

A heapH is a partial function from object referenceso to pairs(O,T), whereO is an object, andT is the

type ofO:

H ::= null | o 7→ (O,T) | H ∪H

null is a special reference that is inDom(H) but does not map to an object. Attempting to invoke a method

of null causes the execution to fail.

Program Execution: We describe program execution as a small-step operational semantics. The execution

state is(e,H), consisting of an expression to evaluate and a heap. Programexecution is defined by the

transition relation

(e,H)→ (e′,H ′).

Informally, a single step transforms an expression into another expression and updates the heap. The rules

defining this relation are stated below. Formally, ifP = C∗ eP , then an execution of programP is given by

((eP , ∅, ∅)i, null)→∗ (ei,H),

for somei, ei, andH, wherei is an arbitrary index denoting the top-level expression in the reduction,ei is

the evolution of expression(eP , ∅, ∅)i, andH is the evolved heap (represented as a domain containingnull

plus all object referenceso added during the execution). A terminating execution hasei = (o, ∅, E)i, where

o is the “answer” computed by the program, andE is the union of all effects onH done in the execution.

Operational Semantics of Expressions:First, we need a standard rule for evaluating subexpressions:

DYN-SUBEXP

(e, H)→ (e′, H ′)

(e′′, H)→ (e′′[ei ← e′i], H
′)

Rule DYN-SUBEXP says that if we know how to evaluate expressione to e′ with respect to heapH, and

e appears as a subexpression ofe′′ with index i, then we can reducee′′ by rewriting the subexpressionei

in place and updating the heap. Because there are in general several subexpressionsei that are eligible for

rewriting in this way, we use the indicesi to identify which one is being reduced. The choice of which one

to reduce next is, in general, nondeterministic.

119

Next we give the rules for evaluating local state expressions (e,Σ, E). For expressions with nontriv-

ial subexpressions, we (1) convert the subexpressionse′ of e into the form(e′,Σ′, ∅)i, wherei is a fresh

identifier; (2) evaluate the subexpressions to(o,Σ′, E)i using rule DYN-SUBEXP; and (3) use the results to

finish evaluating the main expressione. Notice that in the subexpression evaluation,e′ evaluates too, Σ′ is

unchanged, and the effect changes from∅ to some effectE. An expression reduction always starts out as

(e,Σ, ∅), wheree is an expression in the program text; goes through various transformations; and ends up

as(o,Σ, E), whereo is an object reference, andE collects the effects of the reduction.

Field access:For field accessthis.f, we read the value of fieldf out of the heap and record the read

effect:
DYN-FIELD-ACCESS

(this, o) ∈ Σ H(o) = (O, C<r>) F (C, f) = T f in R

((this.f, Σ, ∅), H)→ ((O(f), Σ,reads σC<r>(R)), H)

In computing the effect, rule DYN-FIELD-ACCESSuses the substitutionσC<r> defined in Section 6.2.1.

Field assignment:For field assignmentthis.f=e, we evaluatee, then update the heap and record the

write effect:
DYN-FIELD-ASSIGN-EVAL

fresh(i)

((this.f=e, Σ, ∅), H)→ (this.f=(e, Σ, ∅)i, H)

DYN-FIELD-ASSIGN-UPDATE

(this, o) ∈ Σ H(o) = (O, C<r>) F (C, f) = T f in R

((this.f=(o′, Σ, E)i, H)→ (o′, Σ, E ∪ writes σC<r>(R), H [o 7→ (O[f 7→ o′], C<r>)])

fresh(i) means thati is a fresh identifier.f [a 7→ b] denotes the function identical tof everywhere on its

domain, except that it mapsa to b.

Method invocation:For method invocatione.m(e′), we evaluatee to o, evaluatee′ to o′, execute the

method body in the environment with the correct method parameter bindings, and accumulate the results.

The aggregate effect of the expression is the union of the effects of evaluating the two arguments and the

120

method body.

DYN-INVOKE-EVAL -THIS

fresh(i)

((e.m(e′), Σ, ∅), H)→ ((e, Σ, ∅)i.m(e′), H)

DYN-INVOKE-EVAL -ARG

fresh(j)

((o, Σ, E)i.m(e), H)→ ((o, Σ, E)i.m((e, Σ, ∅)j), H)

DYN-INVOKE-EVAL -METHOD-BODY

H(o) = (O, C<r>) M(C, m) = Tr m(Tx x) Em { e } fresh(k)

((o, Σ, E)i.m((o′, Σ, E′)j), H)→ (((e, (this, o) ∪ (x, o′), ∅)k, Σ, E ∪ E′), H)

DYN-INVOKE-ACCUMULATE

(((o, Σ, E)i, Σ
′, E′), H)→ ((o, Σ′, E ∪E′), H)

Notice that ife evaluates tonull, then DYN-INVOKE-EVAL -METHOD-BODY cannot be applied. This is

effectively a “null dereference.” We don’t model error state or exceptions explicitly; instead a null derefer-

ence just means that we have reached a “stuck state,” such that no successful program execution including

that state is possible. All of our soundness results (Section 6.2.3) are stated in terms of successful executions.

Variable access:For variablesv, we just read the value out of the environment:

DYN-VARIABLE

(v, o) ∈ Σ

((v, Σ, ∅), H)→ ((o, Σ, ∅), H)

New objects:For new we create a new object of the correct type, initialize its fields to null, and add a

reference to the object to the heap:

DYN-NEW

o 6∈ Dom(H) O = ∪
f∈fields(C)

(f 7→ null)

((new C<R>, Σ, ∅), H)→ ((o, Σ, ∅), H ∪ o 7→ (O, σΣ,H(C<R>)))

σΣ,H is the following function that takes regions to regions, types to types, and effects to effects:

1. If (this, o) does not appear inΣ for anyo, thenσΣ,H is the identity function.

2. Otherwise, if(this, o) ∈ Σ andH ⊢ o : C<r>, thenσΣ,H is σC<r>, as defined in Section 6.2.1.

121

Note thatσΣ,H is undefined if(this,null) ∈ Σ, but it is obvious that this cannot happen.

Sequential composition:For sequential compositionseq(e,e′), we first evaluatee to o, and then we

evaluatee′ to o′. We useo′ as the result of the whole expression (o is thrown away; the evaluation ofe is

only for its side effects). The aggregate effect of the expression is the union of the effects of executing each

branch.
DYN-SEQ-EVAL -FIRST

fresh(i)

((seq(e,e′), Σ), H)→ (seq((e, Σ, ∅)i,e′), H)

DYN-SEQ-EVAL -SECOND

fresh(j)

(seq((o, Σ, E)i,e), H)→ (seq((o, Σ, E)i,(e, Σ, ∅)j), H)

DYN-SEQ-ACCUMULATE

(seq((o, Σ, E)i,(o′, Σ, E′)j), H)→ ((o′, Σ, E ∪ E′), H)

Deterministic parallel composition:For deterministic parallel compositioncobegin(e,e′), we evaluate

e to o ande′ to o′ “in parallel,” i.e., we allow the evaluation steps of the twoexpressions to be arbitrarily

interleaved. For the accumulation step, again we useo′ as the result of the whole expression.

DYN-COBEGIN-EVAL

fresh(i) fresh(j)

((cobegin(e,e′), Σ, ∅), H)→ (cobegin((e, Σ, ∅)i,(e′, Σ, ∅)j), H)

DYN-COBEGIN-ACCUMULATE

(cobegin((o, Σ, E)i,(o′, Σ, E′)j), H)→ ((o′, Σ, E ∪ E′), H)

Notice that all rule applications are deterministic (i.e.,there is only one next rule to apply) except in the

case ofcobegin. Note also thatcobegin still provides deterministicresults, because the type system

guarantees noninterference of heap accesses between the two branches. However, the actual sequence of

steps in the execution is nondeterministic.

122

6.2.3 Soundness

Static Environments: A static environmentΓ is valid if its elements are valid with respect to itself:

ENV ∀(v, T) ∈ Γ.Γ ⊢ T

⊢ Γ

Our first theorem says that typing a valid expression in a valid environment produces a valid type and

effect:

Theorem 6.2.1(Validity of static expression typing). If ⊢ P and⊢ Γ andΓ ⊢ e : T,E, thenΓ ⊢ T and

Γ ⊢ E.

Proof. By induction on the structure ofe, showing the result for each expression typing rule in Section 6.2.1.

Base cases:FIELD-ACCESS: Follows from the typing of class fields in Section 6.2.1.

VARIABLE : Follows from⊢ Γ.

NEW: Follows from the condition of the rule.

Inductive cases:FIELD-ASSIGN: Follows from the induction hypothesis applied to the typing of e, plus the

same argument as for FIELD-ACCESS.

INVOKE: The induction hypothesis gives thatR, E, andE′ are valid. Rule METHOD gives thatTr and

Em are valid in the environment in whichthis is bound toC<ρ>. But thenσC<R>(Tr) andσC<R>(Em)

are valid inΓ, becauseΓ ⊢ R, andσC<R> substitutesR for ρ.

SEQ: Follows directly from the induction hypothesis.

COBEGIN: Follows directly from the induction hypothesis.

Reference types:The execution state includes thenull typeN , which is the type ofnull:

T ::= . . . | N

We also add rules for typing references:

H ⊢ o : T

TYPE-OBJECT-REF

o 7→ (O, T) ∈ H

H ⊢ o : T

TYPE-NULL

H ⊢ null : N

123

And because we have a null type, we need simple rules for subtyping:

Γ ⊢ T � T ′

SUBTYPE-REFLEXIVE

Γ ⊢ T � T

SUBTYPE-NULL

Γ ⊢ N � T

Heaps: A heap is valid if its elements are valid:

⊢ H

HEAP-NULL

H ⊢ null

HEAP-OBJECT-REF

H ⊢ (O, T)

H ⊢ o 7→ (O, T)

HEAP-UNION

⊢ H ⊢ H ′

⊢ H ∪H ′

An object-type pair(O,C<r>) is valid if (1) C<r> is a valid type in the empty environment; and (2) for

every fieldf of C, O(f) is defined, its type is valid and a subtype of the static type off , after substitutingr

for the parameter ofC:

H ⊢ (O,T)

OBJECT

∅ ⊢ C<r> ∀(T f in R ∈ fields(C)).(∅ ⊢ σC<r>(T) ∧H ⊢ O(f) : T ′ ∧H ⊢ T ′ � σC<r>(T))

H ⊢ (O, C<r>)

r is a region name. Notice that we check the dynamic type of an object or object field in the empty environ-

ment, because all region parameters have been substituted away.

Dynamic environments: A dynamic environmentΣ is valid if all its elements are valid with respect to a

heapH:

H ⊢ Γ

DYN-ENV-EMPTY

H ⊢ ∅

DYN-ENV-ELT

H ⊢ o : T

H ⊢ (v, o)

DYN-ENV-UNION

H ⊢ Γ H ⊢ Γ′

H ⊢ Γ ∪ Γ′

Instantiation of environments: The judgmentH ⊢ Σ � Γ says that the dynamic environmentΣ instanti-

atesthe static environmentΓ. That means the heap and both environments are valid; the variables appearing

in both environments match; and the corresponding types in the environments match, after translation to

the dynamic environment. Instantiation lets us use the static typing of expressions to infer that the dynamic

124

execution of those expressions is well-behaved.

The basic rule for instantiation just checks everything forvalidity and records the original dynamic

environment to the left of the⊢. This makes the original dynamic environment available as we dissect it to

compare it to the static environment element by element:

H ⊢ Σ � Γ

INSTANTIATE

⊢ Γ ⊢ H H ⊢ Σ Σ, H ⊢ Σ � Γ

H ⊢ Σ � Γ

Next we have the element-by-element rules:

Σ,H ⊢ Σ′ � Γ

INST-EMPTY

Σ, H ⊢ ∅ � ∅

INST-UNION

Σ, H ⊢ Σ′ � Γ′ Σ, H ⊢ Σ′′ � Γ′′

Σ, H ⊢ Σ′ ∪ Σ′′ � Γ′ ∪ Γ′′

INST-ELT

H ⊢ o : C′<r> ∅ ⊢ C′<r> � σΣ,H(C<R>)

Σ, H ⊢ (v, o) � (v, C<R>)

σΣ,H is the translation function defined in Section 6.2.2.

Execution state: The judgmentΓ ⊢ ((e,Σ, ∅),H) : T,E states that local execution state((e,Σ, ∅),H) is

valid with respect to static environmentΓ with typeT and effectE. That meansΣ instantiatesΓ, ande is

well typed inΓ with typeT and effectE.

Γ ⊢ ((e,Γ),H) : T,E

STATE

H ⊢ Σ � Γ Γ ⊢ e : T, E

Γ ⊢ ((e, Σ, ∅), H) : T, E

Preservation of Type and Effect: In this section we prove that for successful executions, thestatic types

and effects of expressions computed according to Section 6.2.1 approximate the dynamic types and effects

produced during actual execution according to Section 6.2.2. First we need some technical lemmas. Again,

σΣ,H is the translation function defined in Section 6.2.2.

AssumeΣ instantiatesΓ with respect to heapH. If regionR is valid inΓ, then regionσΣ,H(R) is valid

in the empty environment; and similarly for types and effects:

125

Lemma 6.2.2. If H ⊢ Σ � Γ andΓ ⊢ R, then∅ ⊢ σΣ,H(R). The same result holds replacingR with T or

E.

Proof. For regions, the result is obvious unlessR is a region parameterρ. But in that case, we must have

this bound toC<ρ> in Γ andthis bound too in Σ, whereH ⊢ o : C<r> for some valid region name

r. (The last fact holds because⊢ H impliesH ⊢ o : T and∅ ⊢ T , soT must be a class type with a region

name for its region argument;o cannot benull.) ThenσΣ,H substitutesr for ρ, so the result holds. For

types and effects, the result holds from the way that types and effects are constructed from regions.

Again assumeΣ instantiatesΓ in heapH. If effect E is included inE′ with respect toΓ, then effect

σΣ,H(E) is included inσΣ,H(E′) with respect to the empty environment:

Lemma 6.2.3. If H ⊢ Σ � Γ andΓ ⊢ E ⊆ E′, then∅ ⊢ σΣ,H(E) ⊆ σΣ,H(E′).

Proof. By the rules for unions of effects, it suffices to assume thatE andE′ are both individual read or

write effects. In that case, either reflexivity or rule SE-READS-WRITES must apply, with the same regionR

appearing in both effects. IfR is a region namer, then the result holds directly. IfR is a region parameterρ,

then the result holds becauseσΣ,H substitutes the same region namer for the parameter in both effects.

Next we have the preservation result. Informally, if a program is well-typed and a local state expression

(e,Σ, ∅) reduces to(o,Σ, E) starting with a good state, then the resulting heap is valid;the resulting type

is valid and is a subtype of the static type ofe; E is valid; andE is a subeffect of the static effect ofe. To

state the result precisely, we need a notation to describe the reduction of expressions(e,Σ, ∅) occurring as

a subexpression of the main program expression. We write

((e,Σ, ∅)i,H) P (ei,H
′)

to mean thatP is well typed with main expressioneP , expressione appears in the text ofP, and there exist

expressionsej ande′j such that

((eP , ∅, ∅)j , null)→∗ (ej ,H)→∗ (e′j ,H
′),

(e,Σ, ∅)i is a subexpression ofej , ej is the first expression in which expressioni appears, andei is a

126

subexpression ofe′j . (ej ,H) is called theinitial stateof the reduction, and(e′j ,H
′) is called thefinal state

of the reduction.

Note that in general, the reduction of(e,Σ,H)i can occur “under acobegin” (i.e., in reducing one

of the two branch subexpressions of acobegin expression); so in general, the reduction(ej ,H) →∗

(e′j ,H
′) can contain steps reducing expressions other than expression i. These steps are still “part of the

computation” of reducing expressioni, because in theory, their effect on the heap state could affect the

reduction of expressioni. However, the goal of this section is to prove that in fact there is no interference

between the reduction of these other expressions and the reduction of expressioni.

Theorem 6.2.4(Preservation). If ((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′), and all steps that do not reduce

expressioni take a valid heap to another valid heap, then (a)Γe ⊢ ((e,Σ, ∅),H) : Ts, Es, whereΓe is the

environment used to typee in typingP; and (b)⊢ H ′; and (c)H ′ ⊢ o : T ; and (d)∅ ⊢ T � σΣ,H(Ts); and

(e)∅ ⊢ E; and (f)∅ ⊢ E ⊆ σΣ,H(Es).

Proof. It suffices to prove that for every reduction((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′), if (a) holds, then the

theorem holds for that reduction and all subexpressions reduced during the course of that reduction. This is

because every reduction is a subexpression of the whole program reduction, and (a) is clearly satisfied for

the whole program. We prove this equivalent result by induction on the structure ofe.

Base cases:Field access:Except for steps that do not reduce expressioni, the reduction occurs in

one step via rule DYN-FIELD-ACCESS. (b) holds because reducing expressioni does not changeH, and by

assumption all other steps preserve⊢ H. (c) and (d) hold by⊢ H. (e) holds by rule FIELD and Lemma 6.2.2.

(f) holds by construction (comparing DYN-FIELD-ACCESSwith FIELD-ACCESS).

Variable access:Except for steps that do not reduce expressioni, the reduction occurs in one step

via rule DYN-VARIABLE . (b) holds for the same reason as stated for field access. (c) and (d) hold by

H ⊢ Σ � Γ. (e) and (f) trivially hold.

New objects:Except for steps that do not reduce expressioni, the reduction occurs in one step via rule

DYN-NEW. (c) holds becauseΓ ⊢ C<R>, so by Lemma 6.2.2,∅ ⊢ σΣ,H(C<R>). (b) holds because the

other steps preserve⊢ H by assumption and the fields of the newly created object are valid, becausenull

is a subtype of every type. (d) holds by construction. (e) and(f) trivially hold.

Inductive cases:Field assignment:The induction hypothesis applies to the reduction from the applica-

tion of DYN-FIELD-ASSIGN-EVAL to the application of DYN-FIELD-ASSIGN-UPDATE. (b) holds because

127

by the induction hypothesis, the dynamic type ofo′ is a subtype ofσΣ,H(Te), whereTe is the static type

of e; and by rule FIELD-ASSIGN, Te is equal to the static type of fieldf . (c) and (d) hold by the induction

hypothesis and by construction. (e) holds because the region of f is valid in Γ, and by Lemma 6.2.2. (f)

holds by construction.

Method invocation:The induction hypothesis applies to the evaluation of the argument tothis and

the argument to the formal parameterx. For the evaluation of the method body, we need to show that

H ⊢ Γ′ � Γ′, whereΓ′ = (this, o)∪ (x, o′) is the environment in which we execute the method body, and

Γ′ = (this, C<ρ>) ∪ (x, Tx) is the environment in which we typed the methodM(C,m). The types of

the bindings tothis match by construction. As to the bindings tox, from INVOKE we have that the static

type ofe′ matchesσC<R>(Tx), and by the induction hypothesis, we have that the dynamic type ofo′ is a

subtype ofσΣ,H(σC<R>(Tx)) = σC<σΣ,H(R)> = σΓ′,H(Tx).

Now we can apply the induction hypothesis to the execution ofthe method body. This gives (b), (c), and

(e) directly. As to (d), the induction hypothesis gives thato (in DYN-INVOKE-ACCUMULATE) is a subtype

of σΓ′,H(Tr) = σΣ,H(σC<R>(Tr). A similar argument using Lemma 6.2.3 establishes (f).

Sequential composition:Follows directly from the induction hypothesis.

Deterministic parallel composition:Follows directly from the induction hypothesis.

Noninterference: In this section we prove that the executions of the two branches of acobegin are

mutually noninterfering. First we have a technical lemma stating that static disjointness of effect implies

dynamic disjointness of effect, under translation byσΣ,H :

Lemma 6.2.5. If H ⊢ Σ � Γ andΓ ⊢ E # E′, then∅ ⊢ σΣ,H(E)# σΣ,H(E′).

Proof. Obvious for this language, because we form noninterferencejudgments only for effects that either

are (1) both read effects or (2) operate on distinct region names. Neither of these properties is affected by

σΣ,H .

Next we have the theorem:

Theorem 6.2.6(Noninterference of effect forcobegin branches). If

((cobegin(e,e′),Σ, ∅)i,H) P (cobegin((o,Σ, E)j,(o′,Σ, E′)k)i
,H ′),

128

then∅ ⊢ E # E′.

Proof. By the static typing rule forcobegin, the static effects ofe ande′ are noninterfering. By Theo-

rem 6.2.4, the dynamic effects of executinge ande′ are contained in the static effects after translation by

σΣ,H . By Lemma 6.2.5, that translation preserves disjointness of effect.

Determinism: In this section we prove that the execution ofcobegin is deterministic. First we need a

definition formalizing the idea that every object field on theheap resides in exactly one region:

Definition 6.2.7 (Region of a field). If H ⊢ o : C<r> andT f in R ∈ fields(C), thenregion(o.f,H) =

σC<r>(R).

It is obvious that if(e,H) →∗ (e′,H ′) and region(o.f,H) = r, thenregion(o.f,H ′) = r, because

Dom(H) only ever grows, not shrinks, and the dynamic type of a referenceo ∈ Dom(H) never changes.

Next we have a lemma stating that at runtime, disjoint regions imply disjoint locations:

Lemma 6.2.8. If region(o.f,H) 6= region(o′.f ′,H), then eithero 6= o′ or f 6= f ′.

Proof. Let R andr be as shown in Definition 6.2.7. Ifregion(o.f,H) 6= region(o′.f ′,H), then eitherR

or r must be different when the two regions are computed. IfR is different, we must either have a different

class in the type ofo′, implying o 6= o′; or we must have a different field of the same class, implyingf 6= f ′.

If r is different, we must have a different type foro′, implying o 6= o′.

Now we can prove thatcobegin is semantically identical toseq. That is, replacingcobegin with

seq produces identical results:

Theorem 6.2.9(Semantic equivalence ofcobegin andseq).

(cobegin(e, e′),Σ, ∅)j ,H) P ((o,Σ, E)j ,H
′)

with initial state(ei,H) if and only if

(seq(e, e′),Σ, ∅)j ,H) P ((o,Σ, E)j ,H
′)

with initial state(ei[(cobegin(e,e′),Σ, ∅)j ← (seq(e,e′),Σ, ∅)j],H).

129

Proof. The if direction is obvious, because the reduction ofseq is one legal reduction ofcobegin. For

the only if direction, first assume that the reduction of expressionj does not occur inside acobegin, so

all steps reduce expressionj. Then by the rules for reducingcobegin, the first reduction implies

(cobegin((e′,Γ)j,(e′′,Γ)k)i
,H ′) P (cobegin((o,E)j,(o′, E′)k)i

,H ′′).

By Theorem 6.2.6, the effectsE and E′ are noninterfering; and by the rules for noninterfering effects,

together with Lemma 6.2.8, all read-write and write-write pairs of accesses, one from each reduction, are

disjoint. Further, the rules for field access and assignmentfaithfully record the effects of every heap access,

so there can be no interfering accesses in the two branches. Since the only possible dependences between

the two reductions are through the heap, and we just showed there are no such dependences, every step

in the reduction of expressionj commutes with every step in the reduction of expressionk. By a simple

induction on the length of the execution sequence, we can therefore produce an equivalent result by reducing

expressionj first and then reducing expressionk, which is exactly the reduction rule forseq.

Now assume that expressionj occurs inside acobegin. By a simple induction, it suffices to consider

the case of onecobegin. In that case, by the same noninterference argument given above, none of the

steps reducingj interfere with the steps that don’t reducej. So again we can rearrange thej-reducing steps

so that they first reducee to o, and then reducee′ to o′.

Finally, we can state the determinism result:

Theorem 6.2.10(Input-Output Determinism). If

((e,Σ, ∅)j ,H) P ((o,Σ, E)j ,H
′)

and

((e,Σ, ∅)j ,H) P ((o′,Σ, E′)j ,H
′′)

with the same initial state, theno ∼= o′, where∼= denotes equivalence up to renaming object references, and

E = E′. Moreover, if(e,Σ, ∅)j is not a subexpression of anycobegin expression, thenH ∼= H ′.

Proof. First, consider the case where(e,Σ, ∅)j does not occur in anycobegin expression. By Theo-

rem 6.2.9, if we replace all instances ofcobegin in ei with seq, we get exactly the same executions. But

130

except for thecobegin reduction rules, the dynamic semantics rules are entirely deterministic (there is

only ever one thing to do next), except for the choice of object identifier in rule DYN-NEW and the choice

of fresh expression identifiers when introducing new expressions to be reduced. Clearly nothing in the

semantics depends on the choice of these identifiers.

Now suppose that(e,Σ, ∅)j occurs in exactly onecobegin expression. It is nondeterministic what

effects of the othercobegin branch are complete at the point where(e,Σ, ∅)j is reduced to(o,Σ, E)j .

However, by the same argument as in the proof of Theorem 6.2.9, none of those effects can interfere with the

computation ofo. A simple induction extends this argument to more than onecobegin expression.

6.3 Deterministic-by-Default Language

This section describes the semantics and soundness resultsfor the deterministic-by-default language.

6.3.1 Static Semantics

For the extended language, we need to extend the definition ofeffects and the typing of expressions.

Valid effects: We add a rule for valid atomic effects.

Γ ⊢ E

EFFECT-ATOMIC

Γ ⊢ E

Γ ⊢ atomic E

Subeffects:We add rules stating when atomic effects are subeffects of other effects.

Γ ⊢ E ⊆ E′

SE-ATOMIC-1

Γ ⊢ E ⊆ E′

Γ ⊢ atomic E ⊆ E′

SE-ATOMIC-2

Γ ⊢ E ⊆ E′

Γ ⊢ atomic E ⊆ atomic E′

Rule SE-ATOMIC-1 formally expresses the idea that non-atomic effects cover atomic effects, i.e., ifE

occurred in an atomic expression, then we can summarize the effect as eitheratomic E or E. Note that

the converse is not true, i.e., we cannot summarizeE with atomic E. Rule SE-ATOMIC-2 says that two

atomic effects are subeffects if the underlying effects are.

Noninterfering effects: We add a rule stating that an atomic effect is interfering with another effect if the

131

underlying effect is.

Γ ⊢ E # E′

NI-ATOMIC

Γ ⊢ E # E′

Γ ⊢ atomic E # E′

Safe nondeterministic execution:The judgmentΓ ⊢ nondet(E,E′) states that it is safe to run expressions

with effectsE andE′ nondeterministically in parallel.

Γ ⊢ nondet(E,E′)

NONDET-SYMMETRIC

Γ ⊢ nondet(E, E′)

Γ ⊢ nondet(E′, E)

NONDET-NI

Γ ⊢ E # E′

Γ ⊢ nondet(E, E′)

NONDET-ATOMIC

Γ ⊢ nondet(atomic E,atomic E′)

NONDET-UNION

Γ ⊢ nondet(E, E′′) Γ ⊢ nondet(E′, E′′)

Γ ⊢ nondet(E ∪ E′, E′′)

The rules formally express the idea that it is safe to let two effects run insidecobegin nd if (1) they

are mutually noninterfering (NONDET-NI); or (2) they both occur inside atomic expressions (NONDET-

ATOMIC); or (3) they can be decomposed into unions of effects that are safe to run nondeterministically in

parallel (NONDET-UNION).

Expressions:We add new rules for typingcobegin nd andatomic expressions. We also revise the rule

for typingcobegin expressions.

Nondeterministic parallel composition:Rule COBEGIN ND is similar to COBEGIN, except that noninter-

ference is not required as to the effects of the two branches.Instead, it is sufficient that the effects are safe

to run nondeterministically in parallel.

Γ ⊢ e : T,E

COBEGIN ND

Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ nondet(E, E′)

Γ ⊢ cobegin nd(e,e′) : T ′, E ∪E′

Atomic expressions:Rule ATOMIC collects the effectE of the expressione, then marks all the constituent

132

read and write effects atomic, to reflect the fact thatE occurred inside an atomic expression.

Γ ⊢ e : T,E

ATOMIC

Γ ⊢ e : T, E ⊢ atomic(E) = E′

Γ ⊢ atomic e : T, E′

The judgmentΓ ⊢ atomic(E) = E′ says that effectE′ is the result of takingE and marking all its

constituent effectsatomic.

Γ ⊢ atomic(E) = E′

ATOMIC-EMPTY

Γ ⊢ atomic(∅) = ∅

ATOMIC-READS

Γ ⊢ atomic(reads R) = atomic reads R

ATOMIC-WRITES

Γ ⊢ atomic(writes R) = atomic writes R

ATOMIC-ATOMIC

Γ ⊢ atomic(atomic E) = atomic E

ATOMIC-UNION

Γ ⊢ atomic(E) = E′ Γ ⊢ atomic(E′′) = E′′′

Γ ⊢ atomic(E ∪E′′) = E′ ∪ E′′′

Deterministic parallel composition:Finally, rule COBEGIN has changed. In addition to checking noninter-

ference, as in the basic language, the new rule converts all atomic effects occurring inside thecobegin to

ordinary effects. This ensures thatno atomic effects are ever propagated outward from inside acobegin.

COBEGIN

Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ E # E′ ⊢ nonatomic(E ∪ E′) = E′′

Γ ⊢ cobegin(e,e′) : T ′, E′′

The judgmentΓ ⊢ nonatomic(E) = E′ says thatE′ is the result of converting allatomic effects to

ordinary effects inE.

Γ ⊢ nonatomic(E) = E′

NONATOMIC-EMPTY

Γ ⊢ nonatomic(∅) = ∅

NONATOMIC-READS

Γ ⊢ nonatomic(reads R) = reads R

133

NONATOMIC-WRITES

Γ ⊢ nonatomic(writes R) = writes R

NONATOMIC-ATOMIC

Γ ⊢ nonatomic(atomic E) = E

NONATOMIC-UNION

Γ ⊢ nonatomic(E) = E′ Γ ⊢ nonatomic(E′′) = E′′′

Γ ⊢ nonatomic(E ∪ E′) = E′′ ∪ E′′′

6.3.2 Dynamic Semantics

We describe the dynamic semantics of the nondeterministic language in two parts, the first operational and

the second non-operational. The first part is just the same semantics as for the deterministic language, with

a few minor adjustments to accommodate the new features. Thesecond part describes aweak isolation

constrainton execution histories generated by the first part. The overall dynamic semantics comprises all

execution histories described by the operational semantics that also satisfy weak isolation. In practice, weak

isolation would be enforced by a runtime implementation (such as software transactional memory). Such

implementations are well understood and have been described in detail elsewhere [63].

Semantics of Expressions:The execution environment and definition of program execution are the same

as in Section 6.2.2. We add operational semantics rules forcobegin nd and atomic expressions, and we

amend the rules forcobegin to account for atomic effects.

Nondeterministic parallel composition:Execution ofcobegin nd is identical to execution ofcobegin.

For completeness, we state the rules in full.

DYN-COBEGIN-ND-EVAL

fresh(i) fresh(j)

((cobegin nd(e,e′), Σ, ∅), H)→ (cobegin nd((e, Σ, ∅)i,(e′, Σ, ∅)j), H)

DYN-COBEGIN-ND-ACCUMULATE

(cobegin nd((o, Σ, E)i,(o′, Σ, E′)j), H)→ ((o′, Σ, E ∪ E′), H)

Atomic expressions:To execute an expressionatomic e, we execute the expressione, then mark all its

134

effectsatomic:

DYN-ATOMIC-EVAL

fresh(i)

((atomic e, Σ, ∅), H)→ (atomic (e, Σ, ∅)i, H)

DYN-ATOMIC-MARK-EFFECTS

∅ ⊢ atomic(E) = E′

(atomic (o, Σ, E)i, H)→ ((o, Σ, E′), H)

Note that the environment used for marking effects is the empty environment, because there are no region

parameters in the runtime effects.

Deterministic parallel composition:We modify the rule DYN-COBEGIN-ACCUMULATE to mark the effects

of the expression non-atomic:

DYN-COBEGIN-ACCUMULATE

∅ ⊢ nonatomic(E ∪E′) = E′′

(cobegin((o, Σ, E)i,(o′, Σ, E′)j), H)→ ((o′, Σ, E′′), H)

Weak Isolation Constraint: We state the weak isolation semantics as a constraint on the possible execu-

tions given by the operational semantics rules stated above. That is, we assume that executions that are

allowed by the rules, but that violate weak isolation, are guaranteed never to happen (because, e.g., they

would cause a transactional memory implementation to abortand roll back).

Definition 6.3.1(Reduction histories). Suppose((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′). Any sequence of steps

in an execution ofP witnessing this fact is called areduction history. We denote such a historyH.

By the definition of a reduction historyH, and the definition of a reduction, ifH witnesses((e,Σ, ∅)i,H) P

((o,Σ, E)i,H
′), then there must exist a history witnessing((eP , ∅, ∅)i, null)→∗ (ej ,H)→∗ (e′j ,H

′), with

(e,Σ, ∅)i a subexpression ofej , and(o,Σ, E)i a subexpression ofe′j; andH is the sequence of steps wit-

nessing(ej ,H) →∗ (e′j ,H
′). As before,(ej ,H) and(e′j ,H

′) are called the initial and final states of the

reduction. Note that in general, a reduction historyH is not unique, because (1) parallel tasks may have

different interleavings; and (2) the choice of expression identifiers and object references in the history is

arbitrary.

In the special case that the initial state ofH is the initial program execution state((eP , ∅, ∅)i, null), we

denote the corresponding reduction history (representinga program execution)HP , and we call it aprogram

execution history. If one historyH1 is contained within another oneH2, we say thatH1 is asubhistoryof

135

H2. In particular, all histories occurring in an execution aresubhistories ofHP .

Now we define a conflict relation onatomic expressions that allows us to state the weak isolation

assumption. First, we need a notion of parallel execution undercobegin nd:

Definition 6.3.2(Parallel histories undercobegin nd). Fix a program execution historyHP , and consider

any pair of subhistoriesH1 andH2 ofHP . H1 andH2 occur in parallel undercobegin nd if H1 occurs

in reducing subexpressioni, andH2 occurs in reducing subexpressionj, of the same expression introduced

by ruleDYN-COBEGIN-ND-EVAL .

Then we can state the conflict relation:

Definition 6.3.3 (Conflict relation onatomic expressions). Fix a program execution historyHP , and let

I be the set of expression identifiers appearing inHP that label atomic expressions (i.e., expressions intro-

duced by ruleDYN-ATOMIC-EVAL). Theconflict relation on atomic expressions inHP is the transitive

closure of the following relation: the pair(i, j) is in the relation ifi, j ∈ I, i 6= j, and there are conflicting

memory accessesai andaj (i.e., two accesses to the same location, with at least one a write) such that (a)

ai occurs in the reduction of an atomic expressionei; (b) aj occurs in the reduction of an atomic expression

ej ; (c) the reductions ofei andej occur in parallel undercobegin nd, and (d)ai precedesaj in HP .

Notice that we put the relationonly on parallel expressions undercobegin nd expressions, not

cobegin expressions; and wedo not include any conflicts occurring outside of atomic expressions. That

is because the type system will guarantee that there aren’t any conflicts betweencobegin tasks or outside

of atomic expressions; this is the soundness result that we prove in the next section.

Now we can define the weak isolation constraint on executionsin the language:

Definition 6.3.4(Weakly isolated histories). LetH be a history. If the conflict relation onatomic expres-

sions inH is a partial order, then we say thatH is weakly isolated.

In the rest of this chapter, we assume we have an implementation that guarantees weakly isolated histo-

ries. It should be clear that this assumption is equivalent to weak conflict serializability(i.e., serializability

of tasks with respect to accesses occurring in atomic expressions), which is guaranteed by any standard

transactional implementation, even a “weakly atomic” one.

136

6.3.3 Soundness

Static Environments, Preservation, and Noninterference:First we reassert Theorem 6.2.1 for the ex-

tended language.

Theorem 6.3.5(Validity of static expression typing). Theorem 6.2.1 holds for the deterministic-by-default

language defined in Section 6.3.

Proof. By a simple extension of the proof of Theorem 6.2.1, using thetyping rules for the new expressions,

and the fact thatatomic andnonatomic take valid effects to valid effects.

Lemmas 6.2.2 and 6.2.3 obviously hold for the deterministic-by-default language. We reassert Theo-

rem 6.2.4:

Theorem 6.3.6(Preservation). Theorem 6.2.4 holds for the language defined in Section 6.3.

Proof. Again by structural induction. The arguments for all expressions except the three with new rules

(cobegin nd, atomic, andcobegin) carry over from the proof of Theorem 6.2.4. For those three

expressions, the result follows from the induction hypothesis, and by construction.

Lemma 6.2.5 and Theorem 6.2.6 obviously hold for the extended language. We reassert the theorem:

Theorem 6.3.7(Noninterference of effect forcobegin branches). Theorem 6.2.6 holds for the language

defined in Section 6.3.

Race Freedom:The following theorem implies that program execution is race-free, assuming an implemen-

tation that imposes a synchronization order onatomic expressions consistent with the conflict relation in

Definition 6.3.3. This property is true, for example, of any transactional memory implementation.

To state the theorem, we extend Definition 6.3.2 in the obvious way to include parallel histories under

cobegin. We say that two histories that occur in parallel under either cobegin or cobegin nd (or

both) occurin parallel.

Theorem 6.3.8(Synchronization of conflicting memory operations). Suppose⊢ P, and fix a program

execution historyHP . Then for any two conflicting memory accessesa1 and a2 occurring inHP , either

(1) a1 and a2 do not occur in parallel; or (2)a1 and a2 are ordered by the conflict relation given in

Definition 6.3.3.

137

Proof. Supposea1 anda2 are conflicting accesses that occur in parallel. Theorem 6.3.8 says they cannot

occur in parallel under acobegin, so they must occur in parallel under acobegin nd with subexpres-

sionsei andej . Now suppose (without loss of generality)a1 does not occur inside any atomic expression

contained inei. Then the effect of branchi of thecobegin nd contains the effect generated byai, which

is not an atomic effect. By Theorem 6.3.7, the static effect of the first branch of thecobegin nd contains

a supereffect of that effect, and similarly for the other branch. But that means thatΓ ⊢ nondet(E,E′) is not

satisfied as to the static effects of the two branches, so ruleCOBEGIN ND does not apply, and the program

is not well typed.

Corollary 6.3.9 (Race freedom). If ⊢ P, then a historyHP that is weakly isolated according to Defini-

tion 6.3.4, and has synchronization orderings consistent with the conflict relation stated in Definition 6.3.3,

contains no data race.

Strong Isolation: The strong isolation result says that certain expressions are guaranteed to be reduced

“as if in isolation” (i.e., as if there were no interleavingsof the steps of reducing other expressions with

the steps of reducing that one). To state the result formally, we use the well-known concept ofserializable

histories[97].

Definition 6.3.10(Serial histories). A historyH witnessing((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′) is serial

with respect to expressioni if every step in the history transforms expressioni or a subexpression of expres-

sioni.

For example:

• The whole program history is serial with respect to the main program expression, because all of it

reduces the main expression.

• If the main program expressioneP is seq(e,e′), then the histories reducinge ande′ are each serial

with respect to those expressions.

• In general, the reductions ofe ande′ embedded in the reductions ofcobegin(e,e′) orcobegin nd(e,e′)

are not serial.

• In general, ifseq(e,e′) is reduced inside acobegin or cobegin nd, then the reductions ofe

138

ande′ are not serial, because they may be interleaved with the reductions of the other expression of

thecobegin or cobegin nd.

Definition 6.3.11(Serializable histories). Fix a program execution historyHP , and letH be a subhistory of

HP witnessing((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′). H is serializable with respect to expressioni if there

exists a program execution historyH′
P

such that (1)H′
P

contains a subhistoryH′ with the same initial and

final states asH; and (2)H′ contains subhistoryH′′ witnessing((e,Σ, ∅)i,H
′′) P ((o,Σ, E)i,H

′′′) that

is serial with respect to expressioni, for some heapsH ′′ andH ′′′.

Intuitively, an expression reduction is serializable if we“could have done it serially,” with the same

results. For example, in any execution history ofP whereeP is cobegin(e,e′), the reductions ofe and

e′ are serializable with respect to those expressions, because there are no conflicts between the steps of

reducinge ande′ (Theorem 6.2.6).

Theorem 6.3.12(Strong isolation). Suppose⊢ P, let HP be a weakly isolated history executingP, and

let H be a subhistory ofHP witnessing((e,Σ, ∅)i,H) P ((o,Σ, E)i,H
′). ThenH is serializable with

respect to expressioni if (1) (e,Σ, ∅)i is not a subexpression of anycobegin nd expression; or (2) no

atomic expression appears inH; or (3) e is acobegin or atomic expression.

Proof. (1) If (e,Σ, ∅)i is not a subexpression of anycobegin nd, then eitherH is a serial reduction, or

(e,Σ, ∅)i is a subexpression of one or morecobegin expressions. In the latter case, for eachcobegin

branch of which the reduction of(e,Σ, ∅)i is a subsequence, reduction of the othercobegin branch is

noninterfering (Theorem 6.3.8). Therefore, there can be noconflicts with the reduction of other expressions,

soH is serializable with respect to expressioni.

(2) By (1) it suffices to show that the reduction of(e,Σ, ∅)i does not interfere with any reduction occur-

ring in parallel undercobegin nd, because noninterference implies serializability. Suppose there exists a

cobegin nd expression with branch expressionsej andek such that the reduction of expressioni is con-

tained in the reduction ofej , and the reduction ofek interferes with the reduction of expressioni. Because

the reduction of expressioni has to atomic expressions, it cannot produce atomic effects. Therefore the

reduction of expressioni has a non-atomic dynamic effect that conflicts with some effect in the reduction of

ek. By the argument given in the proof of Theorem 6.3.8, this cannot happen for a well-typed program.

(3) cobegin(e′,e′′): Same argument as for (2), because by rule DYN-COBEGIN-ACCUMULATE,

reducing acobegin expression cannot produce an atomic effect.

139

atomic e′: Assume expressionsei and ej as in thecobegin case. By Theorem 6.3.8, any pair

of interfering accesses, one in the reduction ofei and one in the reduction ofej , are both contained in

atomic expressions contained in the enclosingcobegin nd. The result follows by the assumption of weak

isolation.

Determinism by Default: We now show that the nondeterministic language isdeterministic-by-default: that

is, if an expression has a serializable reduction accordingto Theorem 6.3.12, and the expression reduction

does not containcobegin nd, then the reduction has deterministic input-output semantics.

First, we state the equivalent of Theorem 6.2.9 for the nondeterministic language:

Theorem 6.3.13(Semantic equivalence ofcobegin andatomic seq). Suppose⊢ P. Then

(cobegin(e, e′),Σ, ∅)i,H) P ((o,Σ, E)i,H
′)

with initial state(ej ,H) if and only if

(atomic seq(e, e′),Σ, ∅)i,H) P ((o,Σ, E)i,H
′)

with initial state(ej [(cobegin(e,e′),Σ, ∅)i ← (atomic seq(e,e′),Σ, ∅)i],H).

Proof. As in the proof of Theorem 6.2.9, the if direction is obvious,because the reduction ofseq is one

legal reduction ofcobegin. For the only if direction, if the reduction of expressionj does not occur inside

acobegin nd, then the result follows from Theorem 6.2.9. Otherwise, by Theorem 6.3.12, there exists a

history witnessing

(cobegin(e, e′),Σ, ∅)i,H) P ((o,Σ, E)i,H
′)

with initial state(ej ,H), in which the subhistory witnessing the reduction of expression i is serial with

respect to expressioni. By Theorem 6.2.9, that history witnesses the result.

Finally, we state and prove the property of determinism by default:

Theorem 6.3.14(Determinism by default). Suppose⊢ P, and letH be a history witnessing((e,Σ, ∅)j ,H) P

((o,Σ, E)j ,H
′) that is serializable with respect to expressionj, where nocobegin nd expression appears

in the reduction ofe. If ((e,Σ, ∅)j ,H) P ((o′,Σ, E′)j ,H
′′) with the same initial state as inH, theno ∼= o,

140

where∼= denotes equivalence up to renaming object references, andE = E′. Moreover, if(e,Σ, ∅)j is not

a subexpression of anycobegin or cobegin nd expression, thenH ′ ∼= H ′′.

Proof. If (e,Σ, ∅)j is not a subexpression of anycobegin nd expression, then the result follows directly

from Theorem 6.2.10. Otherwise, by the definition of a serializable history,o′ andE′ must be defined by

a history that is serial with respect to expressionj, which (as discussed in the proof of Theorem 6.2.10), is

unique up to the choice of object reference identifiers.

6.4 Atomic Regions Language

This section describes the static and dynamic semantics results for the atomic regions language. If the

isolation semantics of atomic expressions (Section 6.3.2)is implemented via software transactional memory

(STM), then atomic regions allow for more efficient STM implementations, by telling the compiler where

memory accesses are guaranteed to be noninterfering insideatomic expressions. No STM synchronization

operations (sometimes called “barriers”) are necessary for such accesses.

6.4.1 Static Semantics

We add the predicateatomic(ρ) to the environment, to indicate whetherP is an atomic region parameter:

Γ ::= . . . | atomic(ρ)

Basic Program Elements: We modify the rules for valid classes and types, to make sure that atomic

parameters are instantiated only with atomic regions, and nonatomic parameters with nonatomic regions.

This strategy ensures that a particular memory region is always treated consistently (given barriers or not)

inside a transaction.

⊢ C

CLASS-ATOMIC {(this, C<ρ>), atomic(ρ)} ⊢ F ∗ {(this, C<ρ>), atomic(ρ)} ⊢M∗

⊢ class C<atomic P> { F∗ M∗ }

141

Γ ⊢ T

TYPE class C<ρ> { F ∗ M∗ } ∈ P Γ ⊢ R Γ ⊢ nonatomic(R)

Γ ⊢ C<R>

TYPE-ATOMIC class C<atomic ρ> { F ∗ M∗ } ∈ P Γ ⊢ R Γ ⊢ atomic(R)

Γ ⊢ C<R>

The predicatesatomic(R) andnonatomic(R) say whether a region is atomic:

Γ ⊢ atomic(R)

ATOMIC-NAME atomic region r ∈ P

Γ ⊢ atomic(r)

ATOMIC-PARAM atomic(ρ) ∈ Γ

Γ ⊢ atomic(ρ)

Γ ⊢ nonatomic(R)

NONATOMIC-NAME region r ∈ P

Γ ⊢ nonatomic(r)

NONATOMIC-PARAM atomic(ρ) 6∈ Γ

Γ ⊢ nonatomic(ρ)

Typing Expressions: The new rules for the judgmentΓ ⊢ atomic(E) = E′ say that an atomic expression

“makes an effect atomic” only if the effect is on an atomic region. Non-atomic regions never generate

atomic effects, even inside a transaction.

Γ ⊢ atomic(E) = E′

ATOMIC-READS

Γ ⊢ atomic(R)

Γ ⊢ atomic(reads R) = atomic reads R

ATOMIC-READS-1

Γ ⊢ nonatomic(R)

Γ ⊢ atomic(reads R) = reads R

ATOMIC-WRITES

Γ ⊢ atomic(R)

Γ ⊢ atomic(writes R) = atomic writes R

ATOMIC-WRITES-1

Γ ⊢ nonatomic(R)

Γ ⊢ atomic(writes R) = writes R

142

6.4.2 Dynamic Semantics

The dynamic semantics of this language variant is exactly asgiven in Section 6.3.2, with the following

changes:

1. Marking effects in rule DYN-ATOMIC-MARK-EFFECTSnow happens according to the definition of

∅ ⊢ atomic(E) = E′ given above, i.e., effects are marked atomic only if they operate on atomic

regions.

2. We redefine the conflict relation on atomic expressions, sothat only conflicts involving accesses to

atomic regions are synchronized by the implementation. This new conflict relation replaces Defini-

tion 6.3.3 and is stated below.

Definition 6.4.1 (Conflict relation onatomic expressions). Fix a program execution historyHP , and let

I be the set of expression identifiers appearing inHP that label atomic expressions (i.e., expressions intro-

duced by ruleDYN-ATOMIC-EVAL). Theconflict relation on atomic expressions inHP is the transitive

closure of the following relation: the pair(i, j) is in the relation ifi, j ∈ I, i 6= j, and there are conflicting

memory accessesai andaj (i.e., two accesses to the same location, with at least one a write) such that (a)

ai occurs in the reduction of an atomic expressionei; (b) aj occurs in the reduction of an atomic expression

ej ; (c) bothai andaj access fieldsT f in R whose declared regionR is an atomic region or an an atomic

region parameter; (d) the reductions ofei andej occur in parallel undercobegin nd; and (e)ai precedes

aj in HP .

Notice that we state the conflict relation in terms of thestatic class declaration. For example, given a

class declaration

class C<atomic P> {
int x in P;

}

any effect generated by access tothis.x would be included in the relation. However, ifP were not

declaredatomic, then the access would not be included. We do this to model a compiler implementation

that would insert barriers, or not, according to the information available in the program text at the point of

the access. The actual region bound to a region parameter is not available to the compiler code generator at

that point.

143

6.4.3 Soundness

Theorem 6.4.2.Theorems 6.3.5–6.3.7 hold for the language defined in Section 3.

Proof. The only new thing to show is that atomic effects are still managed consistently. But this is clear

from the fact that the static and dynamic semantics use the same rules for marking atomic effects.

Theorem 6.4.3(Synchronization of conflicting memory operations). Suppose⊢ P, and fix a program

execution historyHP . Then for any two conflicting memory accessesa1 anda2 occurring inHP , either (1)

a1 anda2 do not occur in parallel; or (2)a1 anda2 are ordered by the conflict relation given in Definition

3.1.

Proof. By the same argument as for proving Theorem 6.3.8: any other pair of conflicting accesses cannot

generate atomic effects, and so aren’t allowed to interfereby the static type system. The only wrinkle is that

the conflict relation is based on static region parameters, and the runtime effects are based on the regions

bound to the parameters. However, the rules ensure that in computing the actual effect of a field access, the

region in the dynamic effect is atomic if and only if the parameter in the field definition is atomic.

Theorem 6.4.4(Strong isolation). Theorem 6.3.12 holds for the language defined in Section 6.4.

Proof. The argument is the same as in proving Theorem 6.3.12, exceptin the caseatomic e. In that case

we modify the argument to observe that by the static semantics rules, any pair of interfering accesses, one

in the reduction ofei and one in the reduction ofej must both be in atomic expressions, and must both be

accesses that are statically called out as operating on atomic regions.

Theorem 6.4.5(Semantic equivalence ofcobegin andatomic seq). Theorem 6.3.13 holds for the

language defined in Section 3.

Proof. Same argument as Theorem 6.3.13, using Theorem 6.4.4.

Theorem 6.4.6(Determinism by default). Theorem 6.3.14 holds for the language defined in Section 3.

Proof. The same argument given in Theorem 6.3.14 goes through.

144

Chapter 7

Specifying and Checking Effects for Framework APIs

This chapter extends DPJ as described in the previous chapters, so it can check that the uses of object-

oriented parallel frameworks conform to their effect specifications. Section 7.1 discusses some limitations

of effect systems, including DPJ, that we must overcome to support frameworks. Section 7.2 presents

new programming techniques and effect system features for specifying and checking effects generated by

the uses of frameworks. Section 7.3 discusses an evaluationof the techniques described, in which we

wrote three separate frameworks and used each one to implement a realistic parallel algorithm. Section 7.4

discusses related work.

7.1 Limitations of Region-Based Systems

As the previous chapters illustrate, DPJ’s effect system isquite expressive, and it is a natural choice for

checking the effects of framework uses. However, all region-based effect systems, including DPJ, impose

some limitations that we must address in our framework design. As we will see, by shifting some of the

burden of guaranteeing noninterference from the type system to the framework, we can overcome some of

these limitations.

1 public class Node<region R> {
2 int data in R;
3 Node<*> next in R;
4 public Node(int data, Node<R> next) pure {
5 this.data = data;
6 this.next = next;
7 }
8 }

Figure 7.1:Node class

To illustrate the limitations, consider the code in Figures7.1 and 7.2. Figure 7.1 defines a simple list

145

1 class NodePair {
2 region First, Second;
3 Node<First> first in First;
4 Node<Second> second in Second;
5 NodePair(Node<First> first, Node<Second> second) pure {
6 this.first = first;
7 this.second = second;
8 }
9 void updateNodes(int firstData, int secondData) {

10 cobegin {
11 /* writes First */
12 first.data = firstData;
13 /* writes Second */
14 second.data = secondData;
15 }
16 }
17 }

Figure 7.2: Using region parameters to distinguish object instances

node class that we will also use in subsequent sections. The class has one region parameterR. The fields

data andnext in lines 2–3 are both located in regionR. Figure 7.2 shows a simple container class,

NodePair, that stores a pair of list nodes.

One limitation is that to guarantee soundness we have to prohibit swapping offirst andsecond in

the example:

void swap() {
Node<First> tmp = first;
/* illegal, can’t assign Node<Second> to Node<First> */
first = second;
/* illegal, can’t assign Node<First> to Node<Second> */
second = tmp;

}

If we could do such an assignment, then we could have multiplereferences with conflicting types pointing

to the same data, and we would no longer be able to draw sound conclusions about effects.

For this reason, DPJ and other region-based systems [80] usewildcard types that allow freer assignment.

In DPJ, the wildcard type is a partially specified RPL (i.e., an RPL containing*), as described in Chapters 3

and 4. For example, in lines 3–4 of Figure 7.2, we could have written both typesNode<*>, where* stands

in for any region. Now the swapping shown above is fine, because the types of the variables don’t constrain

what regions can appear in the dynamic types of the references assigned to them. However, we have lost

the ability to distinguish writes tofirst.data andsecond.data using the type system, because now

146

all we know is that the writes in lines 12 and 14 are to*. This is true even though by inspecting Figure 7.2,

we (as opposed to the type system) can see that (1) regionsFirst andSecond are distinct coming into

the constructor (line 5); and (2) theswap operation preserves the distinctness ofFirst andSecond in

the dynamic types offirst andsecond. So the state of the art in region-based type systems forces us to

choose: either we can prove that two references don’t alias,or we can swap the two references, but not both.

In fact, the situation is worse than this. As shown in Figure 7.3, aNodePair holding list nodes can have

cross links. The effect system must ensure that (1) the objects associated with fieldsfirst andsecond

are distinct; and (2) when following the references to access the objects in parallel, the cross links are never

followed to update the same object. Further, we probably don’t want to encode the write todata into the

framework implementation, as shown in lines 12 and 14. Instead, as discussed in the introduction, we would

like to express the operation abstractly, and let the user supply the specific operation. We therefore must

constrain the effects of the user-supplied method so that wecan argue that for any user-supplied method,

this kind of interference cannot happen. Finally, we don’t really want aNodePair class; instead, we want

aPair<T>, whereT is a generic type.

data

next

data

next

Figure 7.3: A potential race caused by cross links. The references stored in theNodePair are distinct; but
a race can still occur if the task operating on the left-hand reference follows the cross link represented by
the dashed arrow and performs an update.

7.2 Safe, Reusable Parallel Frameworks

We now show how to address the challenges discussed above to write safe, reusable parallel frameworks.

First we define an abstract disjoint container, which provides a sample framework API to illustrate our ideas.

Second, we show how to write the API so that the framework writer can reason soundly about effects for a

container specialized to list nodes. Third, we show how to extend the type system to make the API generic.

147

Finally, we address the problem of writing a correct framework implementation.

Although most of this section focuses on the disjoint container as an example, the work is not specific

to container frameworks. Section 7.3 shows how to use the same techniques to write a framework for

expressing pipeline parallelism, which is a parallel control idiom not available in basic DPJ. Moreover, the

next section formalizes these techniques and their soundness properties in general terms, without specifically

considering disjoint containers.

7.2.1 Abstract Disjoint Containers

We define an abstract data type called anabstract disjoint container, to use as an extended example. This

type generalizes the trivialNodePair container introduced in the previous section. An abstract disjoint

container is an abstract data type with the following properties:

1. Stored references.It contains references to other objects. The number of stored references can be

fixed up front (as with an array) or changed dynamically (as with a resizable array or set).

2. Slots.The elements are conceptually stored in slots. An iterationover the elements in the container

iterates over the slots. For example, for an array, the slotsare the array cells; for a set the slots are the

set elements; and for a tree the slots are the tree nodes.

3. Disjointness of slot regions.At runtime, every slotsi either isnull or points to an object with a

regionRi in its type. For anyi 6= j, if si andsj are both non-null, thenRi andRj aredisjoint (i.e.,

Ri andRj refer to nonintersecting sets of regions).

Property 1 is standard for a container ADT, e.g., any of the containers injava.util. We introduce

property 2 just so we have a way to talk about the iteration space of a container that is independent of the

internal storage pattern (array, tree, etc.). Property 3 isthe key to ensuring soundness when the user calls an

API method to iterate over the container and update its contents in parallel. As discussed more fully below,

the API can constrain a user-supplied method to have effectwritesRi; that is, it may operate only on the

regionRi of slot si, and not on anyRj of a different slot or any other region (such as a region containing a

global variable).

In the interest of concision, we refer to the slots of the container, or the container itself, as “disjoint,”

when in fact we mean that the associated regions of the slots are disjoint. Note that both versions of

148

NodePair from Section 7.1 are instances of the abstract disjoint container type, where the slots are the

fieldsfirst andsecond, and the associated regions areFirst andSecond. First andSecond are

disjoint, because they are distinct names.

7.2.2 A List Node Container

We now show how to use the DPJ type system as described in previous chapters (i.e., without extending

the effect system yet) to write an abstract disjoint container API that storesNode objects and allows safe

parallel updates to the stored objects. The disjoint container implementationis not specified; it could be

any container (set, list, tree, etc.). The point is that we will be able to write a container API that (1) stores

as elements list nodes, which may have cross links between them, as shown in Figure 7.3; and (2) allows

update operations on the elements to be donesafely in parallel, despite the presence of the cross links.

While the list node container is somewhat artificial, we willextend the example to a more generic (and more

useful) container in later sections.

Writing the list node container API presents two problems: maintaining disjointness, and reasoning

about effects. Our key insight is that through careful API design, together with judicious use of method

region parameters, we can enforce restrictions like “a factory method must return a new object” or “an apply

method must write only to the region of the object it is given.” Further, we can impose these restrictions

without exposing region names (such asFirst andSecond in Figure 7.2), that would otherwise prevent

swapping and other disjointness-preserving operations inside the framework.

Maintaining Disjointness: To maintain disjointness, we use the following strategy: (1) every container

starts empty and so is trivially disjoint; and (2) every operation provided by the disjoint container API is

disjointness-preserving (takes a disjoint container to another disjoint container). By a simple induction,

we can then conclude that the container is disjoint throughout its lifetime. The hard part is guaranteeing

property (2). There are two types of operations to consider:(a) operations that are totally under the control

of the container implementation and (b) operations that must cooperate with (possibly unknown) user code.

An example of (a) is a tree rebalancing or array shuffling thatoperates only on the internal structure

of the container. Here the problem is entirely reduced to writing a correct framework implementation

(Section 7.2.4). In the case of (b), however, the framework must restrict what the user can do so that the

framework author can reason soundly about uses of the container without knowing exactly what that use

149

will look like. A core example is putting things into a container. For the container to be useful, the user has

to retain control over what is inserted in the container, andhow and where those inserted things are created.

The trick is to allow some control while still being able to reason about disjointness. We have explored the

following two strategies: building one disjoint containerfrom another, and controlled creation of contained

objects.

Figure 7.4 shows the simple list node container API that we use to illustrate these strategies. There are

two region parameters,RN andRC, because we want to refer separately to the nodes stored in the container,

and the container itself. In line 1, we use aregion parameter constraint(described in Chapter 3) to require

that for any instantiation ofNodeContainer that bindsR1 toRN andR2 toRC, R1:* andR2 are disjoint.

This ensures that reading the container to traverse the slots does not interfere with updating the contained

objects.

Building one disjoint container from another:If we start with a disjoint containerC1, and we create a new

disjoint containerC2, we can populateC2 by copying the reference elements from the slots ofC1 to the

slots ofC2, andC2 will also be disjoint. An example is creating a tree out of theelements of an array or set.

1 public interface NodeContainer<region RN,RC | RN:* # RC> {
2

3 /* One linear container from another */
4 public NodeContainer(NodeContainer<RN,RC> c) writes RC;
5

6 /* Controlled creation of contents */
7 public NodeContainer(NodeFactory fact, int size) writes RC;
8 public interface NodeFactory {
9 public <region R>Node<R> create(int i) pure;

10 }
11

12 /* Data parallel operation on all elements */
13 public void performOnAll(Operation<RN> op) reads RC writes RN:*;
14 public interface Operation {
15 public <region R>void operateOn(Node<R> elt) writes R;
16 }
17

18 }

Figure 7.4: Framework API for an abstract disjoint list nodecontainer

Line 4 of Figure 7.4 illustrates how we might implement this strategy in DPJ. It says that given one

object of typeNodeContainer<RN,RC> we can create another one. An important special case in DPJ

is creating a disjoint container from anindex-parameterized array. As described in Chapter 3, the index-

150

parameterized array type is an arrayA such that cellA[i] has a type likeListNode<[i]> that is parame-

terized by the integer valuei. This guarantees disjointness for the array, because the region[i] is distinct in

the type of each array cell. However, because the parameterized types are exposed to the rest of the program,

it also means that we cannot shuffle the array elements without compromising soundness. (This is exactly

the same problem discussed in Section 7.1, just with array cells rather than fields.) If we construct a disjoint

container by copying in elements from the cells of an index-parameterized array, then we obtain a container

that is disjoint, but on which we can also perform disjointness-preserving operations, such as shuffling, that

were prohibited for the original array by doing theminternally within the framework.

Controlled creation of contained objects:Lines 7–10 of Figure 7.4 illustrate this strategy, for an interface to

NodeContainer that could be implemented in different ways (array, tree, etc). The container implemen-

tation does the actual object creation, but the user specifies the number of objects to create and provides a

factory method specifying how to create theith object. For example, a use could look like this, assuming a

classNodeArray that implementsNodeContainer:

/* Implement concrete create method */
public class MyFactory implements NodeContainer.NodeFactory {

public <region R>Node<R> create(int i) {
return new Node<R>(i, null);

}
}
/* Declare new region names NodeRegion and ContainerRegion */
region NodeRegion, ContainerRegion;
/* Bind the declared names to the parameters in the type */
NodeContainer<NodeRegion,ContainerRegion> c =

new NodeArray<NodeRegion,ContainerRegion>(new MyFactory(), 10);

This code creates a newNodeArray with 10 list nodes, such that theith one has itsdata field set toi.

NodeRegion andContainerRegion are region names declared by the user and bound to the region

arguments in the instantiated types.

The important thing here is that the “factory method” must really be a factory method and not, for ex-

ample, just fetch some object reference from the heap and store the same one into each slot of the container.

The framework author can enforce this requirement by judicious use of amethod region parameter. Notice

that in line 10, the return type of the factory method is written in terms of a parameterR that is in scope only

in that method. Further, no reference assignable to typeNode<R> enters the method. Therefore, the only

way aNode<R> can escape the method is if it is created inside the method vianew.

151

This strategy gives the framework control over disjointness by hiding the actual regions in the types of

the created objects; the user only ever deals with them through the method region parameter in the factory

method. For example, an array framework instantiated withRN = N could give theNode object stored

in slot i the typeNode<N:[i]>, whereN:[i] is the index-parameterized RPL discussed above. Unlike

the case of the index-parameterized array, however, that type would never be seen by the user, unless the

framework allowed it. The framework might simply not provide any way to ask for a reference to the

element in sloti. Or, it might give out such a reference with typeNode<N:*>, saying that the exact region

in the type is statically unknown. This is sufficient because, in most cases, the user code does not need to

distinguish these types since the parallelism is encapsulated inside the framework. The framework could

give out a reference with typeNode<N:[i]> if it could soundly match references to their original indices,

e.g., if no shuffling of references happened inside the framework.

Reasoning about Effects:Lines 17–22 of Figure 7.4 show the part of the API that allows the user to define

a method and then pass that method into the container to be applied in parallel to all contained objects. For

example, given referencec of typeNodeContainer<N,C>, the user could do this:

public class MyOperation implements NodeContainer.Operation {
public <region R>void operateOn(ListNode<R> elt) writes R {

++elt.data;
}

}
c.performOnAll(new MyOperation());

This code increments thedata field of each of the objects stored inc in parallel.

Effect ofoperateOn: In the definition of the abstractoperateOnmethod in theOperation interface

(lines 20–21 of Figure 7.4), we again use a method region parameterR. We write the type of the formal

parameterelt asNode<R>, and we specify the effect aswrites R. This causes two things to happen.

First, the DPJ type system requires that any user-supplied method implementingoperateOn must have

a declared effect that is asubeffectof writes R. For example,reads R is allowed, but reading or

writing some other region is not. (The relevant rules for subeffects are given formally in the next chapter;

see also Chapter 4.) Second, because the regions in the objects of the slots are disjoint, the actual regions

bound toR at runtime will be disjoint as the framework traverses the slots and applies the user-supplied

method. Together, these two facts guarantee that the effects of the iterations in the parallel traversal will be

noninterfering.

152

As an example, consider the user code shown above for updating aNode. That code is legal, because

data is declaredin R insideNode, which becomesin R (because of the type ofelt) in the scope of

operateOn. However, following thenext field to updatedata of a different object isnot legal: because

thenext field has typeListNode<*>, the effect of that update iswrites *, which is not a subeffect

of writes R and so is not allowed. So the API prevents the problem noted inFigure 7.3 of causing a race

by following cross links. The cross links themselves are allowed, but problematic traversals of them are not.

Effect ofperformOnAll: In Figure 7.4, we have written the effect ofperformOnAll as

reads RC writes RN:*.

This is correct if, for a particular implementation of the interface, (1) the slots have typeNode<RN:*>;

and (2) the implementation ofperformOnAll reads the container and applies the user’soperateOn

method to the references in the slots. The framework writer is responsible for ensuring that both facts are

true. In fact, if the framework itself is written in DPJ, thenboth facts are checked by the DPJ compiler. We

will have more to say in Section 7.2.4 about implementing theframework. For now, note that the effect of

operateOn is theonly effect on the regions of the nodes themselves; and because that effect is partially

specified (RN:*), the framework has freedom to implement the slot regions indifferent ways.

7.2.3 Getting More Flexibility

As noted above, the list node container is a somewhat artificial example; it is too specialized to be really

useful. We now show how to extend the example to make it more generic. Doing this will require some

extensions to the DPJ effect system, as discussed below.

Making the Effects Generic: The first thing that is too restrictive is the bound on the effects of the user-

definedoperateOn. For instance, what if the user wants to specify anoperateOn method that reads

some other region that is disjoint fromR:*, whereR is the region bound toRN in the instantiation of

the framework interface? That is safe and should be allowed,because it cannot interfere with the effect

writes RN:* of performOnAll. Yet it is disallowed by the effect specificationwrites R in the

API.

To address this problem, we use effect polymorphism [82]. Wegive theOperation interface an effect

parameterE (similar to a region parameter, but it specifies an effect) that becomes bound to an actual effect

153

when the interface is instantiated into a type. To make this strategy work, we need to solve two problems:

(1) constraining the effect arguments so that the effects ofinvoking the user-supplied method on different

objects are noninterfering; and (2) ensuring soundness of subtyping when we add effect parameters.

1 public interface Operation<effect E> {
2 public <region R>void operateOn(ListNode<R> elt) writes R effect E;
3 }
4

5 public <effect E | effect E # reads Cont writes RN:* effect E>
6 void performOnAll(Operation<effect E> op)
7 reads RC writes RN:* effect E;

Figure 7.5: Making the effects of theOperation interface generic

Constraining the effect arguments:Obviously the framework cannot let the effect variableE become bound

to an arbitrary effect in the user’s code, because then we would be back to the problem of a user-supplied

method with unregulated effects. Instead, we introduce aneffect constraintthat restricts the effect of the

user-supplied method.

Figure 7.5 shows how to write the effect variables and constraints. We define theOperation interface

(line 1) with an effect variableE. We also give theperformOnAll method (lines 6–8) aconstrained

method effect parameterE. After the parameter declaration is a constraint specifying that the effect bound

to E must be noninterfering withreads RC writes RN:* effect E. This constraint ensures that

the supplied effect will not interfere with (1) the effectreads RC of reading fields of the container; (2)

the effectwrites RN:* of updating the nodes; and (3) itself. The latter means thatE must either be

a read-only effect, or it must be an effect such as a set insertthat is declared to commute with itself (see

Chapter 3).

As an example, here is a user-supplied method that puts all the Node objects in regionNodeRegion

and reads regionGlobalRegion to initialize all the objects with the same global value:

public class MyOperation implements
NodeContainer.Operation<reads GlobalRegion> {

public <region R>void operateOn(Node<R> elt)
reads GlobalRegion writes R {

/* Assume global is in region GlobalRegion */
elt.data = global;

}
}
c.<reads GlobalRegion>performOnAll(new MyOperation());

154

Notice that the constraints are satisfied. First,GlobalRegion andNodeRegion are different regions,

soreads GlobalRegion does not interfere with the effectwrites NodeRegion:*of updating the

nodes. Second,reads GlobalRegion is a read-only effect, so it is noninterfering with itself.

As a matter of notation, notice that in lines 6–8 of Figure 7.5, the effect appearing in the constraint

on the method effect parameterE (line 6) is identical to the effect of the method for which theparameter

is declared (line 8). This is a common case. In this case, as a shorthand, we allow the user to omit the

constraint and just declare the parameterE#. Using this shorthand, lines 6–8 of Figure 7.5 would look like

this:

public <effect E#>void performOnAll(Operation<effect E> op)
reads RC writes RN:* effect E;

Soundness of subtyping:Once we add class types likeC<E>, whereE is an effect argument, we need a

rule for deciding ifC<E1> is a subtype ofC<E2>. We could require thatE1 andE2 be identical effects,

but this would be unnecessarily restrictive. Instead, we let E1 be asubeffectof E2. With this approach, the

key to showing the soundness of effect is to showtype preservation, i.e., that the dynamic types of object

references always agree with the static types of variables that hold them.

However, enforcing type preservation in the presence of effect variables is tricky. For example, consider

the following snippet:

class C<effect E> { C<effect E> f; }
C<writes r> x = new C<pure>();

By the subtyping rule stated above, this code is legal. But then what is the static type ofx.f? The obvious

answer isC<writes r> (substitutingwrites r from the type ofx for E in the declaration off), but

this is incorrect. For in that case, a reference of typeC<writes r> could be legally assigned tox.f.

But the dynamic type ofx.f is C<pure>, andwrites r is not a subeffect ofpure, so the assignment

violates type preservation.

As noted in Chapters 3 and 4, a similar problem occurs with Java generic wildcards and in basic DPJ

with partially specified RPLs. The solution is to make the static type ofx.f C<effect E′>, whereE′ is

a fresh effect parameter (called acapture parameter). The tricky thing here is thatall nonempty effects must

be captured when substituted for an effect parameter in a type. This is because all nonempty effects are

155

essentially wildcards: the runtime effect could be equal tothe static effect, or it could be empty (or possibly

something else, e.g.,reads R instead ofwritesR, orreads R1 instead ofreadsR1, R2).

Making the Type Generic: The second thing that is too restrictive is that we made the class specialized to

list nodes. Instead, we would like to write a generic class

DisjointContainer<type T, region Cont>.

Notice, however, that there are two places where we used the region argument to theNode type to write

the API. First, in writing theNodeFactory interface (line 10 of Figure 7.4), we used a method-local

parameterR in the return type ofcreate. Second, in writing the effect ofperformOnAll (lines 6–8 of

Figure 7.5), we used the regionRN to write both the effect constraint and the effect of updating the contained

objects. If we just replaced these types with an ordinary type variableT, then we would not be able to write

the node factory pattern at all, we would not be able to constrain the effectE properly, and we would be

forced to use a more conservative effect (such aswrites *) for the effect ofoperateOn.

To solve this problem, we can use a type constructor [92, 12] that takes a region argument. In our

language, type constructors work as follows:

1. A type variableT can be declaredtype T<region R>, whereR declares a fresh parameter. We

call R a type region parameter, by analogy with a class region parameter, which declares a region

parameter in a class definition. When a typeT becomes bound toT, T must have at least one region

argument, andR represents the first region argument. For instance, ifT = C<r>, thenR represents

the regionr.

2. We write uses of the variableT asT<r>, wherer is a valid region in scope.R itself is valid because

it was declared in the type variable.T<R> represents the unmodified type provided as an argument

to the variable, whileT<r> represents the same type with the region in its first argumentposition

replaced byr.

For convenience, a bare use ofT is allowed within the class body, and this is equivalent toT<R> (in

other words, the type constructorT also functions as a type, with implicit argumentR). We can also write

n parameters (T<region R1,. . .,Rn>) and arguments (T<r1,. . .,rn>), for n ≥ 1. In this case the

argument must have at leastn parameters, and the firstn region arguments are captured, starting from the

156

left.

1 public interface DisjointContainer<type T<region Elt>,
2 region Cont | Elt:* # Cont> {
3

4 public DisjointContainer(DisjointContainer<T,Cont> cont) writes Cont;
5

6 public <effect E#>DisjointContainer(Factory<T, effect E> fact, int size)
7 writes Cont effect E;
8 public interface Factory<type T<region Elt>, effect E> {
9 public <region R>T<R> create(int i) effect E;

10 }
11

12 public <effect E#>void performOnAll(Operation<T,effect E> op)
13 reads Cont writes Elt:* effect E;
14 public interface Operation<type T<region Elt>, effect E> {
15 public <region R>void operateOn(T<R> elt) writes R effect E;
16 }
17

18 }

Figure 7.6: API for an abstract disjoint container with generic types and effects

Final Container API: Figure 7.6 shows the final disjoint container API. Line 1 declares an interface

DisjointContainer with one type parameterT and one region parameterCont. The type parame-

ter has one region parameterElt that names the first region argument of the type bound toT. In line 11, we

write T<R> to require that the return type ofcreate have the method region parameterR as its first region

argument. In line 16, the regionElt is available to write the effects ofperformOnAll. We do the same

thing for the type parameter of theOperation interface, in line 17.

Here is an example implementation ofoperateOn, wherec has type

DisjointContainer<Node<N>,C>.

public class MyOperation implements
DisjointContainer.Operation<Node<NodeRegion>,pure> {

public <region R>void operateOn(Node<R> elt) writes R {
++elt.data;

}
}
c.performOnAll(new MyOperation());

This code is identical to the example given in Section 4.2.2,except that it instantiates the generic con-

tainer instead of the specialized one. The effect argument is pure, because no effect is needed for this

157

implementation ofoperateOn, except forwrites R, which is already given by the interface (line 19 of

Figure 7.6). The effect of the call toperformOnAll is reads C writes N:*.

7.2.4 Writing the Framework Implementation

Having studied the framework API, we now focus on the problemof writing a correct framework imple-

mentation. The framework writer must ensure three properties: type preservation, effect preservation, and

noninterference of effect. The key point is thatthe API design discussed in the previous sections provides

all the information needed to reason soundly about these three properties, even in the presence of unknown

user-supplied methods. Further, the framework author can write the framework in DPJ, thereby using the

DPJ type and effect system to check some or all of these properties. However, so long as the properties

hold for all user-visible types and effects, the framework author is free to useinternal operations, such as

swapping references with disjoint regions, that the effectsystem cannot prove correct.

Type preservation: The soundness results presented in Chapter 8 show that type preservation holds for

DPJ as extended in this chapter. Therefore, if the frameworkis written in DPJ, then this property will be

checked “for free,” unless the framework does an assignment(using a cast) that violates the typing rules.

The DPJ subtyping rules are quite flexible, so we anticipate that unsound assignments will rarely be needed

in practice to work around expressivity constraints of DPJ.

A more likely case is that casts are used to interface with code that is not implemented in DPJ, such as

an off-the-shelf Java container implementation. In this case, the framework author must reason about type

preservation using the specification of the non-DPJ code. For example, pre-Java 5 code implementing a

container might represent the container slots as references toObject. If references to be stored into the

slots always have typeT<R>, then it would be sound to cast these references toObjectwhen putting them

in the container, and back toT<R> when taking them out. For Java code written with generics, such casts

should be rare.

Effect preservation: Effect preservation means that the static effect of every statement is a supereffect of

the actual runtime effect of every execution of that statement. Again, the extended language guarantees this

property, so long as (1) type preservation holds; and (2) every method summary covers the effects of the

method body. In DPJ, one can always write a correct method summary (in the extreme casewrites * is

always correct). So property (2) will hold if property (1) does. Here, if the framework calls into non-DPJ

158

code, then the framework writer will have to reason about effects manually (i.e., the reasoning cannot be

checked by DPJ).

Noninterference of effect:Noninterference of effect means that parallel tasks have noconflicting memory

accesses. While DPJ can establish noninterference in many cases, in some cases it may not be able to. For

example, even if a pair of references of typeC<*> always points to objects with distinct regions at runtime,

the type system can’t prove that, as discussed in Section 7.1.

1 public class DisjointArray<type T<region Elt>, region Cont |
2 Elt:* # Cont> implements DisjointContainer<T,Cont> {
3

4 /* Internal array representation */
5 private DPJArrayList<T<Elt:*>,Cont> elts in Cont;
6

7 /* Implementation of performOnAll */
8 public <effect E#>void performOnAll(Operation<T,effect E> op)
9 reads Cont writes Elt:* effect E {

10 foreach (int i in 0, elts.size()) {
11 op.operateOn(elts.get(i));
12 }
13 }
14

15 /* Swap elements at idx1 and idx2 */
16 public void swap(int idx1, int idx2) writes Cont {
17 T<Elt:*> tmp = elts.get(idx1);
18 elts.add(idx1, elts.get(idx2));
19 elts.add(idx2, tmp);
20 }
21

22 }

Figure 7.7: Array implementation of a disjoint container (partial). DPJArrayList (line 5) is an or-
dinary JavaArrayList, annotated with region information. The effect ofelts.get(i) (line 11) is
reads Cont.

In such cases, the framework author has the freedom to “go outside” the type system, and use a different

technique to make the noninterference argument. Figure 7.7shows an example. This an array implementa-

tion of DisjointContainer. We have chosen to represent the array internally as aDPJArrayList,

as shown in line 5. The type argument toDPJArrayList is Elt:*, reflecting the fact that the dynamic

type of elementj is Elt:[j], as discussed in Section 7.2.1. TheperformOnAll method uses the DPJ

foreach construct (line 10) to iterate in parallel over the slots of theDPJArrayList and apply the user-

supplied operation to each of its elements. We also add aswap method, similar to the method discussed in

Section 7.1, for swapping two elements of the array.

159

To show noninterference, it suffices to establish two things: (1) for distinct valuesi, the region in

the dynamic type ofelts.get(i) at line 11 is distinct; and (2)i attains distinct valuesi on distinct

iterations of theforeach in line 10. The first statement follows from the inductive argument we made

in Section 7.2.1 about maintaining disjointness: to changethe shape of the array, we either have to use an

inherited creation method, which preserves disjointness as discussed in Section 7.2.2, or do a swap, which

also preserves disjointness, as can be seen from the implementation in lines 17–19. The second statement

follows from the semantics offoreach in DPJ (Chapter 3). More generally, one would follow the same

two-pronged strategy to show noninterference for an a traversal over an arbitrary disjoint container: first

show disjointness of slot regionsRi, and then argue that the traversal operates in parallel on the slots.

Notice that once the framework implementer checks noninterference in this way, the user never has

to see or even know about how the checking occurred. From the user’s point of view, if the program

type checks, then the noninterference property holds. Further, the framework writer is free to use static or

dynamic verification techniques such as program logic, model checking, or testing to check the framework

implementation. We can thus think of the techniques presented here as making DPJ into anextensible

language. By writing a suitable API, and doing appropriate checks, the framework writer can add new

capabilities for parallel operations that provide the sameguarantees as if those capabilities had been built in

as first-class parts of the language. A good example of this extensibility is the pipeline framework described

in Section 7.3, which supports a parallel control structurethat cannot be expressed in the DPJ language at

all. This extensibility makes DPJ much more powerful than ifthe only checking mechanism were the type

system itself.

7.3 Evaluation

We have evaluated the techniques discussed above with two goals in mind:

1. Can we use the techniques to write realistic frameworks and user programs? Do any additional issues

arise in real frameworks or user code?

2. What is the user experience of using such an API? How burdensome is it to write the type and effect

annotations, and how difficult is it to get the annotations correct?

160

To perform our evaluation, we first extended the DPJ compilerto support effect variables, effect constraints,

and type region parameters as discussed in Section 7.2.3 andChapter 8. Then we studied how to (1) use

our techniques to write generic array, tree, and pipeline frameworks; and (2) use the frameworks to write

three parallel codes: a Monte Carlo simulation algorithm, aBarnes-Hut n-body computation using a spatial

octtree, and RadixSort expressed as a pipeline. We chose these three algorithms because they exemplify

different styles of parallelism: Monte Carlo uses direct loop-style parallelism over arrays; Barnes-Hut uses

recursive, divide-and-conquer parallelism over trees; and RadixSort uses concurrent pipelined computations

over a stream of inputs.

7.3.1 DPJ Frameworks

We focused on the framework operations needed for the two benchmarks but ensured that the operations

themselves weregeneral, i.e., were not specifically tied to the needs of the benchmarks, as discussed below.

Adding more operations is not difficult.

Parallel array framework: We implemented a framework called DPJDisjointAray with an interface similar

to a subset of the ParallelArray API for Java [1]. The API supports the following operations:

1. A create method that creates an array with a user-supplied factory method, as discussed in Sec-

tion 7.2.1.

2. A withMappingmethod that maps one array to another, element by element, with a user-supplied

mapping function. Like ParallelArray, we provide two formsof the mapping: the first takes an index

variable, and the second does not. As in the factory method pattern, we use a method region parameter

R to ensure that the mapping function creates a new output object for each element, and the mapping

function is allowed to writeR.

3. A reduce method that reduces the array to an object, given a starting element and a user-specified

Reducer that combines two elements into one. Following the pattern discussed in Section 7.2, the

two elements coming into theReducer method are parameterized by method region parametersR1

andR2, and the user-supplied method is allowed to write the regions bound to these parameters.

Using distinct parameters ensures that theReducer cannot violate disjointness, e.g., by storing one

object into a field of the other.

161

The framework implementation is a thin wrapper that uses a ParallelArray instance internally to provide all

the operations.

Parallel tree framework: We wrote a framework that provides a tree of user-specified arity (i.e., each inner

node has at mostarity children) with data of generic typeT stored in every node. The API supports the

following operations:

1. A buildTree method that takes aDPJDisjointContainer elts of objects of typeT and

a positivearity and inserts the bodies into the leaves of the tree. The user provides anindex

function that takes aT to insert, aT at the current (inner or leaf) node, and aT at the parent node

of the current node, and computes which of the children of thecurrent node to follow next when

inserting the object in the subtree rooted at the current node. The framework creates the inner nodes

as necessary and populates each one with a fresh object of type T, using a user-specified factory

method.

2. A visitPOmethod that recursively does a parallel postorder tree traversal. As shown in Figure 7.8,

this method takes a user-suppliedvisit method that, given aT object at the current node and an

ArrayList of V (result) objects produced from visiting the children (ornull if the current node is a

leaf), produces aV object for this node. Again we use two region parameters,R1 andR2, to ensure

that disjointness of theT objects is preserved by the traversal.

1 public class DisjointTree<type T<region Elt>, region Cont>
2 implements DisjointContainer<T,Cont> {
3

4 public <effect E#>double visitPO(POVisitor<T, effect E> visitor)
5 reads Cont writes Elt:* effect E { ... }
6

7 public interface POVisitor<type T<region Elt>,
8 type V<region VR>, effect E> {
9 public <region R1, R2> V<R2>

10 visit(T<R1> data, ArrayList<V<R2>, Cont> childResults)
11 reads Cont writes R1, R2 effect E;
12 }
13 }

Figure 7.8: The postorder visitor from the region-based spatial tree.

Parallel pipeline framework: We implemented a framework called DPJPipeline that supports applications

structured as data flowing through a series of pipeline stages, each of which operates on the data. Following

162

Intel’s Threading Building Blocks (TBB) [101] and the StreamIt language [118], we call the operation

applied by each stage afilter. Each data element flows sequentially through the stages, but different stages

can apply their filters to different elements at the same time, creating pipeline parallelism. This parallel

control structure cannot be expressed directly in DPJ as described in Chapters 3 through 6.

The DPJPipeline API is parameterized by a typeT<TR> for the type of an element, a regionPR for

the pipeline internals, and an effectE that bounds the user-specified effects of the filters. The effectE is

constrained not to interfere with writing underTR or PR, or with itself, ensuring that filters may safely

update the data elements and the pipeline state. The API provides two interfaces for the user to implement:

a filter and a factory method for creating a filter. The API alsoprovides the following methods for the user

to invoke directly:

1. A methodappendStageWithFilter that accepts a user-defined filter factory, uses it to create a

fresh filter, and inserts a stage with that filter at the tail ofthe pipeline.

2. A methodlaunch that launches one task for each pipeline stage.

Internally, each stage is represented by an object of typeStage (a private class, not visible to the user) that

stores the user-specifiedFilter for that stage and maintains an output buffer for the data items produced

by that stage. The output buffer of a stage is the input bufferfor the next stage. Extending our framework to

a recursive fork-join graph, as supported in StreamIt, or a general DAG would not be difficult.

Effect management for this framework works as follows. Method region parameters on the user-defined

factory methods as discussed previously ensure that each filter and each element is a freshly-created object,

each in its own region. TheFilter interface looks like this:

public interface Filter<type T<region TR>, region FR, effect E> {
public <region R>T<R> op(T<R> item) writes R, FR effect E;

}

As in the previous examples, this method is invoked only by the framework, in the stage implementation.

At a particular invocation ofop, R is bound to the region of the data element being operated on, which is

under the region bound toTR in theDPJPipeline class, andFR is bound to the region associated with

the current stage, which is under the region bound toPR in theDPJPipeline class. The actual effect

bound toE is supplied in the instantiation of the framework and is constrained as discussed above. Thus

the user-defined filter operation is limited to updating the regions of the data object and the filter state, and

163

doing any other noninterfering effects. In particular, it cannot update a data element being operated on by a

concurrent filter, or a different filter.

The framework implementation passes the object returned bythe filter operation from one stage to the

next. The returned object need not be the same as the object passed in. However, the region parameterR

ensures that the object returned has the same region bound toits type as the input object. In particular, the

return object cannot be a data element processed concurrently by a different stage, or even a data element

reachable from such a data element, except through a partially-specified RPL.

7.3.2 Application Code

Monte Carlo simulation: We studied the Monte Carlo simulation benchmark from the Java Grande suite [110].

The computation contains three parallelizable loops: the first one createsTask objects; the second one it-

erates over the objects to compute a return rate for each one;and the third one reduces the return rates into

a cumulative average.

We parallelized all three loops usingDPJDisjointArray. For the first loop, we used the indexed

form ofwithMapping. Apart from writing to theTask object itself (which does not have to be reported),

the effect of theTask constructor is read-only, so it can validly be used for aggregate array creation, as

shown in line 8 of Figure 7.6.

For the second loop, we used the unindexedwithMapping. We wrote a mapping function that takes

a Task<Tasks> object to aResult<R> object, whereTasks is a declared region name, andR is the

method parameter provided by the framework. The computation in the mapping function writes toR.

For the third loop, we wrote aReducer that takes two objects of typeResult<R>, reads the accumu-

lated sum from both, adds them, stores the result in the first one, and returns it. The write effect is bounded

by writes R, as required in the API. We could also have avoided the write effect entirely by creating a

new object and returning it, but that would be less efficient.

Barnes-Hut center of mass computation:Next we studied the Barnes-Hut n-body simulation [109], which

uses an octree (eight-ary tree) to represent three-dimensional space hierarchically, storing the bodies in the

leaves. We focused on the center-of-mass computation, which traverses the tree recursively in parallel and

computes, for each node, the center of mass of the subtree rooted at that node. The computation writes into

each node as it traverses it, so the noninterference argument requires that the traversal is over a tree. Because

164

of this fact, the center of mass computation is hard to do efficiently in baseline DPJ; we discuss this point

further in Section 7.3.3 below. It would be straightforwardto parallelize the force computation using the

same array-based techniques that we used for Monte Carlo.

We wrote a program that builds a tree and performs a center of mass computation for a binary tree

computation in one-dimensional (1-D) space. 1-D space simplifies the computation, without changing the

essential patterns of parallelism. We instantiatedDPJDisjointTree with a Node class that has sub-

classesCell for the inner node data andBody for the leaf data, similarly to both the original and Splash-2

versions of Barnes-Hut [109]. To build the tree, we wrote anindex method that puts each inserted node

in the left or right subtree based on its position, and a factory method that constructs freshCell objects

for each inner node in the tree. To compute the center of mass,we wrote apostOrderVisitor that

computes the average position and total mass for the bodies in the subtree rooted at each inner node and

stores them at the node. This visitor returns a pair ofdouble values (for typeV in the API) for the average

position and total mass at the current node.

Pipelined radix sort: We used the DPJPipeline framework to write a pipelined version of radix sort. This

application is directly modeled after the StreamIt RadixSort benchmark [118]. The first stage produces a

stream of arrays to sort, and the successive stages each sortthe arrays on a different radix, with the radix

recorded in theFilter object asfinal variable (so reading it produces no effect). Each sort stagealso

stores two temporary arrays as persistent mutable data in the filter of the region (such that accessing the

arrays produces an effect on the filter region).

When an array enters a sort stage, the filter for that stage adds each array element to one of the temporary

arrays, depending on whether the element has a 0 or 1 at the bitposition corresponding to the radix for that

filter. The filter then copies all the 0 elements followed by all the 1 elements back into the original array,

and passes it along to the next stage.

7.3.3 Discussion of Evaluation Results

Support for realistic frameworks: Our experience shows that the framework techniques in this work can

be used to write realistic parallel algorithms. For these codes, we did not find any significant challenges

over and above the framework API we discussed in Section 7.2.In the future, we could also easily support

other operations, such as ParallelArray’s filter and apply.

165

Classes Methods
SLOC Defs Params Constraints Args Defs Summaries Params Constraints Args

Array 41/97 12 21 0 10/88 20 11 7 4 1/21

Tree 61/169 11 19 0 32/100 18 16 6 2 4/42

Pipeline 35/112 8 9 1 14/44 19 18 2 0 2/28

Table 7.1: Annotation counts for the framework code

Getting the region and effect annotations correct for the framework APIs, and using the API design to

check noninterference, did require some careful thought. However, all the APIs have a similar pattern; once

we mastered that pattern, writing the APIs as discussed in Section 7.2 was straightforward.

Table 7.1 summarizes the effect annotation counts for the framework code. The leftmost data column

shows the annotated over the total source lines of code (SLOC), counted withsloccount. From the

left, the other columns show the number of class (including interface) definitions, class region and effect

parameters, class region and effect constraints, region and effect arguments to types, method definitions,

method effect summaries, method region and effect parameters, method region and effect constraints, and

region and effect arguments to methods. For arguments to class types, the denominator is the total number

of types appearing in the program; and for arguments to methods, the denominator is the total number of

method invocations.

As expected, the annotations are nontrivial; this is simplya cost of the safety guarantee we provide. We

believe the numbers are higher than they would be for production frameworks, because effect annotations

appear on the API, and production frameworks would have a higher ratio of internal to API code than our

simple frameworks do. Thus, production frameworks should better amortize the overhead of writing the

annotations.

Framework client experience: Table 7.2 shows the annotation counts for the client code, with the same

layout as Table 7.1. As expected, the relative annotation burden is less than for the framework code. As with

the deterministic effect system discussed in Chapter 3, most of the annotations are method effect summaries

and region arguments to types. In the client codes, the arguments to effect variables were simple: either

pure or one or two read effects. As expected there were no effect constraints in the client code, only in the

framework code.

It is also instructive to compare the client experience for the Monte Carlo and Barnes Hut algorithms

written using frameworks to the corresponding ones using baseline DPJ, as presented in Section 3.5. For

Monte Carlo, we had used an index-parameterized array to guarantee disjointness in the first two loops, by

166

Classes Methods
SLOC Defs Params Constraints Args Defs Summaries Params Constraints Args

Monte Carlo 236/1389 21 10 0 90/492 195 136 8 0 3/350

Spatial Tree 55/172 6 5 0 42/90 10 7 4 0 3/45

Radix Sort 31/102 6 3 0 36/46 11 6 4 0 0/13

Table 7.2: Annotation counts for the client code

making theTask andResult types parameterized by the indexi. For the third loop, we encapsulated

the reduction sum in a method implemented with locks and declared that methodcommutative. This

is not attractive because it puts the burden of writing low-level, error-prone synchronization code on the

application developer.

Similarly, we could use baseline DPJ to parallelize the center of mass computation in Barnes-Hut.

However, we would have to give each tree node a distinct type and recopy the bodies on insertion into the

tree, because we cannot soundly change the type of a reference in DPJ, as discussed in Section 7.1. We

could support such “ownership transfer” with runtime reference counting [13], but this would add its own

overhead.

The pipeline framework illustrates a different benefit of this work. Pipelining is a new parallel control

idiom that is not provided by DPJ and, even if it were, no useful pipelined parallelism would be expressible in

the DPJ type system as explained earlier. Implementing it asa framework elegantly extends the capabilities

of the language, while preserving the ability to enforce theDPJ safety properties for pipelined application

code. It is an example of a higher level “coordination” mechanism [76] that is used to connect and manage

multiple deterministic components, potentially operating concurrently with each other while exchanging

data.

Overall, the advantages of the framework approach are (1) simplifying the DPJ types exposed to the

client, by avoiding index parameterized arrays or recursive types; (2) eliminating low-level code for common

patterns such as reductions; (3) avoiding copies where the baseline type system might require them, as in

Barnes-Hut; and (4) extending the language with more flexible parallel control idioms. On the other hand,

the baseline DPJ code is closer to the original sequential code, because it uses parallel control constructs

directly, rather than factoring the code into helper functions and framework API calls. This last point is not

specific to our work, but is a general issue with using frameworks.

167

7.4 Related Work

Effect systems:Sections 3.6 and 5.6 discuss the related work on effect systems. None of this work teaches

how to write a framework API for safe parallelism using disjoint data structures. Nor does it support

mechanisms such as effect constraints and type region parameters that are necessary for generic frameworks.

Linear type systems:Wadler [125] introduced linear types as a way to allow in-place updates while pre-

serving the semantic guarantees of pure functional programming. A linear type system can enforce strong

guarantees of program correctness [41]. However, linear types prohibit reference aliasing, which makes

many common patterns of imperative programming awkward or impossible.

Several researchers have looked at ways to make linear typesless restrictive while maintaining mean-

ingful guarantees. Fähndrich and DeLine [47] introducedadoption and focusto create aliases of a linear

reference with a limited lifetime. Clarke and Wrigstad [38]have observed thatexternal uniqueness— the

property that every object has at most one reference to it located outside its containing data structure — can

express important patterns, such as a unique reference to a doubly-linked list. Boyland and others [26, 117]

have usedfractional permissionsto enforce linearity of write references, while allowing sharing of read-only

references. Finally, several researchers have shown how tocombine unique references with effect systems

in interesting ways [59, 25].

Our idea ofdisjoint data structuresis related to these mechanisms, but also different from all of them.

Our insight is that for parallel traversals over the slots ofa data structure, all we care about is whether the

slots have different regions in their types. This implies that the slots point to distinct objects, but it does

not preclude aliasing with other references in the program.DPJ’s indexed parameterized arrays (Chapter 3)

provide disjoint regions, but they do so by making the regions explicit in user code, thereby preventing

reference swapping as discussed in Section 7.1.

Enforcing API contracts. The Eiffel language [119] introduced the idea ofdesign by contract, which

uses preconditions and postconditions to specify interaction between classes. The Java Modeling Lan-

guage (JML) [75] provides a powerful way to write design-by-contract specifications for Java, which can be

checked with a combination of static verification and onlinechecking.

Design by contract ideas have been applied to concurrent programming. Meyer’s Systematic Concur-

rent Object-Oriented Programming (SCOOP) concurrent programming model [89] is based on Eiffel. The

Fortress programming language [116] provides a way to writeassertions at interface boundaries that can be

168

checked at runtime. X10 [35] has a sophisticated dependent type system that can specify and check interface

assertions, also supported with runtime checking. None of this work addresses parallel noninterference or

safe frameworks for shared memory parallelism.

Our annotated generic framework APIs also provide a kind of design by contract, because the framework

writer bounds the effects of user-supplied methods. As far as we know, we are the first to study the problem

of guaranteeing parallel noninterference for a framework operating on disjoint data structures in a shared

memory context. We are also the first to show how to use atype and effect systemfor design by contract in a

parallel framework API. Compared to more general specification methods (such as JML), an effect system

has the advantage that the annotations are easier for the programmer to write and the compiler to check

without runtime checks or heavyweight constraint solving or theorem proving.

Type constructors: Type constructors are well known in functional languages like Haskell. Recently type

constructors (also calledkinded types) have been applied to object-oriented languages [92, 12]. Akinded

type is like a “type type parameter,” i.e., a type parameter with a type parameter, whereas our type region

parameter is a type parameter with a region parameter. Also,in work on kinded types, there is no notion of

effects or the sound interaction of type parameters with effect judgments.

Another related concept is the C++ mechanism calledtemplate template parameters[123]. If we fol-

lowed that approach, we would have the user provide a classC and a regionR as separate arguments to

the framework, and the framework would put them together to construct the typeC<R>. We chose not

adopt this approach because it obscures the relationship between the type and its region argument in the

framework API.

169

Chapter 8

Formal Language for Framework API Checking

This chapter formalizes the ideas discussed in the previouschapter, using a formal language similar to the

languages presented in Chapters 4 and 6. The language has thefollowing salient features:

• Like Core DPJ (Chapter 4), this language focuses on the mechanisms for expressing effects and

noninterference. We do not model parallel constructs, nor do we include the features for supporting

nondeterminism discussed in Chapters 5 and 6.

• Compared to Core DPJ, the language has simplified RPLs, nolet expressions, and no arrays.

• The language incorporates interfaces, classes that implement interfaces, and method parameters, in

order to support the style of writing object-oriented frameworks discussed in the previous chapter.

• The language incorporates the effect system features introduced in the previous chapter, i.e., con-

strained effect variables and type region parameters.

As usual, we give a syntax, a static semantics, a dynamic semantics, and soundness results with proofs.

8.1 Syntax

Figure 8.1 shows the syntax for the formal language illustrating the framework support. A programP

consists of region name declarations, interface definitions, class definitions, and an expression to evaluate.

An interfaceI consists of an interface nameI, the interface parameters, and zero or more method signatures.

There is one type parameterτ , one region parameterρ, and one constrained effect parameterη # E. The

type parameterτ has a region parameterρ that captures the region argument of the type bound to it. A

method signatureS specifies a region parameter, a constrained effect parameter, a return type, a method

namem, a typed formal parameterx, and an effect.

170

Programs P ::= R∗ I∗ C∗ e
Region Names R ::= region r

Interfaces I ::= interface I<τ<ρ>, ρ, η # E> { S∗ }
Classes C ::= class C<τ<ρ>, ρ> implements I<T, R, E> { F ∗ M∗ }

Method Signatures S ::= <ρ, η # E>T m(T x) E
Fields F ::= T f in R

Methods M ::= S { e }
RPLs R ::= r | ρ | R:r | R:*
Types T ::= I<T, R, E> | C<T, R> | τ<R> | Null

Effects E ::= ∅ | reads R | writes R | η | E ∪ E
Expressions e ::= this.f | this.f=e | e.<R,E>m(e) | v | new T | null

Variables v ::= this | x

Figure 8.1: Syntax of the formal language supporting frameworks. r, I, τ , ρ, η, C, f , m, andx are
identifiers.

A classC consists of a class nameC, the class parameters, the interface type being implemented, and

the fields and methods of the class. There is one type parameter and one region parameter. For simplicity,

classes do not take effect parameters; the interface effectparameters suffice to write the patterns discussed in

the previous chapter. A fieldF specifies a type, a field namef , and an RPL. A method specifies a signature

and an expression to evaluate.

A region path list (RPL)R is a named regionr, a region parameterρ, or an RPL qualified by appending

:r or :*, where* stands in for any chain of names. A typeT instantiates a named interface with a type,

region, and effect; or it instantiates a named class with a type and region; or it instantiates a type parameter

with a region; or it isNull. Null is the type of a null reference. It also functions as a base-case type for

type parameter arguments (every other type has its own argument). An effectE is a possibly empty union

of read effects, write effects, and effect parameters.

An expressione is a field access, field assignment, method invocation, variable, object creation, or null

reference. A variablev is this or a method formal parameterx.

8.2 Static Semantics

8.2.1 Typing Environment

The static typing judgments are defined with respect to an environmentΓ:

Γ ::= ∅ | (z, T) | τ | ρ | η | η # E | Γ ∪ Γ

171

(z, T) ∈ Γ means that variablez has typeT . τ ∈ Γ means that type parameterτ is in scope inΓ. ρ ∈ Γ

means that region parameterρ is in scope inΓ. η ∈ Γ means that effect parameterη is in scope inΓ.

η # E ∈ Γ means that effect parameterη is constrained to be disjoint from effectE.

8.2.2 Programs

Valid programs: The judgment⊢ P means that programP is valid. The judgment holds if the interfaces

and classes ofP are valid, and the main expression ofP is well typed with typeT and effectE in the empty

environment.

⊢ P

PROGRAM

∀I.(⊢ I) ∀C.(⊢ C) ∅ ⊢ e : T, E

⊢ R∗ I∗ C∗ e

Valid interfaces: The judgment⊢ I means that interface definitionI is valid. The judgment holds if the

effect constraint ofI is a valid effect, and all the method signatures ofI are valid. We check these facts in

the environmentΓ consisting of the declared parameters and effect constraint of I.

⊢ I

INTERFACE

Γ = τ ∪ ρτ ∪ ρ ∪ η ∪ η # E Γ ⊢ E ∀S.(Γ ⊢ S)

⊢ interface I<τ<ρτ>, ρ, η # E> { S∗ }

Valid classes:The judgment⊢ C means that class definitionC is valid. The judgment holds ifC implements

a valid interface type; its fields are valid; and its methods are valid. We check these facts in the environment

consisting of the declared parameters ofC. For checking methods, we also record the base type to the left

of ⊢, so that the method-checking rule (METHOD, below) can check the method against its specification in

the interface, if any.

⊢ C

CLASS

Γ = τ ∪ ρτ ∪ ρ ∪ (this, C<τ<ρτ>, ρ>) Γ ⊢ I<T, R, E>

∀F.(Γ ⊢ F) ∀M.(Γ, I<T, R, E> ⊢M)

⊢ class C<τ<ρτ>, ρ> implements I<T, R, E> { F ∗ M∗ }

Valid method signatures: The judgmentΓ ⊢ S means that signatureS is valid in environmentΓ. The

judgment holds if the formal parameter type, return type, effect constraint, and effect summary ofS are

172

valid. We check these facts in the environmentΓ′ formed by adding the method parameters and constraint

to Γ.

Γ ⊢ S

SIGNATURE

Γ′ = Γ ∪ ρ ∪ η ∪ η # E Γ′ ⊢ T Γ′ ⊢ T ′ Γ′ ⊢ E Γ′ ⊢ E′

Γ ⊢ <ρ, η # E>T m(T ′ x) E′

Valid fields: The judgmentΓ ⊢ F means that fieldF is valid in environmentΓ. The judgment holds if the

type and region ofF are valid inΓ.

Γ ⊢ F

FIELD

Γ ⊢ T Γ ⊢ R

Γ ⊢ T f in R

Valid methods: The judgmentΓ, T ⊢ M means that methodM is valid in environmentΓ, whereT is the

interface type implemented by the enclosing class. The judgment holds if the method signature is valid; the

method bodye is well typed with typeTe and effectEe; Te is a subtype of the declared return type; andEe

is a subeffect of the declared effect; and if a signature named m appears in the implemented interface type,

then the method conforms to the signature given in the interface.

Γ, T ⊢M

METHOD

S = <ρ, η # E>T m(T ′ x) E′ Γ ⊢ S

Γ′ = Γ ∪ ρ ∪ η ∪ η # E ∪ (x, T ′) Γ′ ⊢ e : Te, Ee Γ′ ⊢ Te � T Γ′ ⊢ Ee ⊆ E

m ∈ Dom(S(I))⇒ Γ, I<T ′′, R, E> ⊢ S � S(I)(m)

Γ, I<T ′′, R, E′′> ⊢ S { e }

We check the type and effect of the method body in the environment Γ′ formed by adding the method

parameters toΓ. We writeS(I)(m) to mean the signatureS with namem defined in interfaceI. If no

signature namedm appears in the definition ofI, then we saym 6∈ Dom(S(I)).

Valid method implementations: The judgmentΓ, T ⊢ S � S′ means that signatureS in a class definition

conforms to the signatureS′ in the interface typeT implemented by the class. The judgment holds if the im-

plementing return type is a subtype of the implemented return type; the implemented formal parameter type

is a subtype of the implementing formal parameter type; the implemented effect constraint is a subeffect of

the implementing effect constraint; and the implementing effect summary is a subeffect of the implemented

effect summary.

173

Γ, T ⊢ S � S′

IMPLEMENT

σ = [ρ2 ← ρ1][η2 ← η1] Γ ⊢ σ(φT (E2)) ⊆ E1

Γ ⊢ T1 � σ(φT (T2)) Γ ⊢ σ(φT (T ′

2)) � T ′

1 Γ ⊢ E′

1 ⊆ σ(φT (E′

2))

Γ, T ⊢ <ρ1, η1 # E1>T1 m(T ′

1 x) E′

1 � <ρ2, η2 # E2>T2 m(T ′

2 x′) E′

2

Notice that we have to instantiate the types and effects appearing in the implemented interface definitions,

using the implemented interface typeT , before we can compare them to the implementing types and effects.

To do this we use the translation mappingφT , defined in in Section 8.2.8. We also need to substitute for the

method region and effect parameters, as shown in the rule.

8.2.3 Regions

Valid regions: The judgmentΓ ⊢ R means that regionR is valid in environmentΓ. The judgment holds

if R is a declared region namer, or a region parameterρ in scope, or a valid region with a validr or *

appended.

Γ ⊢ R

RGN-NAME

region r ∈ P

Γ ⊢ r

RGN-PARAM

ρ ∈ Γ

Γ ⊢ ρ

RGN-RPL

Γ ⊢ R Γ ⊢ r

Γ ⊢ R:r

RGN-STAR

Γ ⊢ R

Γ ⊢ R:*

Inclusion of regions: The judgmentΓ ⊢ R ⊆ R′ means that the set of dynamic regions represented byR is

included in the set of dynamic regions represented byR. As before, the judgment is reflexive and transitive.

Otherwise, the relation is given by the nesting of RPLs. Herewe say that the judgment holds ifR′ ends

in * and everything before the* is a prefix ofR. These rules are sufficient for our purpose. In Chapter 4,

we gave further rules that allow more expressivity with RPLs, but are not necessary to illustrate the ideas

discussed in Chapter 7 and so are omitted here.

Γ ⊢ R ⊆ R′

INCLUDE-REFLEXIVE

Γ ⊢ R ⊆ R

INLCUDE-TRANSITIVE

Γ ⊢ R ⊆ R′ Γ ⊢ R′ ⊆ R′′

Γ ⊢ R ⊆ R′′

174

INCLUDE-RECURSIVE

Γ ⊢ R ⊆ R:*

Γ ⊢ R:r ⊆ R:*

INCLUDE-PREFIX

Γ ⊢ R ⊆ R:*

Disjointness of regions:The judgmentΓ ⊢ R # R′ means that the sets of dynamic regions represented by

R andR′ have empty intersection. The judgment holds ifR andR′ are distinct names with* appended, or

if R andR′ are included in disjoint RPLs. Again these rules are sufficient for our purposes; further rules can

be found in Chapter 4. Notice that the disjointness ofr andr′ (if r 6= r′) follows from DISJOINT-NAMES

and INCLUDE-PREFIX. Notice also that in these simplified rules, we model only distinctions from the left

(Section 3.2) and omit distinctions from the right. For example, these rules cannot distinguishr : r1 from

r : r2. Again, that is to keep things as simple as possible and focuson what is important here.

Γ ⊢ R # R′

DISJOINT-NAMES

r 6= r′

Γ ⊢ r:*# r′:*

DISJOINT-INCLUDE

Γ ⊢ R ⊆ R′ Γ ⊢ R′′ ⊆ R′′′ Γ ⊢ R′ # R′′′

Γ ⊢ R # R′′

8.2.4 Types

Valid types: The judgmentΓ ⊢ T means thatT is valid in environmentΓ. The judgment holds ifT is a

valid instantiation of an interface, class, or type parameter; or it isNull.

Γ ⊢ T

TYPE-INTERFACE

defined(I) Γ ⊢ T Γ ⊢ R Γ ⊢ E Γ ⊢ E # φI<T,R,E>(E(I))

Γ ⊢ I<T, R, E>

TYPE-CLASS

defined(C) Γ ⊢ T Γ ⊢ R

Γ ⊢ C<T, R>

TYPE-PARAM

τ ∈ Γ Γ ⊢ R

Γ ⊢ τ<R>

TYPE-NULL

Γ ⊢ Null

defined(I) anddefined(C) mean that a definition of interfaceI or classC appears in the program. Notice

that rule TYPE-INTERFACE checks that the instantiating effect complies with the effect constraint specified

in the interface.E(I) represents the effectE appearing in the parameter constraint of interfaceI. The

translation mappingφT is defined in Section 8.2.8.

Subtypes: The judgmentΓ ⊢ T � T ′ means thatT is a subtype ofT ′. The judgment is reflexive and

175

transitive:

Γ ⊢ T � T ′ SUBTYPE-REFLEXIVE

Γ ⊢ T � T

SUBTYPE-TRANSITIVE Γ ⊢ T � T ′ Γ ⊢ T ′ � T ′′

Γ ⊢ T � T ′′

Otherwise, the judgment holds ifT is a class type andT ′ is the interface type that it implements; orT is

Null (andT ′ is any type); orT andT ′ are related by inclusion.

Γ ⊢ T � T ′

SUBTYPE-INTERFACE-CLASS

class C<τ> { ρ }ρ′I<T, R, E>F ∗ M∗ ∈ P

Γ ⊢ C<T ′, R′> � φC<T ′,R′>(I<T, R, E>)

SUBTYPE-NULL

Γ ⊢ Null � T

SUBTYPE-INCLUDE

Γ ⊢ T ⊆ T ′

Γ ⊢ T � T ′

Note that the inclusion relation⊆ implies subtyping (rule SUBTYPE-INCLUDE), but not vice versa.

Inclusion of types: The judgmentΓ ⊢ T ⊆ T ′ means thatT andT ′ are the same type, except for bindings

to region and effect arguments, which are related by inclusion.

Γ ⊢ T ⊆ T ′ INCLUDE-REFLEXIVE

Γ ⊢ T ⊆ T

INCLUDE-TRANSITIVE

Γ ⊢ T ⊆ T ′ Γ ⊢ T ′ ⊆ T ′′

Γ ⊢ T ⊆ T ′′

INCLUDE-INTERFACE

Γ ⊢ T ⊆ T ′ Γ ⊢ R ⊆ R′ Γ ⊢ E ⊆ E′

Γ ⊢ I<T, R, E> ⊆ I<T ′, R′, E′>

INCLUDE-CLASS

Γ ⊢ T ⊆ T ′ Γ ⊢ R ⊆ R′

Γ ⊢ C<T, R> ⊆ C<T ′, R′>

INCLUDE-PARAM

Γ ⊢ R ⊆ R′

Γ ⊢ τ<R> ⊆ τ<R′>

Note that it would not be sound to putΓ ⊢ T � T ′ in the condition of INCLUDE-INTERFACE or INCLUDE-

CLASS, for the same reason that it is not sound to treatC<C ′> as a subtype ofC<Object> in ordinary

Java [57]. It is sound, however, to make inclusion a condition of subtyping, because we capture regions and

effects as discussed in Section 8.2.7.

176

8.2.5 Effects

Valid effects: The judgmentΓ ⊢ E means that effectE is valid in environmentΓ. An effect is valid if it is

the empty effect, a valid read or write effect, a valid methodparameter, or a union of valid effects.

Γ ⊢ E

EFFECT-EMPTY

Γ ⊢ ∅

EFFECT-READS

Γ ⊢ R

Γ ⊢ reads R

EFFECT-WRITES

Γ ⊢ R

Γ ⊢ writes R

EFFECT-PARAM

η ∈ Γ

Γ ⊢ η

EFFECT-UNION

Γ ⊢ E Γ ⊢ E′

Γ ⊢ E ∪ E′

Subeffects:The judgmentΓ ⊢ E ⊆ E′ means thatE is a subeffect ofE′. As in Chapter 4, the subeffect

relation allows us to approximate an effectE by a “larger” effectE′, while retaining soundness. The relation

is based on three criteria: (1) literal inclusion of component effects; (2) covering of an effect onR by the

same effect onR′, if R′ includesR (Section 8.2.3); and (3) covering of reads by writes. These criteria ensure

that if E is a subeffect ofE′, and some other effectE′′ is noninterfering withE′, thenE′′ is noninterfering

with E as well.

Γ ⊢ E ⊆ E′ SE-REFLEXIVE

Γ ⊢ E ⊆ E

SE-TRANSITIVE Γ ⊢ E ⊆ E′ Γ ⊢ E′ ⊆ E′′

Γ ⊢ E ⊆ E′′

SE-EMPTY

Γ ⊢ ∅ ⊆ E

SE-READS

Γ ⊢ R ⊆ R′

Γ ⊢ reads R ⊆ reads R′

SE-WRITES

Γ ⊢ R ⊆ R′

Γ ⊢ writes R ⊆ writes R′

SE-READS-WRITES

Γ ⊢ R ⊆ R′

Γ ⊢ reads R ⊆ writes R′

SE-UNION-1

Γ ⊢ E ⊆ E′

Γ ⊢ E ⊆ E′ ∪ E′′

SE-UNION-2

Γ ⊢ E′ ⊆ E Γ ⊢ E′′ ⊆ E

Γ ⊢ E′ ∪ E′′ ⊆ E

Noninterfering effects: The judgmentΓ ⊢ E # E′ means that effectsE andE′ are noninterfering. The

noninterference relation is symmetric (obvious rule omitted). Noninterference is based on four criteria:

reads are always noninterfering; disjoint writes are noninterfering; an effect parameter is noninterfering

177

with the effect in its noninterference constraint; and two effects are noninterfering if they are included in

noninterfering effects. These criteria ensure that at runtime, any pair of effects covered by two noninterfering

effects cannot perform a conflicting access to the same memory location.

Γ ⊢ E # E′

NI-EMPTY

Γ ⊢ ∅# E

NI-READS

Γ ⊢ reads R #reads R′

NI-WRITES

Γ ⊢ R # R′

Γ ⊢ writes R #writes R′

NI-PARAM

η # E ∈ Γ

Γ ⊢ η # E

NI-I NCLUDE

Γ ⊢ E # E′ Γ ⊢ E′′ ⊆ E Γ ⊢ E′′′ ⊆ E′

Γ ⊢ E′′ # E′′′

NI-UNION

Γ ⊢ E # E′′ Γ ⊢ E′ # E′′

Γ ⊢ E ∪ E′ # E′′

8.2.6 Expressions

As in the Core DPJ (Chapter 4), every valid expression has a type and an effect. The judgmentΓ ⊢ e : T,E

means that expressione is well typed with typeT and effectE in environmentΓ.

Field access:To type a field access expressionthis.f, we look in the environment to get the classC

bound tothis, then we look in the definition ofC to get the type and region off . F(C)(f) means the

field with namef declared in classC. The effect is a read of the region off .

Γ ⊢ e : T,E

ACCESS

(this, C<τ<ρτ>, ρ>) ∈ Γ F(C)(f) = T f in R

Γ ⊢ this.f : T,reads R

Field assignment:To type a field assignmentthis.f=e, we get the type and region off as discussed for

field access. We also typee and check that its type is a subtype of the type off . The overall effect is the

union of the effectE of e and the write to the region off .

Γ ⊢ e : T,E

ASSIGN

(this, C<τ<ρτ>, ρ>) ∈ Γ Γ ⊢ e : T, E F(C)(f) = T ′ f in R Γ ⊢ T � T ′

Γ ⊢ this.f=e : T, E ∪ writes R

Variable access:To type a variable accessv, we just get the type out of the environment. There is no effect,

178

because effects only track heap accesses.

Γ ⊢ e : T,E

VARIABLE

(v, T) ∈ Γ

Γ ⊢ v : T, ∅

Method invocation: To type a method invocatione1.<R,E>m(e2), we do the following. (1) Compute

the type and effect ofe1 ande2. (2) Use the type ofe1 to find the signature of the method being invoked.

S(T)(m) denotes the signature of the method namedm in the class or interface corresponding toT , which

must be a class or interface type. (3) Check the method effectargument for compliance with the disjointness

constraint in the signature, after translating the constraint by the type ofe1 (Section 8.2.8) and substituting

for the method region and effect arguments. (4) Capture the type ofe1 (Section 8.2.7). (5) Check that the

type ofe2 is a subtype of the formal parameter type in the signature, after translating the formal parameter

type by the captured type ofe1 and substituting for the method region and effect arguments.

Γ ⊢ e : T,E

INVOKE

Γ ⊢ e1 : T1, E1 Γ ⊢ e2 : T2, E2

S(T1)(m) = <ρ, η # E3>T3 m(T4 x) E4 σ = [ρ← R][η ← E5]

Γ ⊢ E5 # σ(φT1
(E3)) Γ ⊢ capt(T1) = (Tc, Γc) Γc ⊢ T2 � σ(φTc

(T4))

Γ ⊢ e1.<R, E5>m(e2) : σ(φT1
(T3)), E1 ∪ E2 ∪ σ(φT1

(E4))

The type of the invocation expression is the return type in the signature, after translation. The effect is the

union of the effects ofe1 ande2, and the declared effect in the signature, after translation.

Object creation: To type an object creation expressionnew C<T,R>, we check that the typeC<T,R> is

valid. There is no effect.

Γ ⊢ e : T,E

NEW

Γ ⊢ C<T, R>

Γ ⊢ new C<T, R> : C<T, R>, ∅

179

Null references: A null reference is always valid with typeNull and empty effect.

Γ ⊢ e : T,E

NULL

Γ ⊢ null : Null, ∅

8.2.7 Capturing Types, Regions, and Effects

The capture of a type is an essential concept in standard Java[57] as well as in Core DPJ (Chapter 4) and

this language. As discussed in Chapter 7, capturing types prevents errors such as the following:

class A<effect E> {
B<E> f;

}
A<writes r> x = new A<pure>()
x.f = new B<writes r>(); // This should not be allowed!

The last assignment violates type preservation, because the dynamic type ofx.f isB<pure>, andwrites r

is not a subtype ofpure. So that last assignment should not be allowed. However, theassignmentwould

be allowed if the static type ofx.f wereB<writes r>. And that is the type you would get by just

substituting the effect argumentwrites r in the static type ofx for E in the definition off in classA. So

that naive method of computing the type ofx.f is incorrect.

Instead, we firstcapturethe typeA<writes r> of x to generate the typeA<E>, whereE is a fresh

effect parameter (called acapture parameter). Then we substitute the region and effect argumentsof the

captured typein computing the type ofx.f. So the type ofx.f isB<E>, whereE is the capture parameter.

The capture parameter represents the unknown effect argument in the dynamic type of the object reference

stored in the variablex. As in Core DPJ (Chapter 4), all partially specified RPLs in type region arguments

must be captured, because the true runtime region is unknown. Further, all nonempty effects in type effect

arguments must be captured, because (except for empty effects), the precise effect is never known.

In the full language, the capture parameter carries an inclusion (for regions) or subeffect (for effects)

bound. The bound is given by the type being captured. For example, the capture ofA<writes r>may be

legally assigned toA<E>, whereE is any supereffect ofwrites r. For simplicity, we omit the bounds

in the formal language. The bounds are not needed for the examples discussed in Chapter 7.

Capturing types: The judgmentΓ ⊢ capt(T) = (T ′,Γ′) means that capturing typeT in environmentΓ

180

produces typeT ′ and environmentΓ′. To capture a non-null type, we capture its component types,regions,

and effects.

Γ ⊢ capt(T) = (T ′,Γ′)

CAPTURE-INTERFACE-TYPE

Γ ⊢ capt(T) = T ′, Γ′ Γ′ ⊢ capt(R) = R′, Γ′′ Γ′′ ⊢ capt(E) = E′, Γ′′′

Γ ⊢ capt(I<T, R, E>) = (I<T ′, R′, E′>, Γ′′′)

CAPTURE-CLASS-TYPE

Γ ⊢ capt(T) = (T ′, Γ′) Γ′ ⊢ capt(R) = (R′, Γ′′)

Γ ⊢ capt(C<T, R>) = (C<T ′, R′>, Γ′′)

CAPTURE-TYPE-PARAM

Γ ⊢ capt(R) = (R′, Γ′)

Γ ⊢ capt(τ<R>) = (τ<R′>, Γ′)

CAPTURE-NULL

Γ ⊢ capt(Null) = (Null, Γ)

Capturing regions: The judgmentΓ ⊢ capt(R) = (R′,Γ′) means that capturing regionR in environment

Γ produces regionR′ and environmentΓ′. If R does not contain*, then the capture operation leaves the

original R andΓ unchanged. Otherwise,R is replaced with a fresh parameterρ, andΓ′ = Γ ∪ ρ.

Γ ⊢ capt(R) = (R′,Γ′)

CAPTURE-NAME

Γ ⊢ capt(r) = (r, Γ)

CAPTURE-PARAM

Γ ⊢ capt(ρ) = (ρ, Γ)

CAPTURE-RECURSIVE-FULL

Γ ⊢ capt(R) = (R, Γ)

Γ ⊢ capt(R:r) = (R:r, Γ)

CAPTURE-RECURSIVE-PARTIAL

Γ ⊢ capt(R) = (ρ, Γ ∪ ρ) ρ 6∈ Γ

Γ ⊢ capt(R:r) = (ρ, Γ ∪ ρ)

CAPTURE-STAR

ρ 6∈ Γ

Γ ⊢ capt(R:*) = (ρ, Γ ∪ ρ)

Capturing effects: The judgmentΓ ⊢ capt(E) = (E′,Γ′) means that capturing effectE in environmentΓ

produces effectE′ and environmentΓ′. For simplicity, we capture all effects with a fresh parameter, though

we could avoid capturing empty effects.

Γ ⊢ capt(E) = (E′,Γ′)

CAPTURE-EFFECT

η 6∈ Γ

Γ ⊢ capt(E) = (η, Γ ∪ η)

181

8.2.8 The Translation MappingφT

The mappingφT translates a type, region, or effect defined in an interfaceI or classC to its use as a member

of typeT that instantiatesI or C (the instantiating type). T must be a class or interface type.

Types: To translate an interface or class type, we translate its arguments:

φT (I<T ′, R,E>) = I<φT (T ′), φT (R), φT (E)>

φT (C<T ′, R>) = C<φT (T ′), φT (R)>

To translate the parameter typeτ<R>, we use the instantiating typeT , but we replace its region argument

with the parameter’s region argumentR, after translating it:

φI<T,R,E>(τ<R′>) = I<T, φI<T,R,E>(R′), E>

φC<T,R>(τ<R′>) = C<T, φI<T,R>(R′)>

Finally, φT (Null) = Null.

Regions: Let ρ(T) andρτ (T) be the region parameter and type region parameter of the interface or class

thatT instantiates.φT is the identity on all regions exceptρ(T) andρτ (T). For ρ(T), we use the region

argument of the instantiating type:

φI<T,R,E>(ρ(I<T,R,E>)) = R

φC<T,R>(ρ(C<T,R>)) = R

Forρτ (T), we use the region argument of the type argument of the instantiating type:

φI<T,R,E>(ρτ (I<T,R,E>)) = R(T) if T 6= Null, elseR

φC<T,R>(ρτ (C<T,R>)) = R(T) if T 6= Null, elseR

R(T) is the region argument of the type. If the type argument isNull, then we treatρτ as an alias forρ.

This is an appropriate solution for our simplified formal language, in which every class and interface has a

parameterτ<ρ>. As noted in 7, in the full language, we support classes and interfaces with no type region

182

parameter (or no type parameter at all), and we disallow bindings of types lacking a region argument to a

type parameter with a region parameter.

Effects: The following rules defineφT (E), whereη(I) is the declared effect parameter of interfaceI, and

φT (E) = E in any case not defined below:

φT (∅) = ∅ φT (reads R) = reads φT (R) φT (writes R) = writes φT (R)

φI<T,R,E>(η(I)) = E φT (E ∪ E′) = φT (E) ∪ φT (E′)

8.3 Dynamic Semantics

8.3.1 Execution Environment

We give a large-step semantics for program execution, usingthe following transition relation:

(e,Σ,H)→ (o,H ′, E).

e is a program expression. The dynamic environmentΣ maps variablesv to object referenceso, region

parametersρ to regionsR, and effect parametersη to effectsE:

Σ ::= ∅ | (v, o) | (ρ,R) | (η,E) | Σ ∪ Σ

The heapH is a partial function from object referenceso to pairs(O,C<T,R>), whereO is an object, and

C<T,R> is the type ofO:

H ::= null | o 7→ (O,C<T,R>) | H ∪H

null is a special reference that is inDom(H) but does not map to an object. Attempting to access a field

of null causes execution to fail. An objectO is a mapping from field namesf to object referenceso:

O ::= ∅ | f 7→ o | O ∪O

183

The effectE collects the effect of the evaluation. A program evaluates to referenceo with heapH and effect

E if its main expression ise and

(e,null, ∅)→ (o,H,E)

according to the transition rules given in the next section.

8.3.2 Transition Rules

Field access:To evaluatethis.f, we look in the environment to get the object referenceo bound tothis;

look in the heap to get the objectO and typeC<T,R> bound too; look in the definition ofC to get the

region off ; and readO(f) out of the heap. We record the read effect on the region off , after applying the

dynamic translation function (Section 8.3.3).

(e,Σ,H)→ (o,H ′, E)

DYN-ACCESS

(this, o) ∈ Σ H(o) = (O, C<T, R>) F(C)(f) = T ′ f in R′

(this.f, Σ, H)→ (O(f), H,reads φΣ,H(R′))

Field assignment:To evaluatethis.f=e, we evaluatee, yielding an object referenceo and an effectE.

Then we look up the object and type ofthis as for field access, except that we writeo to f instead of

reading it. To represent the heap update, we writeg[a 7→ b] (whereg is a function) to denote the function

identical tog everywhere on its domain, except that it mapsa to b. We record the write effect on the region

of f , after applying the dynamic translation function.

(e,Σ,H)→ (o,H ′, E)

DYN-ASSIGN

(e, Σ, H)→ (o, H ′, E) (this, o′) ∈ Σ H ′(o′) = (O, C<T, R>) F(C)(m) = T ′ f in R′

(this.f=e, Σ, H)→ (o, H ′[o′ 7→ (O[f 7→ o], C<T, R>)], E ∪ writes φΣ,H(R′))

Method invocation: To evaluatee1.<R,E>m(e2), we evaluatee1 ande2. We look up the object cor-

responding toe1 and look up the methodm for that object. Then we evaluate the method body in the

environment formed by binding the value, region, and effectarguments as given in the invocation expres-

184

sion. We accumulate the effects from all the evaluations.

(e,Σ,H)→ (o,H ′, E)

DYN-INVOKE

(e1, Σ, H1)→ (o1, H2, E2) (e2, Σ, H2)→ (o2, H3, E3) H3(o1) = (O, C<T1, R
′>)

M(C)(m) = <ρ, η # E4>T2 m(T3 x) E5 { e3 }

Σ′ = (this, o1) ∪ (x, o2) ∪ (ρ, φΣ,H(R)) ∪ (η, φΣ,H(E1)) (e3, Σ
′, H3)→ (o3, H4, E6)

(e1.<R, E1>m(e2), Σ, H1)→ (o3, H4, E2 ∪ E3 ∪E6)

Variable access:To evaluate a variable access, we look the variable up in the environment. There is no

effect.

(e,Σ,H)→ (o,H ′, E)

DYN-VARIABLE

(v, o) ∈ Σ

(v, Σ, H)→ (o, H, ∅)

Object creation: To evaluate an object creation expressionnewC<T,R>, we bind a fresh object reference

to a fresh object in the heap, and give it the typeC<T,R>, after applying the dynamic translation function.

new(C) is the function taking each field of classC to null.

(e,Σ,H)→ (o,H ′, E)

DYN-NEW

o 6∈ Dom(H) H ′ = H ∪ o 7→ (new(C), φΣ,H(C<T, R>))

(new C<T, R>, Σ, H)→ (o, H ′, ∅)

8.3.3 The Dynamic Translation FunctionφΣ,H

The dynamic translation functionφΣ,H translates a static type, region, or effect to a dynamic type, region,

or effect using the current environmentΣ and heapH. First we substitute for region parameters using the

bindings inΣ; then we substitute for effect parameters inΣ; then we apply the translation functionφT from

Section 8.2.8, whereT is the type inH of the reference bound tothis in Σ.

Formally, the definition ofφΣ,H applied to regions is as follows:

1. If Σ = (ρ,R′) ∪ Σ′, thenφΣ,H(R) = φΣ′,H(R[ρ← R′]).

2. Otherwise ifΣ = (η,E) ∪ Σ′, thenφΣ,H(R) = φΣ′,H(R[η ← E]).

185

3. Otherwise ifΣ = (this, o) ∪ Σ′, thenφΣ,H(R) = φT (R), whereH(o) = (O,T), andφT is the

translation function defined in Section 8.2.8.

4. OtherwiseφΣ,H(T) = T .

φΣ,H applies to types and effects in the same way.

8.4 Soundness

We prove soundness as follows. In Section 8.4.1, we define valid static environments. In Section 8.4.2, we

show that typing expressions in a valid static environment yields valid types and effects. In Section 8.4.3, we

define valid execution state. In Section 8.4.4, we state and prove type and effect preservation, i.e., that the

dynamic types and effects agree with their static approximations. In Section 8.4.5, we provepreservation of

noninterference, i.e., that the static noninterference judgment implies noninterference at runtime.

8.4.1 Static Environments

A static environmentΓ consists of bindings(v, T), type parametersτ , region parametersρ, effect parameters

η, and effect constraintsη # E. A static environment is valid if its elements are valid withrespect to itself:

⊢ Γ

ENV

Γ ⊢ Γ

⊢ Γ

Γ ⊢ Γ′

ENV-EMPTY

Γ ⊢ ∅

ENV-VAR

Γ ⊢ T

Γ ⊢ (v, T)

ENV-TYPE-PARAM

Γ ⊢ τ

ENV-RGN-PARAM

Γ ⊢ ρ

ENV-EFFECT-PARAM

Γ ⊢ η

ENV-CONST

Γ ⊢ E

Γ ⊢ η # E

ENV-UNION

Γ ⊢ Γ′ Γ ⊢ Γ′′

Γ ⊢ Γ′ ∪ Γ′′

8.4.2 Validity of Static Typing

Our first soundness result is a claim about the static typing rules for expressions in Section 8.2.6. It says

that if we type a valid expression in a valid static environment, we get a valid type and a valid effect. The

hard part of the proof is to show that composing the substitutionsσ (for the method parameters) andφT (for

the class parameters) in rule INVOKE produces valid types and effects when applied to the return type and

186

effect summary of the method signature, assuming a valid signature checked by rule SIGNATURE. Proving

this result requires a fair amount of machinery in the form ofsupporting lemmas.

This section proceeds in four parts. In part 1, we show thatσ ◦ φT preserves validity, inclusion, and

disjointness of regions. We also show that applyingφT ◦ φT ′ to a region is equivalent to applyingφφT (T ′)

to that region. In part two, we show the same results for effects. In part 3, we show thatσ ◦ φT preserves

validity of types. In part 4, we use the results of parts 1–3 toprove the final result about valid static typing.

The proof is easy, once the machinery in parts 1–3 is in place.

We use the following notation:

• ΓI denotes the environment we use to type interfaceI in rule INTERFACE (Section 8.2.2).ΓC denotes

the environment we use to type classC in rule CLASS (Section 8.2.2).ΓT denotesΓI (if T is an

interface type that instantiates interfaceI) or ΓC (if T is a class type that instantiates classC).

• As in Section 8.2.8,ρ(T) andρτ (T) denote the region parameter and type region parameter of the

class or interface instantiated byT . Similarly for τ(T) (type parameter) andη(T) (effect parameter).

• As in Section 8.2.8,R(T) denotes the region argument ofT . Similarly for T (T) (type argument) and

E(T) (effect argument).

1. Translation of Regions

Valid regions: We show thatσ ◦ φT takes valid regions to valid regions. For simplicity, we omit the effect

parameters, arguments, and constraints, because they are irrelevant to judgments about regions.

Lemma 8.4.1. If ΓT ∪ ρ ⊢ R andσ = [ρ← R′] andΓ ⊢ T andΓ ⊢ R′, thenΓ ⊢ σ(φT (R)).

Proof. Use induction on the length ofR (i.e., how many colon-separated elementsR contains, according

to the syntax in Section 8.1). In the base case, there is nothing to show unlessR is ρ(T) or ρτ (T) or ρ. In

the first case,φT (R) = R(T), which is valid byΓ ⊢ T and rules TYPE-INTERFACE and TYPE-CLASS.

In the second case, ifT (T) is Null, then the situation is identical to the first case. OtherwiseT (T) is an

interface, class, or type parameter instantiated with region R′, andφT (R) = R′, which is valid byΓ ⊢ T

and rules TYPE-INTERFACE, TYPE-CLASS, and TYPE-PARAM . In the third case, the result holds because

we are replacingρ with R′, which is valid inΓ. The inductive case follows immediately from the induction

hypothesis, because the appended elementsr and* are unaffected byφT .

187

Inclusion of regions: We show thatσ ◦ φT preserves inclusion of regions. Again we ignore effect parame-

ters.

Lemma 8.4.2. LetΓ = ΓT ∪ ρ andσ = [ρ← R′′]. If Γ ⊢ R andΓ ⊢ R′ andΓ ⊢ R ⊆ R′ andΓ′ ⊢ T and

Γ′ ⊢ R′′, thenΓ′ ⊢ σ(φT (R)) ⊆ σ(φT (R′)).

Proof. It suffices to show that applyingσ ◦ φT to every term of a proof ofΓ ⊢ R ⊆ R′ yields a proof of

Γ′ ⊢ σ(φT (R)) ⊆ σ(φT (R′)). To show this, use induction on the length of the proof ofΓ ⊢ R ⊆ R′.

In the base case there is one rule application, either reflexivity or INCLUDE-PREFIX. In both cases the

result holds because we are substituting the same thing for the same region parameters in bothR andR′.

In the inductive case, if the last rule application is reflexivity or INCLUDE-PREFIX, the result holds by the

argument just given. If the last rule application is transitivity or I NCLUDE-RECURSIVE, then the result

follows from the induction hypothesis.

Composition ofφT and φT ′ : We show thatφT ◦ φT ′ is equivalent toφφT (T ′), when applied to regions.

Lemma 8.4.3. LetT andT ′ be class or interface types. ThenφφT (T ′)(R) = φT (φT ′(R)).

Proof. In the base case there is nothing to show unlessR is ρ(T ′) or ρτ (T
′). In the first case, ifT ′ is the

class typeC<T ′′, R′>, then

φφT (T ′)(R) = φC<φT (T ′′),φT (R′)>(ρ(T ′)) = φT (R′),

while

φT (φT ′(R)) = φT (R′).

The argument ifT ′ is an interface type is almost identical. In the second case,if T (T ′) = Null, then we

are in the same situation as the first case. Otherwise,T (T ′) = I<T ′′, R′, E′>, or T (T ′) = C<T ′′, R′>, or

T (T ′) = τ<R′>. In the first two cases,φφT (T ′)(R) = φT (R′), while φT (φT ′(R)) = φT (R′). In the third

case, ifT instantiates classC andT ′ instantiates classC ′, then

φT (T ′) = C ′<C<T ′′, φT (R′)>, R′′>,

andφφT (T ′)(ρτ (T
′)) = φT (R′). On the other handφT (φT ′(ρτ (T

′))) = φT (R′). The argument ifT and/or

188

T ′ is an interface type is almost identical. The inductive caseis obvious.

Disjoint regions: We show thatσ◦φT preserves disjointness of regions. Again we ignore effect parameters.

Lemma 8.4.4. LetΓ = ΓT ∪ ρ andσ = [ρ← R′′]. If Γ ⊢ R andΓ ⊢ R′ andΓ ⊢ R # R′ andΓ′ ⊢ T and

Γ′ ⊢ R′′, thenΓ′ ⊢ σ(φT (R))# σ(φT (R′)).

Proof. By induction on the length ofR. The result holds in the base case (DISJOINT-NAMES) because

parameter substitution has no effect on the application of that rule. The inductive case is obvious.

2. Translation of Effects

Valid effects: We show thatσ ◦ φT takes valid effects to valid effects. We omit the effect constraints, as

they are irrelevant to validity of effects.

Lemma 8.4.5. If ΓT ∪ ρ ∪ η ⊢ E andσ = [ρ ← R][η ← E′] andΓ ⊢ T andΓ ⊢ R andΓ ⊢ E′, then

Γ ⊢ σ(φT (E)).

Proof. To computeφT (E) we substitute for region and effect parameters. Lemma 8.4.1gives the result for

the region parameters. For effect parameters, we are eithersubstitutingE(T) for η(T), or we are substituting

E′ for η. In the first case,E(T) is valid byΓ ⊢ T and TYPE-INTERFACE. In the second case,E′ is valid

by hypothesis.

Subeffects:We show thatσ ◦ φT preserves subeffects. Again we ignore the effect constraints.

Lemma 8.4.6. LetΓ = ΓT ∪ ρ∪ η andσ = [ρ← R][η ← E′′]. If Γ ⊢ E andΓ ⊢ E′ andΓ ⊢ E ⊆ E′ and

Γ′ ⊢ T andΓ′ ⊢ R andΓ′ ⊢ E′′, thenΓ′ ⊢ σ(φT (E)) ⊆ σ(φT (E′)).

Proof. Use the same technique as for the proof of Lemma 8.4.2. The base case is a proof using only SE-

EMPTY, which obviously yields a correct proof under transformation byσ ◦ φT . In the inductive case, if

the last rule application is SE-READS, SE-WRITES, or SE-READS-WRITES, then the result follows from

Lemma 8.4.2. Otherwise, the result follows from the induction hypothesis.

Composition ofφT and φT ′ : We show thatφT ◦ φT ′ is equivalent toφφT (T ′), when applied to effects.

Lemma 8.4.7. LetT andT ′ be class or interface types. ThenφφT (T ′)(E) = φT (φT ′(E)).

189

Proof. In view of Lemma 8.4.3, it suffices to showφφT (T ′)(η(T ′)) = φT (φT ′(η(T ′))). Pushing through the

rules shows that on both sides we haveφT (E(T ′)).

Noninterfering effects: We show thatσ ◦ φT preserves noninterfering effects. Here we need the effect

constraints to establish disjointness.

Lemma 8.4.8. Let Γ = ΓT ∪ ρ ∪ η ∪ η # Eη and σ = [ρ ← R][η ← E′′]. If Γ ⊢ E and Γ ⊢ E′

and Γ ⊢ E # E′ and Γ′ ⊢ T and Γ′ ⊢ R and Γ′ ⊢ E′′, and Γ′ ⊢ E′′# σ(φT (Eη)), then Γ′ ⊢

σ(φT (E))# σ(φT (E′)).

Proof. We break the proof into two parts. In part 1, we showΓ′′ ⊢ φT (E)# φT (E′), whereΓ′′ = Γ′ ∪ ρ ∪

η ∪ η # φT (Eη). In part 2, we use part 1 to show the final result.

Part 1: In view of NI-UNION and NI-EMPTY, it suffices to assume thatE andE′ are each a single read

effect, write effect, or effect parameter. If neither effect is a parameter, then either both are reads or the

regions are disjoint, so the result follows from Lemma 8.4.4. Otherwise, we may assume without loss of

generality thatE = η(T) orE = η. In either case, the only way to establishΓT ⊢ E # E′ is via NI-PARAM

and NI-INCLUDE, using an effect constraint.

If E = η(T), then we must haveΓT ⊢ E′ ⊆ Eη(T), whereEη(T) denotes the effect in the parameter

constraint ofT (also,T is an interface type, since class types don’t have effect parameters in this language).

By Lemma 8.4.6 (withR′′ = ρ andE′ = η), (a) Γ′′ ⊢ φT (E′) ⊆ φT (Eη(T)). By assumptionΓ′ ⊢ T ,

which impliesΓ′′ ⊢ T . By that fact together with TYPE-INTERFACE, (b) Γ′′ ⊢ φT (η(T))# φT (Eη(T)).

(a) and (b) together with NI-INCLUDE yield Γ′′ ⊢ φT (η(T))# φT (E′).

If E = η, then we must haveΓT ⊢ E′ ⊆ Eη. By Lemma 8.4.6 applied to that fact, (a)Γ′′ ⊢ φT (E′) ⊆

φT (Eη). On the other hand, becauseη is not a parameter ofT , we haveφT (η) = η. Therefore the definition

of Γ′′ gives (b)Γ′′ ⊢ φT (η)# φT (Eη). Again by NI-INCLUDE, (a) and (b) yieldΓ′′ ⊢ φT (η)# φT (E′).

Part 2: In view of part 1 and Lemma 8.4.4, it suffices to show (renamingvariables) that ifΓ = Γ′∪η∪η # Eη

andΓ ⊢ E andΓ ⊢ E′ andΓ ⊢ E # E′ andΓ′ ⊢ E′′ andΓ′ ⊢ E′′# σ(Eη), thenΓ′ ⊢ σ(E)# σ(E′),

whereσ = [η ← E′′]. The result obviously holds unlessE or E′ containsη; so assume without loss of

generality thatE = η. Then we are trying to showΓ′ ⊢ E′′# σ(E′). By NI-INCLUDE and the assumptions

it suffices to showΓ′ ⊢ σ(E′) ⊆ σ(Eη). By the same argument as in the proof of Lemma 8.4.4, this is true

if Γ ⊢ E′ ⊆ Eη. But as in the proof of part 1, that fact follows from the assumption Γ ⊢ η # E′.

190

3. Translation of Types

We show thatσ ◦ φT takes valid types to valid types.

Lemma 8.4.9. LetΓ = ΓT ∪ ρ ∪ η ∪ η # Eη andσ = [ρ← R][η ← E]. If Γ ⊢ T ′ andΓ′ ⊢ T andΓ′ ⊢ R

andΓ′ ⊢ E andΓ′ ⊢ E # σ(φT (Eη)), thenΓ′ ⊢ σ(φT (T ′)).

Proof. Again we break the proof into two parts. In part 1, we showΓ′′ ⊢ φT (T ′), whereΓ′′ = Γ′ ∪ ρ ∪ η ∪

η # φT (Eη). In part 2, we use part 1 to show the final result.

Part 1: Use induction on the number of applications ofφT to a type. The base cases areT ′ = Null

and T ′ = τ(T)<R>. The first case is obvious. In the second case, ifT is a class typeC<T ′′, R′>,

thenφT (T ′) = C<T ′′, φT (R)>, and all the requirements of TYPE-CLASS are implied byΓ′ ⊢ T except

Γ′ ⊢ φT (R), which is given by Lemma 8.4.1. IfT is an interface type, the argument is nearly identical.

In the inductive case, ifT ′ is a class typeC<T ′′, R′>, thenφT (T ′) = C<φT (T ′′), φT (R′)>, and all

the requirements of TYPE-CLASS are implied by the induction hypothesis and Lemma 8.4.1. IfT ′ is an

interface typeI<T ′′, R′, E′>, thenφT (T ′) = I<φT (T ′′), φT (R′), φT (E′)>, and all the requirements of

TYPE-INTERFACE are implied by the induction hypothesis and Lemmas 8.4.1 and5, except

Γ′′ ⊢ φT (E′)# φφT (T ′)(Eη(T
′)).

By Lemma 8.4.7, this is equivalent to

Γ′′ ⊢ φT (E′)# φT (φT ′(Eη(T
′))).

By Γ ⊢ T ′ and TYPE-INTERFACE, Γ ⊢ E′# φT ′(Eη(T
′)). The result then follows from Lemma 8.4.8.

Part 2: In view of part 1, it suffices to show (renaming variables) that if Γ = Γ′ ∪ ρ ∪ η ∪ η # Eη and

σ = [ρ← R][η ← E] andΓ ⊢ T andΓ′ ⊢ R andΓ′ ⊢ E andΓ′ ⊢ E # σ(Eη), thenΓ′ ⊢ σ(T). Giveσ its

obvious recursive definition for types, regions, and effects, and use induction on the number of applications

of σ to a type. The base cases areT = Null andT = τ<R′>. The first case is obvious, and the second

one follows from the argument used to prove Lemma 8.4.1.

In the inductive case, ifT is a class typeC<T ′, R′>, thenσ(T) = C<σ(T ′), σ(R′)>, and all the

requirements of TYPE-CLASS are implied by the induction hypothesis and the argument used to prove

191

Lemma 8.4.1. IfT is an interface typeI<T ′, R′, E′>, thenσ(T) = I<σ(T ′), σ(R′), σ(E′)>, and all the

requirements of TYPE-INTERFACE are implied by the induction hypothesis, the argument used to prove

Lemma 8.4.1, and the argument used to prove Lemma 5, except

Γ′ ⊢ σ(E′)# φσ(T)(Eη(T)).

By an argument similar to the proof of Lemma 8.4.7, this is equivalent to

Γ′ ⊢ σ(E′)# σ(φT (Eη(T))).

By Γ ⊢ T and TYPE-INTERFACE, Γ ⊢ E′# φT (Eη(T)). So the result is obvious unlessE′ or φT (Eη(T))

containsη. Assume without loss of generality (as before) thatE′ = η. Then we must haveΓ ⊢ φT (Eη(T)) ⊆

Eη. By hypothesis,Γ′ ⊢ σ(E′)# σ(Eη). So the result follows from DISJOINT-INCLUDE if

Γ′ ⊢ σ(φT (Eη(T))) ⊆ σ(Eη).

But this is true by the argument given in the proof of Lemma 8.4.6.

4. Validity of Expression Typing

Theorem 8.4.10(Validity of static expression typing). If ⊢ P and⊢ Γ andΓ ⊢ e : T,E, thenΓ ⊢ T and

Γ ⊢ E.

Proof. By induction on the structure ofe.

Base cases:The base cases are rules ACCESS, VARIABLE , and NEW. As to ACCESS, in order for the

rule to apply, the expressione being typed must be in the body of a method of some classC. Rule FIELD

guarantees thatΓC ⊢ T andΓC ⊢ R. Further, by METHOD, we haveΓC ⊆ Γ, soΓ ⊢ T andΓ ⊢ R. For

VARIABLE , the result follows from the definition of⊢ Γ. For NEW, the type is checked in applying the rule,

and the effect is empty.

Inductive cases:The inductive cases are ASSIGN and INVOKE. For ASSIGN, the result follows from the

induction hypothesis applied to the subexpression, together with the same argument used for ACCESSfor

the type and region of the fieldf . For INVOKE, the result follows from the induction hypothesis applied to

E1 andE2, Lemma 8.4.9 applied toσ(φT1
(T3)), and Lemma 8.4.5 applied toσ(φT1

(E4)).

192

8.4.3 Execution State

Heaps: To describe valid heaps, we need some rules for typing references:

H ⊢ o : T

TYPE-OBJECT

o 7→ (O, T) ∈ H

H ⊢ o : T

TYPE-NULL

H ⊢ null : Null

Now we can describe the typing of heaps. A heap is valid if its elements are valid:

⊢ H

HEAP-NULL

H ⊢ null

HEAP-OBJECT

H ⊢ (O, T)

H ⊢ o 7→ (O, T)

HEAP-UNION

⊢ H ⊢ H ′

⊢ H ∪H ′

An object-type pair(O,T) is valid if (1) T is a valid type in the empty environment; and (2) for every field

f in F(C), O(f) is defined, and its type is a subtype of the static type off , after translation viaφT :

H ⊢ (O,T)

OBJECT

∅ ⊢ C<T, R> ∀(f ∈ Dom(F(C))).(F(C)(f) = T ′ f in R′ ∧H ⊢ O(f) : T ′′ ∧ ∅ ⊢ T ′′ � φC<T,R>(T ′))

H ⊢ (O, C<T, R>)

Notice that at runtime, we check types in the empty environment ∅, because all parameters have been

substituted away.

Dynamic environments: A dynamic environmentΣ is valid if its elements are valid with respect to a heap

H:

H ⊢ Σ

DYN-ENV-EMPTY

H ⊢ ∅

DYN-ENV-VAR

H ⊢ o : T

H ⊢ (v, o)

DYN-ENV-RGN-PARAM

∅ ⊢ R

H ⊢ (ρ, R)

DYN-ENV-EFFECT-PARAM

∅ ⊢ E

H ⊢ (η, E)

DYN-ENV-UNION

H ⊢ Σ H ⊢ Σ′

H ⊢ Σ ∪ Σ′

193

Instantiation of environments: The judgmentH ⊢ Σ � Γ says thatΣ instantiatesa static environmentΓ.

That means the variables and parameters appearing in both environments match; the types of the variable

bindings in both environments match; and the effect bindings inΣ obey the disjointness constraints specified

by Γ. Instantiation allows us to use the static typing of expressions to infer that the dynamic execution of

those expressions is well-behaved.

The basic rule for instantiation just records the original dynamic environmentΣ to the left of the⊢.

This makes the original dynamic environment is available aswe dissect the environment to compare it to

the static environment element by element:

H ⊢ Σ � Γ

INSTANTIATE

Σ, H ⊢ Σ � Γ

H ⊢ Σ � Γ

Next we have the element-by-element rules. First we give theusual rules for empty environments and

unions; these just say formally that we compare the two environments element by element:

Σ,H ⊢ Σ′ � Γ

INST-EMPTY

Σ, H ⊢ ∅ � ∅

INST-UNION

Σ, H ⊢ Σ′ � Γ Σ, H ⊢ Σ′′ � Γ′

Σ, H ⊢ Σ′ ∪Σ′′ � Γ ∪ Γ′

The rule for variables says that the dynamic type of the referenceo bound tov in Σ has to match the static

typeT of v in Γ:

H ⊢ Σ � Γ

INST-VAR

H ⊢ o : T ∅ ⊢ T � φΣ,H(T ′)

Σ, H ⊢ (v, o) � (v, T ′)

For region parameters, we need three rules. The first handlesmethod region parameters, whose bindings

appear explicitly inΣ. The second and third handle the class region parameters, whose bindings are given

implicitly by the type of the reference bound tothis in Σ:

H ⊢ Σ � Γ

INST-METHOD-RGN-PARAM

Σ, H ⊢ (ρ, R) � ρ

194

INST-CLASS-RGN-PARAM

(this, o) ∈ Σ H ⊢ o : T

Σ, H ⊢ ∅ � ρ(T)

INST-CLASS-TYPE-RGN-PARAM

(this, o) ∈ Σ H ⊢ o : T

Σ, H ⊢ ∅ � ρτ (T)

For effect parameters, we just need to handle method effect parameters, because there are no class effect

parameters. We must ensure that the effect parameter has a binding, and that the effect constraints are

satisfied:

H ⊢ Σ � Γ

INST-EFFECT-PARAM

Σ, H ⊢ (η, E) � η

INST-CONSTRAINT

∅ ⊢ φΣ,H(η)# φΣ,H(E)

Σ, H ⊢ ∅ � η # E

The rule for type parameters is simple, since these don’t appear inΣ:

H ⊢ Σ � Γ

INST-TYPE-PARAM

Σ, H ⊢ ∅ � τ

Execution state: The judgmentΓ ⊢ (e,Σ,H) : T,E means that execution state(e,Σ,H) is valid with

respect to static environmentΓ (the environment in whiche was typed in the static semantics) with typeT

and effectE. That meansΓ, Σ, andH are valid;Σ instantiatesΓ; ande is well typed inΓ with typeT and

effectE.

Γ ⊢ (e,Σ,H) : T,E

STATE

⊢ Γ ⊢ H H ⊢ Σ H ⊢ Σ � Γ Γ ⊢ e : T, E

Γ ⊢ (e, Σ, H) : T, E

8.4.4 Preservation of Type and Effect

The second soundness result states that the static types andeffects computed according to Section 8.2.6 ap-

proximate the dynamic types and effects produced by execution according to Section 8.3.2. More precisely,

if we evaluatee to o starting in a valid execution state, then the resulting heapis valid; o is well typed, and

its type is a subtype of the static type ofe; and the resulting effect is valid and a subeffect of the static effect

of e. In the rest of this section, assumeH is a valid heap,Σ is a valid dynamic environment,Γ is a valid

static environment, andΣ instantiatesΓ. In symbols, that is⊢ H, H ⊢ Σ, ⊢ Γ, andH ⊢ Σ � Γ.

195

Lemma 8.4.11. If Γ ⊢ R, then∅ ⊢ φΣ,H(R). The same result holds replacingR with E or T .

Proof. Regions: By induction on the number of applications ofφΣ,H . The first base case is (4) in the

definition ofφΣ,H (Section 8.3.3). In this case,φΣ,H(R) = R, so we must show∅ ⊢ R. By H ⊢ Σ � Γ,

there cannot be any parameters in scope inΓ, since there are none inΣ. So byΓ ⊢ R, R is not a parameter,

and∅ ⊢ R. The second base case is (3) in the definition ofφΣ,H . In that case, byH ⊢ Σ � Γ, Γ = ΓT ∪Γ′,

andΓT ⊢ R. Since∅ ⊢ T by OBJECT, the result follows from Lemma 8.4.1. The first inductive case is (1) in

the definition ofφΣ,H , i.e.,(ρ,R′) ∈ Σ. In that case, byH ⊢ Σ � Γ, Γ = ρ∪ Γ′. Further,Γ′ ⊢ R[ρ← R′],

because the substitution eliminatesρ. The result then follows from the induction hypothesis. Thesecond

inductive case is (2) in the definition ofφΣ,H . But this case obviously holds, as regions have no effect

parameters.

Types and effects:The identical argument goes through using Lemma 8.4.5 for effects and Lemma 8.4.9

for types, except that we treat cases (1) and (2) together anduse them to establish the preconditions of the

lemmas.

Lemma 8.4.12. If Γ ⊢ R andΣ ⊢ R′ andΓ ⊢ R ⊆ R′, then∅ ⊢ φΣ,H(R) ⊆ φΣ,H(R′). The same result

holds replacingR andR′ with E andE′.

Proof. Same proof as for Lemma 8.4.11, except that the first base caseis obvious from the definition of

φΣ,H , and the argument for the second base case uses Lemmas 8.4.2 and 8.4.6.

Lemma 8.4.13. If Γ ⊢ R andΓ ⊢ R′ andΓ ⊢ R # R′, then∅ ⊢ φΣ,H(R)# φΣ,H(R′). The same result

holds replacingR with R′ andE with E′.

Proof. Same proof as for Lemma 8.4.12, using Lemmas 8.4.4 and 8.4.8 instead of Lemmas 8.4.2 and 8.4.6.

Lemma 8.4.14. If Γ ⊢ T � T ′, thenΣ ⊢ φΣ,H(T) � φΣ,H(T ′).

Proof. Consider each of the three possibilities for the last rule applied in the proof ofΓ ⊢ T � T ′. In the

case of SUBTYPE-NULL , the result is obvious. In the case of SUBTYPE-INTERFACE-CLASS, it suffices to

show

φΣ,H(φC<T ′,R′>(I<T,R,E>)) = φφΣ,H(C<T ′,R′>)(I<T,R,E>).

196

But we can do this easily with an argument similar to the one used to prove Lemmas 8.4.3 and 8.4.7. In the

case of SUBTYPE-INCLUDE, the problem is reduced to proving thatΓ ⊢ T ⊆ T ′ impliesΣ ⊢ φΣ,H(T) ⊆

φΣ,H(T ′).

To prove the last fact, use induction on the height of the proof that Σ ⊢ T ⊆ T ′. The base case is

reflexivity. Otherwise, the result is given by the inductionhypothesis, together with Lemmas 8.4.2 and 8.4.6.

Lemma 8.4.15. If ∅ ⊢ T1 and∅ ⊢ T2 and∅ ⊢ T1 ⊆ T2, then∅ ⊢ φT1
(R) ⊆ φT2

(R). The same result holds

replacingR with E or T .

Proof. Via a straightforward induction, using the fact that all thepreconditions in all the rules forΣ ⊢ T ⊆

T ′ (Section 8.2.4) are written in terms of⊆.

Theorem 8.4.16(Preservation of type and effect). If ⊢ P and Γ ⊢ (e,Σ,H) : Ts, Es and (e,Σ,H) →

(o,H ′, E), then (a)⊢ H ′; (b) H ′ ⊢ o : T ; (c) ∅ ⊢ T � φΣ,H′(Ts); (d) ∅ ⊢ E; and (e)∅ ⊢ E ⊆ φΣ,H′(Es).

Proof. By induction on the structure ofe.

Base cases:DYN-ACCESS: (a) holds because the heap is unchanged. (b) and (c) hold by⊢ H, OBJECT,

and the definition ofH ⊢ o : T . (d) holds by FIELD and Lemma 10. (e) follows directly from the definitions

of ACCESSand DYN-ACCESS.

DYN-VARIABLE : (a), (d), and (e) are trivial. (b) holds byH ⊢ Σ. (c) holds by comparing VARIABLE

with DYN-VARIABLE , and byH ⊢ Σ � Γ.

DYN-NEW: For (b), it suffices to showH ⊢ φΣ,H(C<T,R>) in DYN-NEW. But this follows from

NEW and Lemma 8.4.11. (a) follows from (b) and OBJECT. (c) is obvious from DYN-NEW. (d) and (e) are

trivial.

Inductive cases:DYN-ASSIGN: The induction hypothesis applied to the subexpressione gives⊢ H ′, so

to establish (a) it suffices to show that the typeTo of o is legal to assign tof , according to rule OBJECT.

Let Te be the static type ofe according to rule ASSIGN, andTf be the type of fieldf . By Theorem 8.4.10,

Γ ⊢ Te, and by ASSIGN, Γ ⊢ Te � Tf . Lemma 8.4.14 yieldsΣ ⊢ φΣ,H(Te) � φΣ,H(Tf), and the induction

hypothesis givesΣ ⊢ To � φΣ,H(Te). Together with the transitivity of subtyping, this establishes the result.

(b) and (c) are given directly by the induction hypothesis. (d) and (e) hold for the same reasons given for

DYN-ACCESS.

197

DYN-INVOKE: The induction hypothesis yieldsH3 ⊢ Σ′ and⊢ H4, and it is obvious thatH4 ⊢ Σ′. Let

Γm be the environment in which we typed the body of methodm of classC using METHOD. We break the

proof into two parts. First, we showH4 ⊢ Σ′ � Γm. Second, we use that fact to show the final result.

H4 ⊢ Σ′ � Γm: Let Γm = ΓC ∪ρ∪η∪η # E∪ (x, Tx). By the definition of instantiation of a static en-

vironment (Section 8.4.3), it suffices to show (a)∅ ⊢ To2
� φΣ′,H4

(Tx) and (b)∅ ⊢ φΣ′,H4
(η)# φΣ′,H4

(E).

(a) First assume that the static typeTe1
of e1 is a class type. By INVOKE, Γ∪ Γc ⊢ Te2

� σ(φT c
e1

(Tx)),

whereTe2
is the static type ofe2, T c

e1
is the capture ofTe1

, andΓc represents the extra parameters added

by the capture operation. Use induction on the number of parameters appearing inΓc. In the base case

(Γc is empty, i.e., no capture parameters), we haveΓ ⊢ Te2
� σ(φTe1

(Tx)). By Lemma 8.4.14,H4 ⊢

φΣ,H4
(Te2

) � φΣ,H4
(σ(φTe1

(Tx))). The induction hypothesis yieldsH4 ⊢ To2
� φΣ,H4

(Te2
), so by

transitivity of subtyping, we haveH4 ⊢ To2
� φΣ,H4

(σ(φTe1
(Tx))). By an argument similar to the proof of

Lemmas 8.4.3 and 8.4.9, we can show that the right-hand side is equal toφφΣ,H4
(σ(Te1

))(Tx), which is the

same asφΣ′,H4
(Tx). In the inductive case, suppose we have added a single capture parameter. Construct the

environmentΣ∪ (ρ,R) or Σ∪ (η,E) by adding that parameter toΣ, with its actual binding. This operation

preserves instantiation of environments, so the same argument goes through using that environment instead

of Σ.

Now assume thatTe1
is an interface type. Then INVOKE givesΓ∪Γc ⊢ Te2

� σ(φT c
e1

(T ′x)), whereT ′x is

the formal parameter type in the interface signature implemented by the methodm. By the same argument

as for the class type case, we obtainH4 ⊢ To2
� φΣ,H4

(σ(φTe1
(T ′x))). Now factorφTe1

into φ2 ◦ φ1,

whereφ1 is the translation from the interface definition to the implementing class definition (writtenσ ◦ φT

in rule IMPLEMENT), andφ2 is the translation from the class definition to the class type. Then we have

H4 ⊢ To2
� φΣ,H4

(σ(φ2(φ1(T
′
x)))). By IMPLEMENT, Γm ⊢ φ1(T

′
x) � Tx, and it is straightforward

to show thatH4 ⊢ φΣ,H4
(σ(φ2(φ1(T

′
x)))) � φΣ,H4

(σ(φ2(Tx))). By transitivity of subtyping, this gives

H4 ⊢ φΣ,H4
(σ(φ2(Tx))). The rest of the proof of the class type case then goes through.

(b) By INVOKE, Γ ⊢ E5 # σ(φT1
(E3)). By Lemma 8.4.13,∅ ⊢ φΣ,H4

(E5)# φΣ,H4
(σ(φT1

(E3))). By

DYN-INVOKE, the left-hand side equalsφΣ′,H4
(η). By an argument similar to (a), the right-hand side equals

φΣ′,H(E).

Final result: Now that we have establishedH4 ⊢ Σ′ � Γm, (a), (b), and (d) follow directly from the

induction hypothesis applied to the execution ofe3 in DYN-INVOKE. As to (c), the induction hypothesis

198

gives∅ ⊢ To1
� φΣ,H4

(Te1
) and∅ ⊢ To3

� φΣ′,H4
(Tr), whereTr is the return type ofm. FactorφΣ′,H4

into φTo1
◦ σ whereσ substitutes for the method parameters. IfTo1

andTe1
are both instantiations of the

same class, then by Lemma 14, we haveΓ ⊢ To3
� φφΓ,H4

(Te1
)(σ(T3)). An argument similar to the proof of

Lemma 8.4.7 then givesΓ ⊢ To3
� φΓ,H4

(φTe1
(σ(T3))), which establishes the result. IfTo1

andTe1
are not

both instantiations of the same class, thenTo1
must be a class type,φΓ,H4

(Te1
) must be the interface type it

implements, and the same result goes through via the definition of rule SUBTYPE-INTERFACE-CLASS.

As to (e), by SE-UNION-2, it suffices to show the result for each of the three effectsthat form the union.

The first two effects are given directly by the induction hypothesis. For the third effect, we have to show

∅ ⊢ E ⊆ φΣ,H(σ(φTe1
(E4))), whereE is the actual effect of executing the method. The argument isthe

same as for (c).

8.4.5 Soundness of Noninterference

The third soundness result states that the static noninterference judgment for expressions is sound: if two

expressions have statically noninterfering effects, thenthe execution of the two expressions is noninterfering

at runtime. Again, we assume all environments and heaps are valid throughout.

First we defineRf (o,H), the region of fieldf of objecto ∈ Dom(H). This definition formalizes the

idea that regionsR in the field declarationsT f in R partition the heap:

Definition 8.4.17(Region of a field). If H ⊢ o : T andF(T)(f) = T ′ f in R, thenRf (o,H) = φT (R).

Next we prove a property of the dynamic effects produced by program execution: for a well-typed

program, if we evaluatee ande′ in sequence, and if the two evaluations have noninterferingeffects, then the

individual read and write effects ofe ande′ can be arbitrarily interleaved, with identical results.

Lemma 8.4.18. If o ∈ H andH ⊆ H ′, thenRf (o,H) = Rf (o,H ′).

Proof. It suffices to show thatRf (o,H) is unique and does not change during program execution. But this

is true, becauseRf (o,H) is uniquely determined by (1) the typeT given too 7→ (O,T) when the object

is added to the heap via DYN-NEW and (2) the declarationF(T)(f) = T ′ f in R, and neither of these

changes during program execution.

Lemma 8.4.19. If e′ is a subexpression ofe, and(e′,Σ′,H ′′)→ (o′, E′,H ′′′) appears in the proof tree for

(e,Σ,H)→ (o,E,H ′), then∅ ⊢ E′ ⊆ E.

199

Proof. Clear by the structure of the rules in Section 8.3.2, since the dynamic effects of every expression

include the union of effects of the subexpressions.

Proposition 8.4.20. If (e,Σ,H) → (o,H ′, E) and (e′,Σ,H ′) → (o′,H ′′, E′) and∅ ⊢ E # E′, then then

there are no conflicting accesses to the same object field in the evaluations ofe ande′.

Proof. First, “conflicting accesses to the same object field” is well-defined, because objectso 7→ (O,T) are

added via DYN-NEW and never subtracted, soH ⊆ H ′ ⊆ H ′′, and the domain ofH(o) never changes. So

all accesses occur to object fields ofH ′′. Now suppose there is a conflicting access. Accesses happen via

DYN-ACCESSand DYN-ASSIGN, and each of those rules records the effect onRf (o,H), for an access to

field f of objecto. So by Lemmas 8.4.18 and 8.4.19, there must be two conflictingaccesses to the same

regionR, one contained inE and the other contained inE′. But by the rules in Section 2.5, this means that

∅ ⊢ E # E′ does not hold.

Finally, by extending this result to static effects, we obtain the main soundness property of the core

language.

Theorem 8.4.21(Noninterference). If ⊢ P andΓ ⊢ (e,Σ,H) : Ts, Es andΓ ⊢ (e′,Σ,H ′) : T ′s, E
′
s and

Γ ⊢ Es # E′s and (e,Σ,H) → (o,H ′, E) and (e′,Σ,H ′) → (o′,H ′′, E′), then there are no conflicting

accesses to the same object field in the evaluations ofe ande′.

Proof. Theorem 8.4.16 gives∅ ⊢ E ⊆ φΣ,H′(Es) and∅ ⊢ E′ ⊆ φΣ,H′′(E′s). It is easy to see the first

statement implies∅ ⊢ E ⊆ φΣ,H′′(Es). Lemma 8.4.13 givesφΣ,H′′(Es)# φΣ,H′′(E′s). NI-INCLUDE then

gives∅ ⊢ E # E′, and Proposition 8.4.20 gives the result.

200

Chapter 9

Conclusion

This thesis has presented Deterministic Parallel Java, a new deterministic by defaultlanguage that uses a

novel type and effect system to (1) enforce determinism at compile time with no runtime checking overhead;

(2) provide strong compile-time safety guarantees and performance optimizations for nondeterministic code

supported by weakly isolated transactional memory; and (3)check that the uses of object-oriented parallel

frameworks conform to their effect specifications. We have presented the new language and effect system

features both informally and formally, and we have proved soundness for the formally described features.

We have also described evaluations showing that the new features are useful and effective.

As discussed in Chapter 2, several open questions remain after this thesis, and should be a fruitful source

of continuing research:

1. Inferring region and effect information can reduce the programmer burden of an effect system like

DPJ’s. Work on this problem is ongoing by Vakilian and others, and has already produced an algo-

rithm for inferring method effect summaries [122].

2. Supplementing the DPJ effect system with runtime checks for properties such as disjointness of ref-

erence can make the language more expressive and/or reduce the programmer annotation burden, at

the cost of weakening the compile-time guarantees and/or adding runtime overhead. Exploring the

tradeoffs of static versus runtime checks is an interestingsubject for future research.

3. DPJ’s support for object-oriented frameworks leads naturally to further work on newparallel abstrac-

tions, implemented as frameworks or possibly even first-class language features. Abstractions make

programmers more productive by allowing them to think at a higher level, without worrying about

implementation details. This thesis has explored two kindsof parallel abstractions (data parallel oper-

ations on disjoint containers, and pipelined loops), but many more abstractions remain to be explored,

including both general and domain-specific ones.

201

4. There is work to be done onverifying the implementationsof frameworks and other parallel abstrac-

tions, for properties such as type preservation, effect preservation, and noninterference explored in

this thesis. Such verification can be done with a combinationof the effect system techniques dis-

cussed here and other static and dynamic techniques, including more general program logic, testing,

and model checking.

In sum, this thesis has contributed to the state of the art in parallel programming languages and effect

systems by (1) articulating a coherent approach to the problem of making parallel programming easier; (2)

introducing a practical new language supported by novel technical contributions in support of that approach;

and (3) identifying several important areas of ongoing and future research.

202

References

[1] http://gee.cs.oswego.edu/dl/jsr166/dist/extra166ydocs/index.html?
extra166y/package-tree.html.

[2] http://iss.ices.utexas.edu/lonestar/.

[3] http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/jsr166y/
forkjoin/package-summary.html.

[4] http://http://sites.google.com/site/deucestm.

[5] Martı́n Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transactional memory
and automatic mutual exclusion. InACM SIGACT-SIGPLAN Symp. on Principles of Prog. Langs.
(POPL), pages 63–74, New York, NY, USA, 2008. ACM Press.

[6] Martı́n Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static race detection
for Java.ACM Trans. on Prog. Langs. and Systs. (TOPLAS), 28(2):207–255, 2006.

[7] Martı́n Abadi, Tim Harris, and Mojtaba Mehrara. Transactional memory with strong atomicity using
off-the-shelf memory protection hardware. InACM SIGPLAN Symp. on Principles and Practice of
Parallel Prog. (PPOPP), pages 185–196, New York, NY, USA, 2009. ACM Press.

[8] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and Tatiana
Shpeisman. Compiler and runtime support for efficient software transactional memory. InACM Conf.
on Prog. Lang. Design and Impl. (PLDI), pages 26–37, New York, NY, USA, 2006. ACM Press.

[9] Yehuda Afek, Guy Korland, and Arie Zilberstein. Lowering STM overhead with static analysis. In
LCPC, 2010.

[10] Farhana Aleen and Nathan Clark. Commutativity analysis for software parallelization: Letting pro-
gram transformations see the big picture. InInt’l Conf. on Arch. Support for Prog. Langs. and Oper-
ating Systs. (ASPLOS), pages 241–252, New York, NY, USA, 2009. ACM Press.

[11] Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization sets: A dynamic
dependence-based parallel execution model. InACM SIGPLAN Symp. on Principles and Practice
of Parallel Prog. (PPOPP), pages 85–96, New York, NY, USA, 2009. ACM Press.

[12] Philippe Altherr and Vincent Cremet. Adding type constructor parameterization to Java. InFormal
Techniques for Java-like Programs (FTFJP), 2007.

[13] Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. SharC: Checking data sharing strategies
for multithreaded c. InACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 149–158, New
York, NY, USA, 2008. ACM Press.

203

[14] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced deterministic
parallelism. InUSENIX Symp. on Operating Syst. Design and Impl. (OSDI), 2010.

[15] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich.Verifying correct usage of atomic blocks
and typestate. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOP-
SLA), pages 227–244, New York, NY, USA, 2008. ACM.

[16] Nels E. Beckman, Yoon Phil Kim, Sven Stork, and JonathanAldrich. Reducing STM overhead with
access permissions. InInt’l Workshop on Aliasing, Confinement and Ownership in Object-Oriented
Prog. (IWACO), pages 1–10, New York, NY, USA, 2009. ACM Press.

[17] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze,and Dan Grossman. CoreDet: A compiler
and runtime system for deterministic multithreaded execution. In Int’l Conf. on Arch. Support for
Prog. Langs. and Operating Systs. (ASPLOS), pages 53–64, New York, NY, USA, 2010. ACM Press.

[18] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe multithreaded pro-
gramming for C/C++. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps.
(OOPSLA), pages 81–96, New York, NY, USA, 2009. ACM Press.

[19] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, GheorgheAlmasi, Basilio B. Fraguela, Marı́a J.
Garzarán, David Padua, and Christoph von Praun. Programming for parallelism and locality with
hierarchically tiled arrays. InACM SIGPLAN Symp. on Principles and Practice of Parallel Prog.
(PPOPP), pages 48–57, New York, NY, USA, 2006. ACM Press.

[20] Guy E. Blelloch. Programming parallel algorithms.Commun. of the ACM, 39(3):85–97, 1996.

[21] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco Zagha.
Implementation of a portable nested data-parallel language. J. Parallel and Distrib. Comp., 21(1):4–
14, April 1994.

[22] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.ACM SIGPLAN Symp. on
Principles and Practice of Parallel Prog. (PPOPP), 1995.

[23] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh
Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A type and
effect system for deterministic parallel Java. InACM SIGPLAN Conf. on Object-Oriented Prog.,
Systs., Langs., and Apps. (OOPSLA), pages 97–116, New York, NY, USA, 2009. ACM Press.

[24] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs.,
Langs., and Apps. (OOPSLA), pages 211–230, New York, NY, USA, 2002. ACM Press.

[25] John Boyland. The interdependence of effects and uniqueness. InWorkshop on Formal Techs. for
Java Progs., 2001.

[26] John Boyland. Checking interference with fractional permissions. InInt’l Symp. on Static Analysis
(SAS), pages 55–72. Springer, 2003.

[27] Matthew Bridges, Neil Vachharajani, Yun Zhang, ThomasJablin, and David August. Revisiting
the sequential programming model for multi-core. InACM/IEEE Int’l Symp. on Microarchitecture
(MICRO), pages 69–84, Washington, DC, USA, 2007. IEEE Computer Society.

204

[28] Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. Feedback-directed barrier optimization
in a strongly isolated STM. InACM SIGACT-SIGPLAN Symp. on Principles of Prog. Langs. (POPL),
pages 213–225, New York, NY, USA, 2009. ACM Press.

[29] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent programming with revi-
sions and isolation types. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and
Apps. (OOPSLA), pages 691–707, New York, NY, USA, 2010. ACM Press.

[30] Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and Matthew J. Smith. Multiple owner-
ship. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA), pages
441–460, New York, NY, USA, 2007. ACM Press.

[31] Michael J. Carey, David J. DeWitt, Chander Kant, and Jeffrey F. Naughton. A status report on the
OO7 OODBMS benchmarking effort. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs.,
Langs., and Apps. (OOPSLA), pages 414–426, New York, NY, USA, 1994. ACM Press.

[32] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin Lin, Lawrence Snyder, and
W. Derrick Weathersby. ZPL: A machine independent programming language for parallel computers.
IEEE Trans. Softw. Eng., 26(3):197–211, 2000.

[33] K. M Chandy and Ian Foster. A deterministic notation forcooperating processes. Technical report,
California Institute of Technology, Pasadena, CA, 1993.

[34] K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional parallel programming.
Technical Report CaltechCSTR:1992.cs-tr-92-13, California Institute of Technology, 1992.

[35] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to non-uniform
cluster computing. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps.
(OOPSLA), pages 519–538, New York, NY, USA, 2005. ACM Press.

[36] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. InSymp. on Comp. Geom.,
pages 274–280, New York, NY, USA, 1993. ACM Press.

[37] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In ACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA),
pages 292–310, New York, NY, USA, 2002. ACM Press.

[38] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. InEuro. Conf. on Object-
Oriented Prog. (ECOOP), 2003.

[39] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias protection. In
ACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA), pages 48–64,
New York, NY, USA, 1998. ACM Press.

[40] Thinking Machines Corp. CM Fortran reference manual, version 1.0. Technical report, Cambridge,
Massachusetts, February 1991.

[41] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software. InACM
Conf. on Prog. Lang. Design and Impl. (PLDI), pages 59–69, New York, NY, USA, 2001. ACM
Press.

205

[42] Jayant Desouza and Laxmikant V. Kal. MSA: Multiphase specifically shared arrays. InInt’l Work-
shop on Langs. and Compilers for Parallel Comp. (LCPC), 2004.

[43] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic shared memory
multiprocessing. InInt’l Conf. on Arch. Support for Prog. Langs. and Operating Systs. (ASPLOS),
pages 85–96, New York, NY, USA, 2009. ACM Press.

[44] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Int’l Symp. on Distrib. Comp.
(DISC), 2006.

[45] Pedro C. Diniz. Commutativity analysis: A new analysistechnique for parallelizing compilers.ACM
Trans. on Prog. Langs. and Systs. (TOPLAS), 19(6):942–991, 1997.

[46] Malcolm Dowse and Andrew Butterfield. Modelling deterministic concurrent I/O. InInt’l Conf. on
Funct. Prog. (ICFP), pages 148–159, New York, NY, USA, 2006. ACM Press.

[47] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for imperative
programming. InACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 13–24, New York, NY,
USA, 2002. ACM Press.

[48] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk programs.
In ACM Symp. on Parallelism in Algorithms and Arch. (SPAA), pages 1–11, New York, NY, USA,
1997. ACM Press.

[49] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language project.J.
Parallel and Distrib. Comp., 10(4):349–366, 1990.

[50] C. Flanagan and M. Felleisen. The semantics of future and an application.J. Funct. Prog., 9(1):1–31,
1999.

[51] Cormac Flanagan and Matthias Felleisen. The semanticsof future and its use in program optimiza-
tion. In ACM SIGACT-SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 209–220, New
York, NY, USA, 1995. ACM Press.

[52] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for atomicity: Static
checking and inference for Java.ACM Trans. on Prog. Langs. and Systs. (TOPLAS), 30(4):1–53,
2008.

[53] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M.-Y. Wu. Fortran D
language specification. Technical Report CRPC-TR90079, Rice University, Houston, TX, December
1990.

[54] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of points-to analysis and other
memory disambiguation methods for C programs. InACM Conf. on Prog. Lang. Design and Impl.
(PLDI), pages 47–58, New York, NY, USA, 2001. ACM Press.

[55] D. K. Gifford, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. FX-87 reference manual. Technical
Report MIT/LCS/TR-407, Massachusetts Institute of Technology, Laboratory for Computer Science,
September 1987.

[56] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, andJames W. O’Toole. Report on the FX-91
programming language. Technical Report MIT/LCS/TR-531, 1992.

206

[57] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification, Third
Edition. Addison-Wesley Longman, 3rd edition, 2005.

[58] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular shape analysis. In
ACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 266–277, New York, NY, USA, 2007.
ACM Press.

[59] Aaron Greenhouse and John Boyland. An object-orientedeffects system. InEuro. Conf. on Object-
Oriented Prog. (ECOOP), pages 205–229, London, UK, 1999. Springer-Verlag.

[60] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. InACM Conf. on Prog. Lang. Design and Impl.
(PLDI), pages 282–293, New York, NY, USA, 2002. ACM Press.

[61] R. T. Hammel and D. K. Gifford. FX-87 performance measurements: Dataflow implementation.
Technical Report MIT/LCS/TR-421, 1988.

[62] Tim Harris and Keir Fraser. Language support for lightweight transactions. InACM SIGPLAN Conf.
on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA), pages 388–402, New York, NY,
USA, 2003. ACM Press.

[63] Tim Harris, Jim Larus, and Ravi Rajwar.Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan & Claypool Publishers, 2nd edition, 2010.

[64] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory trans-
actions. InACM SIGPLAN Symp. on Principles and Practice of Parallel Prog. (PPOPP), pages
48–60, New York, NY, USA, 2005. ACM Press.

[65] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory transactions. In
ACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 14–25, New York, NY, USA, 2006. ACM
Press.

[66] Philip J. Hatcher, Anthony J. Lapadula, Robert R. Jones, Michael J. Quinn, and Ray J. Anderson. A
production-quality C* compiler for hypercube multicomputers. InACM SIGPLAN Symp. on Princi-
ples and Practice of Parallel Prog. (PPOPP), pages 73–82, New York, NY, 1991. ACM Press.

[67] High Performance Fortran Forum. High Performance Fortran language specification, version 1.0.
Technical Report CRPC-TR92225, Rice University, Houston,TX, 1993.

[68] Bart Jacobs, Frank Piessens, Jan Smans, K. Rustan M. Leino, and Wolfram Schulte. A programming
model for concurrent object-oriented programs.ACM Trans. on Prog. Langs. and Systs. (TOPLAS),
31(1):1–48, 2008.

[69] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming
languages.ACM Comp. Survs., 36(1):1–34, 2004.

[70] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne.Concurrent Haskell. InACM SIGACT-
SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 295–308, St. Petersburg Beach,
Florida, 21–24 1996.

[71] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects. InACM SIGACT-
SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 303–310, New York, NY, 1991. ACM
Press.

207

[72] Ken Kennedy and John R. Allen.Optimizing Compilers for Modern Architectures: A Dependence-
Based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[73] Aditya Kulkarni, Yu David Liu, and Scott F. Smith. Task types for pervasive atomicity. InACM
SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA), pages 671–690,
New York, NY, USA, 2010. ACM Press.

[74] Milind Kulkarni, Keshav Pingali, Bruce Walter, GaneshRamanarayanan, Kavita Bala, and L. Paul
Chew. Optimistic parallelism requires abstractions. InACM Conf. on Prog. Lang. Design and Impl.
(PLDI), pages 211–222, New York, NY, USA, 2007. ACM Press.

[75] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral inter-
face specification language for Java.SIGSOFT Softw. Eng. Notes, 2006.

[76] Edward A. Lee. The problem with threads.Computer, 39:33–42, 2006.

[77] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and YunhongZhou. Using data groups to specify and
check side effects. InACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 246–257, New
York, NY, USA, 2002. ACM Press.

[78] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and Josep Torrellas.
POSH: a TLS compiler that exploits program structure. InACM SIGPLAN Symp. on Principles and
Practice of Parallel Prog. (PPOPP), pages 158–167, New York, NY, USA, 2006. ACM Press.

[79] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J. Michael-
son, R. Pena, S. Priebe,Á J. Rebón, and P. W. Trinder. Comparing parallel functional languages:
Programming and performance.Higher Order Symbol. Comput., 16(3):203–251, 2003.

[80] Yi Lu and John Potter. Protecting representation with effect encapsulation. InACM SIGACT-
SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 359–371, New York, NY, USA, 2006.
ACM Press.

[81] Roberto Lublinerman, Swarat Chaudhuri, and Pavol Cerny. Parallel programming with object as-
semblies. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA),
pages 61–80, New York, NY, USA, 2009. ACM Press.

[82] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. InACM SIGACT-SIGPLAN Symp.
on Principles of Prog. Langs. (POPL), pages 47–57, New York, NY, USA, 1988. ACM Press.

[83] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, and S. Kesavan. Implementing a
parallel C++ runtime system for scalable parallel systems.In ACM/IEEE Conf. on Supercomp., pages
588–597, New York, NY, USA, 1993. ACM Press.

[84] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional memory atomicity semantics.
IEEE Comp. Arch. Letters, 5(2):17, 2006.

[85] Nicholas D. Matsakis and Thomas R. Gross. A time-aware type system for data-race protection and
guaranteed initialization. InOOPSLA, 2010.

[86] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: Synchronization inference
for atomic sections. InACM SIGACT-SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages
346–358, New York, NY, USA, 2006. ACM Press.

208

[87] Michael Metcalf. Fortran 95.SIGPLAN Fortran Forum, 15(2):19–22, 1996.

[88] Michael Metcalf and John Reid.Fortran 90 Explained. Oxford University Press, New York, 1992.

[89] Bertrand Meyer. Systematic concurrent object-oriented programming.Commun. of the ACM, 1993.

[90] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford
transactional applications for multi-processing. InIEEE Int’l Symp. on Workload Characterization
(IISWC), 2008.

[91] Katherine F. Moore and Dan Grossman. High-level small-step operational semantics for transactions.
In ACM SIGACT-SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 51–62, New York,
NY, USA, 2008. ACM Press.

[92] Adriaan Moors, Frank Piessens, and Martin Odersky. Towards equal rights for higher-kinded types.
In Int’l Workshop on Multiparadigm Programming, 2007.

[93] Luc Moreau. The semantics of Scheme with future. InInt’l Conf. on Funct. Prog. (ICFP), pages
146–156, New York, NY, USA, 1996. ACM Press.

[94] Rishiyur S. Nikhil. ID version 90.0 reference manual. Technical Report Computation Structures
Group Memo 284-1, Laboratory for Computer Science, Massachusetts Institute of Technology, July
1990.

[95] Peter W. O’Hearn. Resources, concurrency, and local reasoning.Theor. Comp. Sci., 2007.

[96] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient deterministic multithread-
ing in software. InInt’l Conf. on Arch. Support for Prog. Langs. and Operating Systs. (ASPLOS),
pages 97–108, New York, NY, USA, 2009. ACM Press.

[97] Christos H. Papadimitriou. The serializability of concurrent database updates.J. ACM, 26(4):631–
653, 1979.

[98] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance. InACM
SIGACT-SIGPLAN Symp. on Principles of Prog. Langs. (POPL), pages 75–86, New York, NY, USA,
2008. ACM Press.

[99] Manohar K. Prabhu and Kunle Olukotun. Using thread-level speculation to simplify manual paral-
lelization. InACM SIGPLAN Symp. on Principles and Practice of Parallel Prog. (PPOPP), pages
1–12, New York, NY, USA, 2003. ACM Press.

[100] Mohammad Raza, Cristiano Calcagno, and Philippa Gardner. Automatic parallelization with separa-
tion logic. In Euro. Symp. on Langs. and Systs. (ESOP), pages 348–362, Berlin, Heidelberg, 2009.
Springer-Verlag.

[101] James Reinders.Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Paral-
lelism. O’Reilly Media, 2007.

[102] John H. Reppy.Concurrent Programming in ML. Cambridge University Press, New York, NY, 1999.

[103] John C. Reynolds. Separation logic: A logic for sharedmutable data structures.Symp. on Logic in
Comp. Sci., 2002.

209

[104] Martin C. Rinard.The design, implementation and evaluation of Jade: A portable, implicitly parallel
programming language. PhD thesis, Stanford University, 1994.

[105] Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade.ACM
Trans. on Prog. Langs. and Systs. (TOPLAS), 20(3):483–545, 1998.

[106] Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan. SingleTrack: A Dynamic Determinism
Checker for Multithreaded Programs. InEuro. Symp. on Langs. and Systs. (ESOP), pages 394–409,
Berlin, Heidelberg, 2009. Springer-Verlag.

[107] Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza Adl-Tabatabai. Dynamic op-
timization for efficient strong atomicity. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs.,
Langs., and Apps. (OOPSLA), pages 181–194, New York, NY, USA, 2008. ACM Press.

[108] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan Grossman,
Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing isolation and ordering in STM.
In ACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 78–88, New York, NY, USA, 2007.
ACM Press.

[109] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel applica-
tions for shared-memory. Technical report, Stanford University, 1992.

[110] L. A. Smith and J. M. Bull. A multithreaded Java grande benchmark suite. InThird Workshop on
Java for High Performance Computing, 2001.

[111] Matthew Smith. Towards an effects system for ownership domains. InEuro. Conf. on Object-
Oriented Prog. (ECOOP), 2005.

[112] Marc Snir. Parallel Programming Language 1 (PPL1), V0.9 — Draft. Technical Report UIUCDCS-
R-2006-2969, U. Illinois, 2006.

[113] J. Steffan and T Mowry. The potential for using thread-level data speculation to facilitate automatic
parallelization. InInt’l Symp. on High-Performance Comp. Arch., page 2, Washington, DC, USA,
1998. IEEE Computer Society.

[114] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The STAMPede ap-
proach to thread-level speculation.ACM Trans. on Comp. Systs., 23(3):253–300, 2005.

[115] Sven Stork, Paulo Marques, and Jonathan Aldrich. Concurrency by default: Using permissions to
express dataflow in stateful programs. InACM SIGPLAN Conf. on Object-Oriented Prog., Systs.,
Langs., and Apps. (OOPSLA), pages 933–940, New York, NY, USA, 2009. ACM Press.

[116] Sun Microsystems, Inc. The Fortress language specification, version 1.0. Technical report, Sun
Microsystems, Inc., 2008.

[117] Tachio Terauchi and Alex Aiken. A capability calculusfor concurrency and determinism.ACM
Trans. on Prog. Langs. and Systs. (TOPLAS), 30(5):1–30, 2008.

[118] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for streaming
applications. InInt’l Conf. on Compiler Construction (CC), 2002.

[119] Peter Thomas and Ray Weedon.Object-Oriented Programming in Eiffel: 2nd Ed.Addison-Wesley
Longman, 1998.

210

[120] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-based
memory management.Higher Order Symbolic Comp., 17(3):245–265, 2004.

[121] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.Info. Comp., 132(2):109–
176, 1997.

[122] Mohsen Vakilian, Danny Dig, Robert Bocchino, JeffreyOverbey, Vikram Adve, and Ralph Johnson.
Inferring method effect summaries for nested heap regions.In Int’l Conf. on Softw. Eng’g (ASE),
pages 421–432, Washington, DC, USA, 2009. IEEE Computer Society.

[123] David Vandevoorde and Nicolai M. Josuttis.C++ Templates: The Complete Guide. Addison-Wesley
Professional, November 2002.

[124] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit parallelism with ordered transactions.
In ACM SIGPLAN Symp. on Principles and Practice of Parallel Prog. (PPOPP), pages 79–89, New
York, NY, USA, 2007. ACM Press.

[125] P. Wadler. Linear types can change the world!Working Conf. on Prog. Concepts and Methods, pages
347–359, 1990.

[126] Philip Wadler and Peter Thiemann. The marriage of effects and monads.ACM Trans. on Comp.
Logic, 4(1):1–32, 2003.

[127] Adam Welc et al. Revocation techniques for Java concurrency. Concurrency and Computation:
Practice and Experience, 2006.

[128] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for Java. InACM SIGPLAN
Conf. on Object-Oriented Prog., Systs., Langs., and Apps. (OOPSLA), pages 439–453, New York,
NY, USA, 2005. ACM Press.

[129] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-Hsin S.
Lee. Kicking the tires of software transactional memory: Why the going gets tough. InACM Symp.
on Parallelism in Algorithms and Arch. (SPAA), pages 265–274, New York, NY, USA, 2008. ACM
Press.

[130] Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of linked data structures.
In ACM Conf. on Prog. Lang. Design and Impl. (PLDI), pages 349–361, New York, NY, USA, 2008.
ACM Press.

[131] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran — A language
specification. Technical Report Internal Report 21, ICASE,NASA Langley Research Center, March
1992.

211

Author’s Biography

Robert Bocchino grew up in Haverford, Pennsylvania, outside of Philadelphia. He attended Harvard College

from 1990–94 and graduated with a Bachelor of Arts degree,cum laudein Mathematics. From 1994–97,

he attended Harvard Law School, where he graduated with a J.D., cum laude. He practiced intellectual

property law at the Boston firm of Foley Hoag LLP for several years before relocating to Urbana, Illinois,

to pursue graduate studies in computer science. In the fall of 2010, Mr. Bocchino joined the Special Faculty

of Carnegie Mellon University as a Postdoctoral Associate working with Professor Jonathan Aldrich and

supported by a Computing Innovation Fellows grant.

Outside of computer science, Mr. Bocchino pursues many varied interests. These include Baroque violin

playing, singing, and recorder playing; music theory and composition; baseball (he supports the Boston Red

Sox); designing and playing fantasy and science fiction roleplaying games; and reading literature and

philosophy.

212

