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Abstract

This thesis presents a new, Java-based object-orientatlgbdanguage called Deterministic Parallel Java
(DPJ). DPJ uses a noweffect systerto guaranteeeterminism by defaulThat means that parallel programs
areguaranteedo execute deterministically unless nondeterminism isieifly requested. This is in contrast
to the shared-memory models in widespread use today, sutiirezsds and locks (including threads in
ordinary Java). Those models are inherently nondetertiino not provide any way to check or enforce
that a computation is deterministic, and can even have emiletd data races, which can lead to strange
and unexpected behaviors. Because deterministic progaeensuch easier to reason about than arbitrary
parallel code, determinism by default simplifies parallelgpamming.

This thesis makes several broad contributions to the stalbe @rt in programming languages and effect
systemsFirst, it presents a comprehensive research agenda for acheiagninism by default in parallel
languages with reference aliasing and shared mutable $tateyues that an object-oriented effect system
is a good approach to managing shared memory conflicts.dtralses several technical challenges, many
of which are taken up in the rest of the thesis.

Secondthis thesis presents an effect system and language fondatstic parallel programming using a
fork-join model of parallel control. With simple modularetking, and with no runtime checking overhead,
the effect system guarantees at compile time that thereawomflicting memory accesses between any
pairs of parallel tasks. The effect system supports seiemrtant patterns of deterministic parallelism that
previous systems cannot express. We describe the efféetisysid language both formally and informally,
and prove soundness for the formal language. We also desmuibevaluation showing that the language
can express a range of parallel programming patterns witd gerformance.

Third, this thesis extends the effect system and language famdigiem to support a controlled form of
nondeterminism. Conflicting accesses are allowed onlyriaglicitly identified nondeterministic parallel

construct, so the language is deterministic by default.aAgactional runtime provides isolation for atomic



statements, while the extended effect system providesgagrocompile-time safety guarantees than any
system we know of. In addition to determinism by default, lBreguage guarantees race freedom; strong
isolation for atomic statemeneven if the runtime guarantees only weak isolatiand an elegant way of
composing deterministic and nondeterministic operattbaspreserves local reasoning about deterministic
operations. Again we give an informal treatment, a formedtiment, and soundness proofs. We describe
an evaluation showing that the extended language can expeabstic nondeterministic algorithms in a
natural way, with reasonable performance given the traioset runtime we used. Further, by eliminat-
ing unnecessary synchronization, the effect system emab$ggnificant reduction in the software runtime
overhead.

Fourth, this thesis describes programming technigues and fugkiensions to the effect system for
supporting object-oriented parallel frameworks. Franmwaeepresent an important tool for parallel pro-
gramming in their own right. They can also express some tipesathat the language and effect system
alone cannot, for example pipeline parallelism. We show towrite a framework API using the DPJ
effect system so that the framework writer can guarantegecimess properties to the user, assuming the
user’s code passes the DPJ type checker. We also show hotetaléke DPJ effect system to add generic
types and effects, making the frameworks more general agfdlug-inally, we state the requirements for a
correct framework implementation. These requirements Ineagshecked with a combination of DPJ’s effect
system and external reasoning. Again we give an informakrment, a formal treatment, and soundness
proofs. We also describe the results of an evaluation shptiat the techniques described can express

realistic frameworks and parallel algorithms.
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Chapter 1

Introduction

This thesis presents a new, Java-based object-orientatlgbdanguage called Deterministic Parallel Java
(DPJ). DPJ uses a noweffect systerto guaranteeleterminism by defautit compile time. That means that
parallel programs arguaranteedo execute deterministically unless nondeterminism idieily requested.
Further, in DPJ, nondeterminism is carefully controlled aabject to strong compile-time safety guaran-
tees, including freedom from data races. This is in contcafte shared-memory models in widespread use
today, such as threads and locks (including threads in argidava). Those models are inherently nonde-
terministic, do not provide any way to check or enforce thabmputation is deterministic, and can even
have unintended data races, which can lead to strange amgaated behaviors. Finally, DPJ can check
that the uses of object-oriented frameworks corresponbdio &ffect specifications, ensuring determinism
and other safety guarantees for the framework uses. Frarkewepresent an important tool for parallel
programming in their own right, and can also express someatipas that the language and effect system
alone cannot.

This thesis argues that if determinism by default becomesatufe of mainstream programming lan-
guages, then parallel programming will be much easier. tlirms the major technical challenges to achiev-
ing determinism by default for shared memory programs, anggses a comprehensive research agenda
for addressing these challenges. Finally, this thesisribescsolutions to three of the major challenges,
using DPJ as a prototype: (1) designing a language and sffstgm for expressing deterministic compu-
tations that are guaranteed at compile time to have no ctinfliaccesses between parallel tasks, without
any runtime overhead for checking determinism; (2) suppgrtontrolled nondeterminism while retaining
strong compile-time safety guarantees, including deteismi by default; and (3) checking that the uses of

object-oriented frameworks correspond to their effectBpations.



1.1 The Need for Determinism by Default

Determinism: Single-core processors have reached the limit of scalimg),naulticore processors are now
prevalent, with the number of cores growing according to M@olaw. As a result, parallel programming
— once a highly specialized activity — is becoming mainstieRarallel programming languages, libraries
and tools must enable programmers to write parallel prograithout a major loss of programmer pro-
ductivity compared to the sequential programs that theyuaesl to writing. In particular, programmers
must be able to write correct programs, i.e., without a majorease in bugs due to the introduction of
parallelism. And programmers must be able to understarallpbprograms, debug them, and tune them
for performance.

This situation presents a challenging problem for langsege related tools such as compilers and
runtime systems. Most programmers are used to thinkingesaiglly. In its most general form, however,
parallel programming forces them to consider interactiogisveen different concurrent tasks, usually ex-
pressed amterleavingsof memory operations. Further, unlike the sequential camdtiple interleavings
must be considered: different interleavings can produfferdnt results, and the precise interleaving de-
pends on the parallel schedule, which can differ from ruruto As a result, general parallel programming
causes an explosion in complexity, both for reasoning apmgrams, and for the state space that needs to
be explored through testing or model checking. Finally,egahparallel programming leads to bugs such
as data races, deadlocks, and memory consistency vigdtiancan be difficult to find and correct. These
bugs are totally unfamiliar, and even bizarre, to the setiplgorogrammer.

We believe that one important response to this challengefiscus on a property of parallel languages
and programs calledeterminism We say that @rogramis deterministic if it produces the same externally
visible output on every execution with a given input, redesd of the parallel schedule chosen for execution.
We say that danguageis deterministic if any legal program written in the langadg deterministic. A

deterministic language has significant advantages:

e Adeterministic program that has an obvious sequentiavatgnt can be understood without concern
for execution interleavings, data races, or complex meroomgistency models: the program behavior

is completely defined by its sequential equivalent.

e Programmers can reason about programs, debug them duvielppieent, and diagnose error reports



after deployment using techniques and tools similar todlmsrently used for sequential programs.

¢ Independent software vendors can test codes as they dogieersgal programs, without being con-
cerned about the need to cover multiple possible execufmmsach input. The same test suites

developed for the sequential code can be used for the daradle.

e Programmers can use an incremental parallelization gtrapeogressively replacing sequential con-

structs with parallel constructs, while preserving progtzehavior.

e Two separately developed but deterministic parallel camepts should be far easier to compose
than more general parallel code, because a deterministip@oent should have the same behavior

regardless of the external context within which it is exedut

Deterministic semantics can also help with parallel penfonce modeling. In particular, an explicitly
parallel loop hasequential semantiasith aparallel performance modelts performance will be what one
would expect by assuming that parallel loop iterations decate in parallel. In effect, both the semantic
model and the performance model for such a program can besdafsing obvious composition rules [20].
Further, deterministic programming models can enablerprogiers to spend more time on performance
tuning (often the determining factor in performance forl+wearld software) and less time finding and
eliminating insidious concurrency bugs.

In general, shared-memory parallel programs are not detestin, for the reason stated above: different
interleavings produced by different parallel schedulespraduce different results. Howevarany parallel
algorithms are, in fact, intended to behave determinidiiycaTypically these are compute-intensive algo-
rithms that accept some input and are intended to producegke gdeterministic) output. Examples can be
found in a wide variety of domains, including scientific cantgtions, graphics, voice, video, and artificial
intelligence. For these applications, a deterministigleage can simplify the writing and maintenance of
parallel programs, for the reasons stated above.

In this context it is important to note the following conviemis that we adopt regarding the term “deter-

minism”:

1. In this thesis, we focus our attention concurrency determinisimOther sources of nondeterminism

that carry over from sequential programming (for exampédlsdor andomor get t i neof day)



are not considered, on the assumption that sequentialgrogers already know how to cope with

this kind of nondeterminism.

2. We mean determinism of the final result; intermediateltes@ed not be deterministic. For example,
an integer sum reduction may produce nondeterministicnmgdiate results on the way to producing

a deterministic final result.

3. Unless otherwise noted, throughout this thesis, “theesegault” means bitwise equivalence of the
visible program output. In some cases (e.g., floating p@dtictions, or comparing the contents of
two set data structures) bitwise equivalence may be toageat, and in those cases we will explain
more precisely what we mean by “the same result.” In padiguhis issue will arise in Section 3.4,

in connection with specifying commutative updates to ssignters, and other shared state.

Controlled nondeterminism: Of course, not all parallel programs are intended to be atestic. Some
algorithms produce many acceptable answers, all of whittsfgaome criterion of correctness. Examples
include branch-and-bound search and graph clusteringithiges. It is usually possible to write deter-
ministic versions of these algorithms (by simply pickingegpossible answer and excluding the others).
However, it may not be desirable tequire determinism for all such algorithms, particularly whererftxa
deterministic schedule would cause performance to suffer.

Therefore, we believe that while parallel programming $thitwe deterministic in most cases, some form
of controlled nondeterminism should be allowed as well. \&kelve that any such nondeterminism should

have the following safety properties:

1. Race freedom and sequential consisteiyexecution of a valid program should ever produce a data
race. This property is very important, even for nondeteistimcodes, because it facilitates reasoning
about program semantics. For example, in the Java memorglnrade freedom implies sequential
consistency, which makes parallel programs much easierason about. The Java memory model
has a defined semantics in the presence of data races, boéitliso understand. In the C++ memory
model, the program semantics is not even defined in the pres#rata races. So in some sense it is

impossible to reason correctly about a C++ program thatatosia data race!

2. Strong isolation.The language should providgrong isolation(i.e., isolation with respect tall con-

current operations) for sections of code identified as iedlée.g., statements markationi c). So-

4



called "weak isolation” (i.e., isolation provided that etinflicts occur betweeat om ¢ statements)
is not enough, because it leads back to the same concurrestofeims that transactions are trying to
eliminate in the first place, i.e., unintended conflictingnoey accesses that silently invalidate the

programmer’s assumptions about what the program is doing.

3. Composition of deterministic and nondeterministic opers. It should be easy to reason about
compositions of deterministic and nondeterministic carcds. In particular, we argue that a deter-
ministic computation should always behave as an isolatgljential composition of its component
tasks, even inside a nondeterministic parallel operatfidns requirement leads to novel features of

our effect system, as discussed in Chapters 5 and 6.

4. Determinism by defaultNondeterminism occurs only where requested by an explaridetermin-
istic operation. Thus, nondeterminism cannot occur bydeetj as it can in arbitrary threaded code.

We agree with Lee [76] that this is a critical property forseaing about parallel code.

We call any language that satisfies property 4 above (nomditism must be explicit) deterministic-
by-default languageWe believe that parallel programming languages shouldeberichinistic by default,
and that such languages should also provide propertiesidte8 labove. Note that today’s widely used
parallel programming models provid®neof these four properties. Instead they are based on a “wild”
form of shared memory parallelism, where all shared-menmgractions are allowed, and it is up to the
programmer (via testing, code inspection, or some othehodagtto exclude races and other undesirable
behaviors.

Supporting object-oriented frameworks: Object-oriented frameworks are an important part of the-sol
tion for making parallel programming easier. In the framdwapproach, the framework writer provides
most of the code for parallel construction and manipulatibgeneric data structures; for generic parallel
algorithms such as map, reduce, or scan; or for genericlglacabrdination patterns such as pipelines. The
user fills in the missing pieces with code (in most cases, esgtal code) that is applied in parallel by the
framework. Examples include the algorithm templates ielimtThreading Building Blocks (TBB) [101]
and Java'Par al | el Array framework [1]. Such frameworks are usually easier to reagmout than
general parallel programming because the user only hasite sgquential code, letting the framework

orchestrate the parallelism.



For frameworks, the property that corresponds to detesmirby default for general language mecha-
nisms is checking the effect specifications of the framewtd?k For examplePar al | el Array’'sappl y
method applies an arbitrary user-specified method in ghraleach element of the array. If that method
performs an unsynchronized update to a global variable,dhainexpected race will result when the frame-
work applies the function. This kind of race can be excludét)ithe framework developer gives the APl an
effect specification (for example, that the function preddoappl y has no conflicting effects on shared
state); and (2) the compiler checks that the specificatiomes by all code supplied by the user to the
framework. Frameworks like this can supplement a detestiinby-default language by adding new oper-
ations that carry the same strong guarantees, such as desenniby default, as the underlying language.
For example, @ar al | el Arr ay framework thatguaranteeghat no user-suppliedppl y function has

interfering effects on shared state gararanteedeterministic behavior for all uses appl y.

1.2 Technical Challenges

Determinism: Determinism is available today for certain restricted esydf parallel programming, such
as data parallel or purely functional programs. We dischesd in more detail in Chapter 2. However,
defining an expressive and efficient language that guamditerminism in the presence of general aliasing
of shared mutable data remains unsolved. The problem isutffbecause techniques such as references
and encapsulated updates to shared state, which are exprasd efficient for sequential programs, hide
the data dependence relationships between potentialiigasections of code.

As a result, mainstream parallel programming models todayige no special assistance for pro-
gramming deterministic algorithms. Parallel applicasidaday primarily use threads and shared memory,
whether through libraries likpt hr eads, Intel's Threading Building Blocks (TBB), and OpenMP; or lnu
tithreaded languages like Java, C#, and Cilk++. Prograriteewin these models can be extremely difficult
to understand and debug. A correctly written program maydierchinistic, but this property is difficult
to check. This is a very important deficiency, as many apitioa that will need to be ported to emerging
parallel architectures are written in imperative, objedented languages such as C++ and Java.

One recent approach to solving this problem is to sglelculative parallelisnjb1, 93, 50, 128, 18, 99,
114, 124] to a language such as Java. This approach can tpedaterministic semantics, but it either

incurs significant runtime overheads [51, 93, 50, 128], oedfuires special hardware [99, 114, 124], or it

6



works well only for coarse-grain sharing [18]. Further,sdation does not solve the fundamental difficulty
of hidden updates in parallel programs: while the prograthbeicorrect, it will not perform well unless it

is tuned to avoid synchronization or speculative confliatg] tuning requires the programmer to understand
the patterns of sharing, interference, and synchronizatidghe code.

Another approach is to use a combination of static and dynah@cks. Both Jade [105] and Prometheus [11]
adopt this approach. However, in both languages, the sy@iEcsystem is relatively weak, and many checks
are left to runtime. Further, there is no speculation, saufreime check fails, the program aborts. Thus, itis
generally not possible to guarantee at compile time or exgtimg time that the program has a deterministic
sequential equivalent. Multiphase Shared Arrays [42] aAd1A[112] adopt a similar approach.
Nondeterminism: For the same reasons as discussed in connection with detemi.e., hidden conflict-
ing updates to shared state), parallel codes with intealtioondeterminism can suffer from problems like
data races and deadlocks. Again, mainstream parallelgmoging models provide no particular assistance
with avoiding these problems. The most common approachertagay is to use a race and/or deadlock
checker, such as Intel's Thread Checker. While such chgdkieffective in many cases, it is slow and is
not guaranteed to find all the races and deadlocks in a program

Several experimental approaches exist for adding safetyagtees to nondeterministic code. Transac-
tional memory [63] provides isolation and deadlock freedbnt it still permits a race if one or both of the
racing memory accesses occur outside a transaction. Fupeause of overhead concerns, transactional
memory implemented in software (software transactionahorg, or STM) typically guarantees onlyeak
isolation — i.e., the isolation holds only if there are no conflicts alasof transactions. Even worse, if
thereare conflicts outside of transactions, then (again, for efficjereasons) many STM implementations
produce behaviors that can be very difficult to reason alddf][

Several researchers have described effect systems farcenfa locking discipline in nondetermin-
istic programs, to prevent data races and deadlocks [248,68@, or to guarantee isolation for critical
sections [52]. Each of these efforts provides some subgbedbur guarantees stated above for nondeter-
ministic code, but none provides all of them in the same laggu Further, none of this work explores the
interaction between deterministic and nondeterminisies or attempts to design a language for determin-
ism by default.

Checking framework uses:Current frameworks give no guarantee against conflictingnorg operations,



and this a serious deficiency in terms of correctness andrammoginderstanding. For example, there is
nothing in thePar al | el Array API that prevents a user from writing @ppl y function that does an
unsynchronized write to a global variable, causing a racenvthe framework applies it in parallel to the
array, as discussed above. Today’s frameworks only isse¢ @f snformal guidelines for how to use the
API safely, which is unsatisfactory.

While several tools and techniques exist that supportngiéind checking assertions at interface bound-
aries [119, 75, 89], these ideas have not yet been appliedotobyit interfering effects, i.e., concurrent

conflicting memory operations. Doing so involves severarphallenges:

1. Maintaining disjointnessUseful parallel frameworks need to support parallel upsiate contained
objects. For example, we would likeRar al | el Array of distinct objects, where the user can
provide arappl y function that updates an element, and ask the frameworkdly @po each distinct
object in parallel. To do this safely, the framework mustugagshat the objects are really distinct;
otherwise the same object could be updated in two paradleltibns, causing a race. For a language

like Java with reference aliasing, disjointness of refeeeis a nontrivial property.

2. Constraining the effects of user-supplied methdels: a parallel update traversal over the objects in
a framework, disjointness of reference is necessary busuféitient to ensure noninterference. The
framework must also ensure that the effects of the userlisgippmethods do not interfere, for example

by updating a global variable, or by following a link from ooentained object to another.

3. Making the types and effects generiBecause different uses of the framework need user-supplied
methods with different effects, the framework should caistthe effects of user-supplied methods
as little as possible while retaining soundness. For exangole use oppl y may write into each
object only; while another may read shared data and writeeath object. The framework should
also be generic, not specialized to a specific type of coathabject. These requirements pose chal-
lenges when the framework author needs information abeutytie of the contained objects and the

effect of user-supplied methods in order to provide a nenfatence guarantee.



1.3 Deterministic Parallel Java

In this thesis, we present the design and evaluatioRetérministic Parallel JavdDPJ). DPJ extends the
sequential subset of Java with an effect system that (lyslieterministic algorithms to be written with a
compile-time guarantee of determinism; (2) supports tmepmsition of deterministic and nondeterministic
code with strong compile-time guarantees, including aeitgism by default; and (3) supports the specifica-
tion and checking of effects on framework APIs. In DPJ, tregpimmer partitions the heap usirggjions
which are names for sets of memory locations, and writethod effect summarisgying which regions
are read and written by the method. The compiler checks tigatntethod summaries are correct (i.e., the
summary includes all the actual effects of the method) aatghrallel tasks areoninterfering(i.e., if any
two parallel tasks access the same region, then all suclsse@re operations that commute with each
other, such as reads). DPJ builds on early work in types drdtef[61, 56] together with recent advances
in object-oriented effect systems [59, 25, 77, 37, 80].

DPJ has the following advantages over previous approaches:

1. It can express a wide range of deterministic algorithmsuch a way that the compiler can stati-
cally guarantee determinism by default, as well as the wafeiperties for nondeterministic code

mentioned above.

2. Unlike speculative methods, Jade, or Prometheus, pdedgrministic code requires no complicated
runtime support or extra runtime overhead. DPJ does us@&saithonal runtime, but that runtime is

invoked only if the code uses nondeterministic constructs.

3. DPJ’s effect system includes novel support for imporizatterns of parallelism — such as field-
granularity updates on nested data structures and paaatgl updates — that previous effect systems

do not support.

4. DPJ supports the implementation of object-oriented é&&orks that provide correctness guarantees
to their users. The framework author can check correctnegsepies of the framework, including
determinism, without seeing the user’s code. In any useefrdmework that passes the DPJ type
checker, the properties hold. The effect system introdacesl features to support generic parallel

frameworks, while retaining sound reasoning about effects



These benefits do come at some cost in terms of programmeiadiono in particular, the programmer must
annotate types with region and/or effect information, aredhuods with effect information. In the technical
sections of this thesis, we include a quantitative evadmatif the annotation burden, in terms of the number
of annotations required. As discussed in Chapter 2, oneeolfoting-term goals of this work is to explore

ways to reduce the annotation burden. We have considered/ays:
1. Developing algorithms and tools for inferring some oradithe type and effect annotations [122].

2. Supplementing or replacing some of the static checkirt wintime checking. This would weaken
the guarantee and/or add overhead, but it could also sirp&fannotations and/or make the language

more expressive.

Both of these issues are the subject of active research igroup, but are beyond the scope of the present
thesis. The focus of this thesis is on designing an effederyshat is highly expressive, while still being
usable.

Finally, while this thesis focuses on extending Java, md&nyhe ideas should apply to other object-
oriented languages, such as C# and C++. C++ is not a typdassajaage; in particular, there is no guar-
antee that dereferencing a pointer will access an objediefype specified by the pointer. Therefore, to
apply these ideas soundly to C++, one must do some additiemdd. One possible approach is to provide
deterministic semantics for type-safe programs, witheaviding any guarantee for programs that violate

type safety.Our research group is actively working on thabfem, but it is beyond the scope of this thesis.

1.4 Thesis Contributions and Outline

The broad contribution of this thesis is to present a reallahguage for shared-memory, object-oriented
parallel programming that (1) guarantees determinism fgulteat compile time, with the safety guarantees
stated in Section 1.1; (2) uses speculation only for nomatestic computations, while adding negligible
overhead for enforcing determinism; and (3) allows the usesbject-oriented frameworks to be checked
against their effect specifications. This broad contrinusubsumes several specific technical contributions.
These are stated below, in the order that they appear in shefrthis thesis.

Research agenda for determinism by default:Chapter 2 presents a comprehensive research agenda for

achieving determinism by default in imperative languadéss chapter argues that affect systerfas used
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in DPJ) is a good solution to the problem, and it describesrasting approaches. It also discusses several
technical challenges raised by effect systems that are taén the rest of the thesis. Finally, this chapter
discusses two open issues that are not addressed in thé tiesttbesis: (1) reducing programmer burden
by inferring effect annotations; and (2) supplementindistaffect checking with runtime checks. Other
members of our research group are working on these problems.

Effect system and language for determinismChapters 3 and 4 describe an effect system and language for
determinism. The language provides explicit, fork-joimgdelism usingf or each for parallel loops and
cobegi n for parallel statement blocks. Data-dependent synchatioiz patterns (e.g., a pipelined parallel
loop [72]) cannot be expressed by this language, but theiserps can be expressed by object-oriented
frameworks, discussed below. The effect system ensuresngeism at compile time by checking that no
conflicting memory accesses can occur in parallel branchibe samd or each orcobegi n. Chapter 3
gives an informal description of the entire language, andpBdr 4 gives a more formal treatment for a

simplified version of the language. This part of the thesikesahe following contributions:

1. We introduce a novel mechanism calledegion path list or RPL, for hierarchically partitioning
the heap. Hierarchical partitioning is vital for expresgggffects. For example, divide-and-conquer
parallel computations on trees naturally generate setffeifte like “writes the left subtree but not
the right subtree” or “reads field of every node but writes field only under this node.” RPLs
can express several patterns of effects that previoussgggil, 56, 59, 37] cannot. RPLs also allow

more flexible subtyping than previous work.

2. To support parallel update computations on arrays, wedate arindex-parameterized array type
that allows references to provably distinct objects to loeest in an array while still permitting arbi-
trary aliasing of the objects through references outsideatinay. We are not aware of any statically

checked type system that provides this capability.

3. To support in-place parallel divide and conquer openation arrays, we introduce the notion of
subarrays(i.e., one array that shares storage with another) guattétion operation Subarrays and
partitioning provide a natural object-oriented way to efedlisjoint segments of arrays, in contrast

to lower-level mechanisms like separation logic [95] thaafy array index ranges directly.

4. We introduce annvocation effegttogether with simplecommutativity annotationso permit the
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parallel invocation of operations that interfere at theelesf reads and writes, but produce the same
high-level behavior for any concurrent schedule. This rme@m supports common read-modify-
write patterns such as reduction accumulations. It alsawallconcurrent data structures, such as

concurrent sets and hash maps, to interoperate with thedageg

5. For a core subset of the type system, we present a formaltatefiof the static and dynamic seman-

tics. We also prove that our system allows sound staticeni@z about noninterference of effects.

6. We describe a prototype compiler for DPJ that performeffeet checking as described in this thesis

and then maps parallelism down to the ForkJoinTask dynachieduling framework.

7. We describe an evaluation using six real-world paralfegpams written in DPJ. This experience
shows that DPJ can express a range of parallel programmiteyis that all the novel type system
features are useful in real programs; and that the langsaafective at achieving significant speedups
on these codes on a commaodity 24-core shared-memory poocésdact, in three out of six codes,
equivalent, manually parallelized versions written to daea threads are available for comparison,

and the DPJ versions come close to or beat the performanbe dava threads versions.

Effect system and language for determinism by default:Chapters 5 and 6 describe extensions to the
effect system and language for determinism to add contfelndeterminism, with the safety guarantees
stated in Section 1.1. Again we give an informal descrip(iGhapter 5) followed by a formal treatment

(Chapter 6). This part of the thesis makes the following Gboutions:

1. We present a language that provides the four guarantatesl sh Section 1.&t compile time Our
language distinguishes deterministic and nondeterrnianistrallel tasks. Interference is allowed only
inside tasks explicitly identified as nondeterministic,tlse language is deterministic by default. As
in previous work on languages supported by transactiomgimes [62, 64], inside a nondeterministic
composition, the programmer can write a statenagrgm c S that runs the statemestin isolation.
However, our effect system guarantees strong isolation éwhe underlying TM guarantees only
weak isolation. It also guarantees race freedom, whichtiguaranteed by any TM systems. To our
knowledge, our language is the first to provide all four pripe stated above for a shared-memory

parallel language.
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2. We add a new kind of effect called atomic effector tracking when memory accesses occur inside an
atomic statement. The atomic effects allow the compileruargntee both race freedom (property 1)
and strong isolation (property 2), by prohibiting confligfimemory operations unless each operation

is in an atomic statement.

3. We introduce new effect checking rules to enforce contjposof operations (property 3) and deter-
minism by default (property 4). For composition of operaipthe extended effect system disallows
interference between a deterministic operation and angr ahncurrent operation unless the whole
deterministic operation is enclosed in an atomic statemeot determinism by default, the inter-
ference is disallowed for deterministic parallel openagiobut allowed for nondeterministic parallel

operations.

4. We introduceatomic regionsso that the programmer can identify which regions (i.¢s sememory
locations) are allowed to be accessed in an interfering erarfror operations to other regions, the
compiler can remove or simplify the STM synchronizationcdugse such operations never cause

conflicts.

5. We formalize our ideas using three formal languages: teeHas only deterministic parallel oper-
ations, the second adds nondeterministic parallel operigtiand the third adds atomic regions. We
have developed a full syntax, static semantics, and dyrsas@mantics for all three languages. Fur-
ther, we have formally stated the soundness properties gnfermally above, and prove that the

properties follow from the semantic definitions.

6. We describe our experience using the language to impletimese nondeterministic algorithmBe-
launay mesh refinemeifitom the Lonestar benchmarks [2], thiraveling salesman problerfT SP),
andOO07[31], a synthetic database benchmark. Our experience stawgporting these algorithms
from plain Java into DPJ was relatively straightforward aeguired neither redesign of existing data
structures nor restructuring of the algorithms themsehMedditionally, judicious use of atomic re-

gions eliminated a large fraction of the STM-related ovachi two out of three benchmarks.

Support for object-oriented frameworks: Chapters 7 and 8 show how to extend the DPJ effect system

to support object-oriented parallel frameworks, as disedsn Section 1.3. Again we give an informal
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description (Chapter 7) followed by a formal treatment (@ka 8). This part of the thesis makes the

following contributions:

1. We show how to write a framework API using the DPJ effecteaysas described in previous chap-
ters so that the framework writer can guarantee disjoistioéseference and sound effects for user-

supplied methods, assuming the user's code passes the [pPchigcker.

2. We show how to extend the DPJ effect system to add genddctefand generic types, making
the frameworks more general and useful. For the effects, ddecanstrained effect variable®
enforce disjointness of effect. For generic types, we thioetype region parametersvhich give the
framework author enough information about the types boongeneric type variables to guarantee

disjointness and soundness of effect, without knowing Kaettype.

3. We give the formal semantics of a core subset of the extelashguage and formally state the sound-

ness results. We also prove soundness for the formal laeguag

4. We state the requirements for a correct framework implgation, meaning that if these require-
ments hold, then noninterference is guaranteed for theegptogram. We also show how to use a
combination of the DPJ type system and external reasoniefdok these requirements informally.

We leave as future work the formal verification of the requieats.

5. We describe an evaluation in which we used our languag&anéms to write three parallel frame-
works (representing a parallel array, tree, and pipelind)tgy writing applications using these frame-
works. We found that the language mechanisms are able tareagalistic parallel algorithms. In
particular, the pipeline framework expresses a pipelintepathat cannot be expressed directly using
DPJ’s fork-join parallel constructs. We also found that éixéra annotations required by the system
are fairly simple for framework users and, while more cowgited for framework writers, are not

unduly burdensome.

Chapter 9 concludes by summarizing what has been accoregligre and what remains for future research.
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Chapter 2

A Research Agenda for Determinism by Default

As discussed in Chapter 1, this thesis argues that to synpéifallel programming, mainstream object-
oriented programming languages must become determibigtitefault. In this chapter, we lay the ground-
work for the following technical chapters by outlining a bdoresearch agenda in support of that goal. The
agenda consists of four parts:

1. How to guarantee determinism in a modern object-orientedanguage?For reasons discussed in Sec-
tion 2.1, our philosophy is to providgatic guarantees through a combination of a type system and simple
compiler analysis when possible, and to fall back on runtimecks only when compile-time guarantees are
infeasible. The key is to determine when concurrent taskseroanflicting accesses. The language can help
provide this capability in two ways. First, structured pietacontrol flow makes it easy to analyze which
tasks can execute concurrently. Second, language ammsatan convey explicitly what data is accessed
or updated by a specific task.

2. How to provide sound guarantees when parts of the programitiher cannot be proved deterministic

or have “harmless” nondeterminism? Libraries and frameworks written by expert programmersl ten

be widely reused, carefully designed, and thoroughly tes&ich code may include components that are
not deterministic in isolation, yet can be combined to plevileterministic results. For example, a sequence
of commutative inserts to a concurrent search tree withiarallel loop can be executed in arbitrary order
and yet give deterministic results, as long as no other tiperée.g., a find) is interleaved between those
inserts. Languages should enable such libraries to exporggacts that can be enforced by the compiler.
The system can then ensure that a client application usagttary is deterministic so long as the library
implementation meets its specification.

3. How to specify explicit nondeterminism when needed? deterministic-by-default language may need
to support transformational computations that permit ntlba@ one acceptable answer. If so, the language

must achieve three goals. First, any nondeterministic\beheust beexplicit, e.g., using nondeterministic
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control statements; hence the term “deterministic by defésecond, the nondeterminism should be care-
fully controlledso that programmers can reason about possible executitimsaldtively few interleavings.
Third, nondeterministic code should @®latedfrom deterministic code so that the programmer can reason
deterministically about the rest of the application.
4. How to make it easier to develop and port programs to a deteninistic-by-default language? As
advocated in this chapter, determinism by default comesmescost in terms of language annotations.
However, the cost is worth the safety and productivity beseff determinism by default. Further, the
cost can be significantly reduced by tools and techniquésirifex annotations or help the user write the
annotations.

The following sections of this chapter discuss each of tiesees in order. We conclude with a discus-

sion of broadly related work that achieves determinism Imjting or excluding side effects.

2.1 Guaranteeing Determinism

In this section, we discuss the problemgafaranteeingthat a program produces deterministic results. As
discussed in Chapter 1, a program that is known to be detestimiis much easier to reason about than one
that is not. Determinism is also a fundamerm@airectness propertfor the implementation of any algorithm
with a deterministic specification. First, we classify adterministic algorithms into three broad patterns.
Then we discuss technical approaches to enforcing detesmmiior the three patterns. Finally, we discuss
effect systemsvhich we believe are an important part of the solution tmesihg determinism.

Here we assume the computation happens entirely in memodywea disregard 1/0. There are two
reasons for this. First, as discussed in Chapter 1, we amaply concerned with computations that take
an input, compute in parallel, and produce an output. In ssarhputations, I/O typically occurs as a
separate phase, before the parallel computation. Secardklimg 1/O effects is very similar to modeling
memory effects. Therefore, the model is easily extendedriowrrent computations (e.g., servers) involving

concurrent 1/0, although such computations are not thegirfocus of this thesis.

2.1.1 Patterns of Determinism

All deterministic parallel computations that operate oarsld memory can be classified into one of three

broad patterns:
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1. No memory conflictsA parallel computation is deterministic if, for every pairroemory operations
in two different tasks that occur in parallel, either (1) lbatperations are reads, or (2) the opera-
tions access disjoint memory locations. In either caseptter of operations has no effect on the
result. Examples include computations that read global ongrand write to local storage (so-called
“embarrassingly parallel” computations), or computagitimat write to distinct parts of the same data

structure (e.g., a tree or array) in global memory.

2. Synchronized memory conflicts.parallel computation is also deterministic if, for evemipof con-
flicting memory operations between parallel tasks, theatpars happen in a deterministic order. For
example, thread-level speculation [114] guarantees thigguty, by enforcing the order of conflict-
ing operations given by a sequential execution of the prograA speculative thread is aborted and

restarted if the sequential conflict ordering is violatedtoy parallel execution.

3. Confluent memory conflict&inally, a parallel computation may give deterministicules even if it
has parallel conflicting memory operations that occur in adeterministic order. This property is
sometimes calledonfluence A simple example is a shared read-modify-write countetgmted by
a lock. If the counter is incremented bythreads, the end result will be regardless of the order
in which the accesses occurred. A slightly more complex @ans an associative reduction, e.g.,
a parallel reduction of an integer array to its sum, usingcoaent read-modify-write operations on
a reduction variable. A still more complex example is a détacture such as a set or tree built up
by concurrent insert operations. In the case of a set, the satresults regardless of the order of
insertions. The same property is true of some trees. For @eaihe spatial tree used in the Barnes-
Hut n-body simulation [109] is uniquely determined by thelies inserted, and independent of the
order in which they are inserted. Inserting the bodies ifetght orders creates different intermediate

trees, but the final tree is always the same.

For all three patterns, a fundamental challenge in guagargedeterminism in a shared-memory im-
perative language is for the system to detect potentialhflicing memory operations (also calleffect$
between different parallel computations in the program.c@lkethis ability effect checkingEffect checking
can directly guarantee the first pattern of determinisnmedtat above (no conflicts), by detecting and pro-

hibiting such conflicts. Effect checking alone is moffficientfor patterns two and three: pattern two needs
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some sort of ordered runtime synchronization (either dpéea or nonspeculative), and pattern three needs
some proof of confluence. However, effect checking is s@ttessaryor patterns two and three. In pattern
two, the computation is deterministic if the conflictingesfts are correctly synchronized; therefore, proving
correctness requires knowing where the conflicts are. &ilpilin pattern three, the proof of correctness
requires proving that conflicting effects are confluent. iAgave cannot get very far if there are unknown

conflicting effects.

2.1.2 Approaches for Checking Effects
Broadly, there are four known approaches for checking &ffec

e Language-based approacheg@discussed further in Section 2.1.3) use language extesisisually

an extension of the type system, for detecting and/or pitiingoconflicting effects at compile time.

e Compiler-based approachesise parallelizing compiler technology (e.qg., [72, 27]) fansform se-

quential programs (with or without annotations) into pltebrm.

e Software runtime approaches(e.g., [105, 128, 11, 96, 18, 14]) use software runtime chéxkietect,
and possibly speculation to recover from, violations ofd®tinistic semantics in the execution of a

parallel program.

e Hardware runtime approaches (e.g., hardware-supported thread-level Ispiecu(TLS) [113, 99]
or DMP [43]) use hardware support to achieve the same goalwibuless overhead, at the cost of

increased hardware complexity.

The four approaches involve different tradeoffs and candoelbined in different ways into a composite

solution. A language-based approach has the followingftisne

e It allows a high degree of programmer control over the way ttaa is shared and the way that

properties like determinism are checked and enforced.

¢ It documentshe available parallelism for future developers, and makegram behavior and perfor-

mance characteristics explicit in the code.

e It can specify properties that hold at interface boundaeesancing modularity. This specification

allows the compiler to check and enforce deterministic wddibraries and frameworks using only
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the API; the source code for the implementation is not neededt would be for whole-program

compiler analysis.

A compiler approach can reduce the burden of writing pdretide compared to a pure language approach.
However, for all but very regular codes auto-parallelizatis quite difficult; and even where successful it
can be brittle (small code changes can destroy performameehard to understand.

A robust runtime can reduce or eliminate the need for therpragher or compiler to get the sharing
patterns correct. However, runtime approaches can addcassay overhead. For example, thread-level
speculation with no language or compiler support needseolchvery single access to global memory for a
potential conflict. Further, runtime approaches can mak®preance characteristics opaque: synchroniza-
tions and aborts can be major performance bottlenecks amalyinot be clear from the text of the program
where those are occurring, or how to alleviate the bottlesieEurther, runtime techniques based on a fail-
stop approach are inherently input-dependent: one inputhaze no conflicts between parallel tasks, while
another input has a conflict which causes the program to mexteni As discussed in Chapter 1, while these
approaches can guarantee deterministic behavior (thegmogill always either fail or not fail on a given
input), they generally cannot guarantee that a programbeliave according to a sequential semantics on
all runs.

Overall, explicitly parallel, language-based approachiesthe only ones that provide the benefits of
performance control, explicit interfaces, modularitycdmentation, and compile-time enforcement. We
therefore believe that such an approach is the most atteaittithe long term. Such an approach can
be combined with limited runtime software and hardware kimgcto enable greater expressivity, where

needed.

2.1.3 Effect Systems

We believe that an important part of the solution to coninglisharing is a particular language mechanism
called an object-orientedffect systenB82, 30]. Effect systems provide annotations that partitive heap
and declare which parts of the heap are accessed by eachitdsk, what way (for example, read or write).
An effect system can easily show that two distinct objects@ing created at every recursive call of a divide
and conquer pattern, so the subcomputations do not interfer

The rest of this thesis, after this chapter, presents ouk worDeterministic Parallel Java (DPJ). DPJ
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uses a sophisticated effect system that partitions the imé@aierarchicalregionsand uses those regions
to disambiguate accesses to distinct objects, as well eisdiparts of the same object, referred to through
data structures such as sets, arrays, and trees. DPJ’s ®fstdem readily supports the first pattern of
deterministic parallelism (no conflicts). A simplecal type-checker can then ensure that there are no
conflicting memory operations between concurrent taska.clorrect DPJ program, nondeterminism cannot
happen by accident: any such behavior must be explicitlyested by the user, and a DPJ program with no
such request has an obvious sequential equivalent. DRaf®#&uor the other two patterns (synchronized
conflicts and confluent conflicts) is discussed below, iniSe@.2.

When static checks do not work, either because the analysistipossible or the annotation burden is
not justified by the performance gains, we must fall back oriime techniques. One approach is to use
software speculation [128], with hardware support [99] i§iavailable to reduce overhead . An alternative
approach is a fail-stop model that aborts the program if @rdenistic violation occurs [105]. This approach
gives a weaker guarantee, but it avoids the overhead ofriggaid rollback. A combination of the two
approaches could also be used. For example, fail-stop ttgeckuld be used for production runs, while
speculation could be used to simplify the initial portingpsbgrams by producing a guaranteed-correct
speculative version on the way to a more efficient versiore &tira overhead of speculation can be tolerated
more readily during the development process. Speculatiaida@lso be used (even in production runs) for
algorithms that aréenherently speculativewhere new tasks must be launched speculatively or theeentir
algorithm would become serial [74]. Here, the overhead etafation may be more tolerable if it is the

only way to express the algorithm at all.

2.2 Encapsulating Complex Behaviors

In realistic programs, the guarantee of determinism mag t@abe weakened for parts of the program, for
performance or expressivity. However, if we can encapsutabse parts behind an interface with suitable
contracts, and guarantee that client code satisfies thosects, then we can still provide sound guarantees
for the rest of the program. This approach is attractive beedhe encapsulated code can often be placed
in libraries and frameworks written by expert programmeifiesl in low-level parallel programming and

performance issues.
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2.2.1 Local Nondeterminism

As discussed in Section 2.1.1, a parallel algorithm may Inaemory conflicts that exhibit nondeterministic
intermediate states, while producing confluent final resuturther (e.g., in a reduction), the nondetermin-
ism in the intermediate states is often necessary for goddrpgance. Experienced programmers should
be able to write such computations and encapsulate theg icolibraries that have deterministic external
behavior, with well-defined properties.

In DPJ, we adopt this idea in the form ot@mrut eswi t h annotation telling the compiler that two
methods commute with each other, even if the effect systeortinterference. For example, a concurrent
read-modify-write update to a shared counter variable iisroatative, but the effect system does not know
that: it just sees interfering writes. Tkk®@nmut esw t h annotation allows an experienced programmer to
provide a concurrent counter (or more sophisticated exesnglich as a concurrent reduction variable, set,
or map). Thecomrut eswi t h annotation is discussed further in chapters 3 and 4 of teisigh

Commutativity is an important special case of confluencefluence is more general, because it can
include more than two operations). Many confluent sequentegperations (e.g., counter updates, set
inserts, reductions) can be built up from operations thaalipairwise commutative. Commutativity cannot
handle all cases of local nondeterminism, however. In DReJemcapsulate such behaviors entirely behind

an interface, as discussed in the next section.

2.2.2 Unsoundness

In realistic applications, some parts of the program mayat be deterministic yet perform operations that
cannot feasibly be proved sound by the type system or rurthmeeks. One example is a tree rebalancing.
If a data structure is known to be a tree, then this fact cap@tigound parallel operations, such as a divide
and conquer traversal that updates each subtree in parbl®bever, rebalancing the tree in a way that
retains the guarantee may be difficult without imposing seadias restrictions such as unique pointers.
It is also difficult for a runtime to check efficiently that thee structure is maintained during and after a
rebalancing.

We believe a practical solution in such cases is to allow undmperations, i.e., operations that may
break the determinism guarantee, but to encapsulate thpsatmns inside well-defined data structures

and frameworks using traditional object-oriented enckgsun techniques (private and protected fields and
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inner classes) supplemented by effect analysis and/@& @iatrol. The effect and alias restrictions can help
keep track of what is happening when references in the rékeafode point to data inside an encapsulated
structure [30]. Then the compiler can use the guaranteesde by the data structure or framework
interface to provide sound guarantees for the rest of thgrano.

In DPJ, we have applied this idea by extending the effecesysb support parallel frameworks. For
example, a tree framework can ensure algorithmically thaARl operations on the tree (such as rebal-
ancing) maintain the tree structure. This fact can then ke ts provide API operations to the user (such
as iterating over the tree in parallel and updating its el@s)ewith sound guarantees of noninterference.
Frameworks can also support patterns two and three distusSection 2.1.1 above, by encapsulating syn-
chronization patterns or confluent operations that theceffgstem alone cannot prove deterministic. For
example, a parallel algorithm for building a spatial trealdde incorporated in a framework, again with an
algorithmic guarantee of confluence. In all these casedrdngework API and implementation cooperate
with the effect system to provide the deterministic guagast Chapters 7 and 8 of this thesis discuss DPJ’s

framework support.

2.3 Explicit Nondeterminism

As discussed in Chapter 1, some algorithms produce sevecaptable answers. In contrast to encap-
sulated nondeterminism in the context of a deterministag@am (Section 2.2), here the visible program
behavior is nondeterministic. It is probably not desirablexclude such algorithms entirely from a parallel
programming model.

We wish to express such algorithms while achieving the ¥ahig goals. First, nondeterminism is ex-
plicitly expressed, e.g., using a nondeterministic cdrdtatement. As discussed in Chapter 1, this is what
we call determinism by default. Second, nondeterminismaigfally controlled, so that the programmer
need reason about only relatively few program interleavinthird, the nondeterministic part of the appli-
cation should not compromise the ability to reason detastigally for the rest of the application.

In DPJ, we achieve these goals in the following way:

e The language explicitly distinguishes parallel conssuhat enforce determinism from those that do

not. Specificallyf or each (for a parallel loop) anadobegi n (for a parallel statement block) en-
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force noninterference between their component paralistaand so guarantee determinism; while
f or each_nd andcobegi n_.nd (where “nd” stands for “nondeterministic”) allow interéarce be-
tween their component parallel tasks, and therefore allmmgdaterminism. The language is determin-
istic by default, because a stateméhéxecutes deterministicallynlessthe execution oS encoun-

tered a dynamic instance bbr each_nd or cobegi n_nd.

e For nondeterministic computations, the language supporttomic statemersit omi ¢ S that guar-
anteesstrong isolationfor S. As discussed further in Chapter 5, because DPJ allowdgénggiceonly
between pairs o&t om c statements, thenly interleavings that programmers must reason about is
the interleaving ofat om ¢ statements. All other statement orderings follow from paog order

(i.e., once the order aft omi ¢ statements is specified, program execution is deternthisti

e Again as discussed in Chapter f5or each andcobegi n always behave deterministicallgven
inside af or each_nd or cobegi n_nd. In particular, they behave like a sequential compositibn o
their component tasks in the obvious order (i.e., the onevibald occur iff or each orcobegi n
were elided). This property fosters local, compositiomasoning about parallel constructs. In par-

ticular, deterministic constructs behave consistentiyatter where they occur.

Chapters 5 and 6 of this thesis discuss DPJ’s support foraterdinistic computations.
The Galois system [74] provides capabilities similar to bor each andf or each_nd, except that
it is possible to write incorrectly synchronized prograrfts €xample, that have data races) in Galois. Our

aim is to leverage the effect system described in this thegjaaranteethe properties described above.

2.4 Usability

A common concern regarding language-based solutions toiteo rewrite existing programs and to learn
new language features. We believe that (1) the costs terelésdmggerated and the benefits underestimated:;
and (2) strong technical solutions can significantly redheecosts. We discuss both points briefly in turn.
Costs and benefits of language solutiongzirst, we are proposing a small set of extensions to an ésttebl
base language (such as Java or @w},an entirely new language. This fact should mitigate theropf
cost of both learning the new features and writing code thasthe new features. Further, the extra effort

to learn and use new language features is likely to be dwdnyetthe effort required to write, port, tune,
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and test parallel code. A well-designed language that fieplthe latter tasks can more than justify the
learning curve. Note also that because we are extendingeddraguage, porting can be donerementally
e.g., kernel by kernel.

Second, although object-oriented effect notations reggome extra effort from the programmer, such
effort is not wasted. First, effect annotations on methadsige a compiler-checkablaterfacethat allows
sound, modular reasoning about program components, evite iabsence of all the source code (such
as for a library or framework). Thus, the annotations enbamodularity and composability. Second,
the reasoning required to introduce regions and effectzastly the reasoning required to understand the
sharing patterns in the code. In fact, the region and effesthanisms give programmers a concrete guide
for how to carry out such reasoning.

Third, nontrivial real-world applications are long-livednd initial development or porting costs are
usually a small fraction of long-term maintenance and eocbaent costs. A language that simplifies testing
and documents sharing patterns in the code reduces maiotenasts.

Fourth, current thread-based languages have woefullyemaate shared memory models. The only
memory model accepted today guarantees sequential eangistor data race-free programs, as for Java
and (soon) C++. The difficulty lies in the semantics of dateesa C++ does not provide any. Java provides
semantics that are complex and fragile. If we are to move ridsvaafe parallel languages with tractable
memory models, wenust prohibit data races for all allowed programsA type and effect system, as
discussed in Section 2.1.3, could accomplish this goal leithruntime overhead.

Reducing the costs:Sometechnical solutiongan further reduce the cost of using new language features:

e Inferring annotations We are exploring how judicious use of effect inferencediirihg region and

effect annotations) can reduce the programming burden ydtars like DPJ [122].

e Runtime checksThe language can provide runtime checks, as describeddtioB8e2.1.3, so that
large programs can initially be ported without all the effaanotations needed for compile-time
checking. The overheads of runtime checks can then be imcriadly tuned away by introducing

effect annotations where the benefits justify the effort.

e Integrated development environment (IDBj IDE can use sophisticatadteractivecompiler par-

allelization technology, combined with modern refactgriechnology, to assist the initial porting
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process. Making porting a one-time effort allows such arnrenment to use powerful, but poten-
tially slow, interprocedural parallelization techniquigise strengths of compilers); while making it
interactive allows programmers to influence the processaaoi the problems of poor or brittle

performance (the weaknesses).

2.5 Related Work: Limiting Side Effects

As stated previously, the broad goal of this thesis is to ldgva deterministic-by-default language with
expressive side effects. Parallelism is easier to exprésnthere are no side effects, because there are
no hidden and potentially conflicting accesses to sharedanenHowever, the absence of side effects
requires a more restrictive programming model than is gidier an imperative, object-oriented language
with reference passing and mutable objects. Here we briaflyeg contrasting approaches, in which safety
guarantees are obtained by restricting or eliminating sfticts. Related work that is technically closer to
DPJ (e.g., other work on effect systems) will be discussetierrelevant following chapters of this thesis,
after the technical discussions.

Data parallel languages. Data parallel languages express parallel operations oelémeents of regular
data structures, such as arrays, containing numerica¢saldM Fortran [40] and Fortran 90 [88] enabled
a SIMD (single instruction, multiple data) style of dataadkl programming in which a single statement
can operate on an entigfice (rectangular subsection) of an array. Later languagesdotred mechanisms
for specifying the distribution of data across large disttéd-memory machines and operations on more
complex data structures such as sparse arrays. These d@sginalude Fortran variants [53, 40, 131, 67,
87]; languages based on C and C++ [66, 83]; NESL [21]; , ZPL,[82d Hierarchically Tiled Arrays [19].
Data parallel language constructs can elegantly expraesndiaistic parallelism and achieve very high
performance when the data and operations are regular;dyutémnot express, or achieve poor performance
for, important features like multiple threads of contra@ygllelism across pointer-based data structures, and
dynamic creation and deletion of tasks or threads.

Parallel functional languages. Purely functional languages are side effect free. Paralledtional lan-
guages such as Concurrent Haskell [70], ML [102], of par&liectional languages use this fact to express
parallelism elegantly [79]. However, the absence of sidecef means that many common programming

patterns are impractical. For example, even a simple dparatich as appending to a list requires making
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a new copy of the entire list. There has been work on undetstgriheeffect interferencéhat results when
side effects are added to functional languages [55, 71,. 1Rétently, Dowse et al. have shown how to
model I/O in concurrent Haskell while retaining determiiciguarantees [46]. To our knowledge, none of
this work investigates language annotations for non-dptee, deterministic parallelism in the presence of
pointer-based sharing of mutable data.

Dataflow languagesin the 1970s and 1980s, many researchers proptesdlow languagefor program-
ming adataflow architecturan which programs were represented as dataflow graphs, iexgpab data
dependences at the instruction level [94, 49]. By the 19@@®came apparent that to achieve efficiency,
the graph nodes had to consist of many instructions, ledolwg to a functional style. Today, dataflow
programming is mainly used for digital signal processing ather computations callestream computa-
tionsthat are naturally expressed as subcomputations dedletklsinteracting via a dataflow graph [69].
It appears unlikely that this approach can replace trasitiomperative programming on von Neumann
architectures for general-purpose applications.

Parallel message passing languageghere has been some work on guaranteeing deterministittsésu
programs written in an explicit message passing style orstailalited-memory machine. Compositional
C++ [34] provides asynch variableghat behaves like a single assignment variable in a datafioguage.
Fortran M [33] allows explicit communications vihannelsand coordinates reading and writing wikens
that can be passed through the channels. While similar it $piwhat we are trying to achieve, these

languages use very different mechanisms that appear dlitiicextend to shared memory systems.
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Chapter 3

Effect System and Language for Determinism

This chapter describes DPJ’s effect system and languageadsdgor supporting deterministic parallelism.

As discussed in Chapter 1, the basic strategy is as follows:
1. The programmer explicitly marks which sections of codetarbe run deterministically in parallel.

2. The programmer partitions the set of heap memory locat{pe., object fields and array cells) us-
ing regions which are sets of memory locations. The programmer alsteswifect summariesn

methods, indicating which regions are read and written byntlethod.

3. The compiler checks that the method summaries are cdiregtthey include all the actual effects
of the method) and that parallel tasks amninterfering That means that if any pair of parallel tasks

accesses the same region, then the accesses commute —ipiextey are both reads.

The rest of this chapter proceeds as follows. Section 3.&ribes some basic capabilities that DPJ
shares with other effect systems. Section 3.2 descrémgsn path listsor RPLs. RPLs represent a novel
way to partition the heap hierarchically, and are the key RI'B expressive effect specifications and sub-
typing. Section 3.3 describes DPJ’s features for supmpiigrallel computations on arrays. Section 3.4
describes DPJ'sommutativity annotation®r specifying that two method invocations (e.g., two updat
to a shared counter) may be applied in parallel with detestinresults, even though they have interfer-
ing reads and writes. Section 3.5 presents an evaluatiomeodeterministic effect system and language,

including expressivity, performance, and usability. 8etB.6 discusses related work.

3.1 Basic Capabilities

We begin by summarizing some basic capabilities of DPJ tresenilar to previous work [82, 77, 59,

30, 35]. We refer to the example in Figure 3.1, which showsrgk binary tree with three nodes and a
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cl ass TreeNode<regi on P> {
regi on Links, L, R
doubl e nass in P
TreeNode<L> | eft in Links;
TreeNode<R> ri ght in Links;
voi d set Mass(doubl e nass) wites P { this.nass = nass; }
void initTree(double mass) {
cobegi n {
[+ Inferred effect is 'reads Links wites L' =/
| eft. mass = nass;
I+ Inferred effect is 'reads Links wites R «/
right.mss = nass;

© 0 N o O A~ w N B
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Figure 3.1: Basic features of DPJ. New DPJ syntax is highdighn bold face. Effects inferred by the
compiler are given in comments. Note that methad t Tr ee (line 7) has no effect annotation, so it gets
the default effect summary of “reads and writes the entiaplie

TreeNode<Root>

double mass Root

TreeNode<L> leftChild Links

TreeNode<R> rightChlld Links \

TreeNode<L> TreeNode<R>
double mass L double mass R
TreeNode<L> left Links TreeNode<L> left Links
TreeNode<R> right Links TreeNode<R> right Links

Figure 3.2: Runtime heap typing from Figure 3.1

methodi ni t Tr ee that writes into therass fields of the left and right child nodes. As we describe more
capabilities of DPJ, we will also expand upon this examplméke it more realistic, e.g., supporting trees
of arbitrary depth.

Expressing parallelism: DPJ provides two constructs for expressing parallelisectibegi n block and
thef or each loop. Thecobegi n block executes each statement in its body as a paralleldagtiown in
lines 8-13. Thé or each loop is used in conjunction with arrays and is described ittiSe 3.3.1.

Region names: In DPJ, the programmer uses named regions to partition tap, hend writes method
effect summaries stating what regions are read and writyeeach method. Alass region declaration

declares a new name(called aclass region nanjethat can be used as a region name. For example, line 2
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declares nameki nks, L, andR, and these names are used as regions in lines 4 and 5. A oipss re
name is associated with the static class in which it is dedlathis fact allows us to reason soundly about
effects without alias restrictions or interprocedurabglanalysis. A class region name functions like an
ordinary class member: it is inherited by subclasses, at&ldguthe scope of its defining class, it must be
appropriately qualified (e.gTr eeNode. L). A local region declarationis similar and declares a region
name at local scope.

Region parameters: DPJ provides class and method region parameters that epgmtlarly to Java
generic parameters. We declare region parameters withethedctdr egi on, as shown in line 1, so that
we can distinguish them from Java generic type parameteBHFU, type parameters always come first and
may be preceded by the keyworg pe). When a region-parameterized class or method is usedyrregi
arguments must be provided to the parameters, as showmr#irb. Region parameters enable us to create
multiple instances of the same class, each with its data ifiexeht region.

To control aliasing of region parameters, the programmeyr wrée a disjointness constraint [30] of the
form P, # P, whereP; and P, are parameters (or regions written with parameters; seio8e::2) that
are required to be disjoint. Disjointness of regions isyf@kplained in Section 3.2; in the case of simple
names, it means the names must be different. The constaimtshecked when instantiating the class or
calling the method. If the disjointness constraints aréatéal, the compiler issues a warning.

Partitioning the heap: The programmer may place the keyword after a field declaration, followed by
the region, as shown in lines 3—5. An operation on the fieldeigtéd as an operation on the region when
specifying and checking effects. This effectively paotits the heap into regions: in a Java program without
arrays, like this one, the heap consists of a set of clastsbjevery class object has a set of fields, and
every field has a region. In this simple example, exactlyehegions are used for partitioning the heap
— Li nks, L, andR — and every class field at runtime is in one of those regiong FBgure 3.2 for an
illustration of the runtime heap typing, assuming the rooden has been instantiated wigoot . In the
following sections, we will describe @esting relationon regions that allows hierarchical partitions of the
heap, and we will also show how to handle arrays.

Method effect summaries: Every method (including all constructors) must consevedyi summarize its
heap effects with an annotation of the formeads region-listwr i t es region-list as shown in line 6.

Every actual effect of the method must be represented bydBmas we say “covered by”) an effect in the
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summary. A write effect in the summary covers a read effec arite effect to the same region in the
method, but a read effect in the summary covers only a readtaff the method. This rule ensures that the
compiler can report all read-write and write-write conBibetween different methods invoked in parallel.

When one method overrides another, the effects of the dagsrmethod must cover the effects of the
subclass method. For example, if a method specifiesia es effect, then all methods it overrides must
specify that samer i t es effect. This constraint ensures that we can check effectisddp in the presence
of polymorphic method invocation [77, 59]. The full DPJ larage also includesffect variablesto support
writing a subclass whose effects are unknown at the time iingrthe superclass (e.g., in instantiating a
library or framework class); effect variables will be dissad in Chapters 7 and 8 of this thesis.

Effects on local variables need not be declared, because #ffects are masked from the calling con-
text. Nor must initialization effects inside a construdimdy be declared, because the DPJ type and effect
system ensures that no other task can actésss until after the constructor returns. Read effects on
fi nal variables are also ignored, because those reads can negeraaonflict. A method or constructor
with no externally visible heap effects may be declgped e.

To simplify programming and provide interoperability widgacy code, we adopt the rule that no an-
notation means “reads and writes the entire heap,” as showiigure 3.1. This scheme allows ordinary
sequential Java to work correctly, but it requires the paogner to add the annotations in order to introduce
safe parallelism. In particular, methods that are nevaedahside a parallel code section do not require an
explicit effect summary, but methods that are called insigiarallel code section do.

Proving determinism: To type check the program in Figure 3.1, the compiler doeddhewing. First,
check that the summaryr i t es P of methodset Mass (line 6) is correct (i.e., it covers all effect
of the method). It is, because fiefthss is declared in regiorP (line 3), and there are no other ef-
fects. Second, check that the parallelism in lines 8-13 fis. sét is, because the effect of line 10 is
reads Links writes L; the effect of line 12 ig eads Li nks wites R, andLi nks, L, and

R are distinct names. Notice that this analysis is entireisajsrocedural.

3.2 Region Path Lists (RPLS)

An important concept in effect systemgégjion nesting Region nesting supports a hierarchical partitioning

of the heap, so the effect system can express that diffecempatations are occurring on different parts of
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the heap. For example, to extend the code in Figure 3.1 toeadtrarbitrary depth, we need a tree of
nested regions (and the nesting must be unbounded). Asdistin Section 3.3, we can also use nesting to
express that (1) two aggregate data structures (like greagsn distinct regions and (2) the components of
those structures (like the cells of the arrays) are in distiegions, each nested under the region containing
the whole structure.

Effect systems that support nested regions are generadlgdban object ownership [37, 30] or use
explicit declarations that one region is under another $B7,, As discussed below, we use a novel approach
based on chains of elements callegjion path lists or RPLs, that provides new capabilities for effect

specification and subtyping.

3.2.1 Specifying Single Regions

The region path list (RPL) generalizes the notion of a simpton name-. Each RPL names a single
region or set of memory locations, on the heap. The set of all regpamtitions the heap, i.e., each memory
location lies in exactly one region. The regions are arrdnge tree with a special regidRoot as the root
node. We say that one regionrgsted undefor simply under) another if the first is a descendant of the
second in the tree. The tree structure guarantees thatydanandistinct names and+’, the set of regions
underr and the set of regions undet have empty intersection, and we can use this guarantee ve pro
disjointness of memory accesses.

Syntactically, an RPL is a colon-separated list of nameled®PL elementsbeginning withRoot .
Each element afteRoot is a declared region name! for example,Root : A: B. As a shorthand, we can
omit the leadingRoot . In particular, a bare name can be used as an RPL, as ilestimfigure 3.1. The
syntax of the RPL represents the nesting of region nameskRBhds under another if the second is a prefix
of the first. For exampld,: Ris underL. We write Ry < Rs if R; is underR,. Note that the under relation
establishes hierarchy of distinct regiondt does not specifynclusion of regionsin particular,AandA: B
are distinct regions (so, for examplar, i t es A doesnotimply wri t es A: B). In the next subsection,
we will show how to specifysets of regiongfor example, “all regions undeX”) that can express inclusion
relations.

We may also write a region parameter, insteaBmdt , at the head of an RPL, for exampe A, where

1As noted in Section 3.1, this can be a package- or classfigalatiame such &8. r ; for simplicity, we use- throughout.
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P is a parameter. When a class with a region parameter is tregtohat runtime, the parameter is resolved
to an RPL beginning witiRoot .2 Method region parameters are resolved similarly at metheociation
time. Because a parameteris always bound to the same RPL in a particular scope, we c&e swund
static inferences about parametric RPLs. For example,lfd?, &: A < P, andP: A # P: Bif and only if
A+B.

Figure 3.3 illustrates the use of region nesting and clagemeparameters to distinguish different
fields as well as different objects. It extends the exampmenfiFrigure 3.1 by adding &or ce field to
theTr eeNode class, and by making theni t Tr ee method (line 7) set theass andf or ce fields of the
left and right child in four parallel statements itabegi n block (lines 9-16).

To establish that the parallelism is safe (i.e., that lines8access disjoint locations), we place fields
nmass andf or ce in distinct regions?: MandP: F, and the linkd ef t andri ght in a separate region
Li nks (since they are only read). The paramed®eappears in both regions amlis bound to different
regions [ andR) for the left and right subtrees, because of the differesthintiations of the parametric type
Tr eeNode for the fieldsl ef t andri ght . Because the namésandR used in the types are distinct, we
can distinguish the effects dref t (lines 10-12) from the effects an ght (lines 14-16). And because
the namedMandF are distinct, we can distinguish the effects on the diffefeids within an object from
each other (i.e., line 10 vs. line 14 and line 12 vs. line 1&jufe 3.4 shows this situation graphically. The
different bindings tdP provide a “vertical partition” that distinguishes the twbjects, while the different
names after the colon provide a “horizontal partition” thistinguishes between the fields. Moreover, DPJ's
rules for type comparisons ensure that this kind of reagpisisound, because the types must match in the
left- and right-hand sides of any assignment. For exampige,a compile-time error to attempt to assign a

value of typeTr eeNode<L>to a variable of typdr eeNode<R>.

3.2.2 Specifying Sets of Regions

DPJ’s regions support recursive algorithms on a tree of untéed depth. For example, consider the code
shown in Figure 3.5. Here we are operating on the sameeNode shown in Figs. 3.1 and 3.3, ex-
cept that we have added (1)la nk field (line 7) that points to some other node in the tree anda(2)

comput eFor ces method (line 8) that recursively descends the tree. At eacle,tonput eFor ces

2As with Java generics, the region parameter informatiomasesl at compile time and not represented at runtime, se ther
no runtime cost to this instantiation.
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cl ass TreeNode<regi on P> {

region Links, L, R M F;

double nmass in P: M

double force in P:F;

TreeNode<L> | eft in Links;

TreeNode<R> ri ght in Links;

void initTree(doubl e mass, double force) {

cobegi n {

/* reads Links wites L: M */
| eft. mass = nass;
/* reads Links wites L:F */
left.force = force
/* reads Links wites R M */
right.mss = nass;
/* reads Links wites R F */
right.force = force;
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Figure 3.3: Extension of Figure 3.1 showing the use of regesting and region parameters

follows | i nk to another node, reads thess field of that node, computes the force between that node
and this one, and stores the result in fler ce field of this node. This computation can safely be done
in parallel on the subtrees at each level, because each ctbwnly thef or ce field of t hi s, and the
operations on other nodes (throughnk) are all reads of themass, which is distinct fromf or ce. To
write this computation, we need to be able to say, for exantpég line 13 writes only the left subtree, and
does not touch the right subtree.

Moreover, DPJ’s nested regions naturally encode this fadbtice that we have written the types
of fields| eft andri ght TreeNode<P: L> and Tr eeNode<P: R> instead ofTr eeNode<L> and
Tr eeNode<R> as before. As shown in Figure 3.6, through left-recursiMesstution, every node in the
runtime tree has a different region bound to the parametés ¢ype, and the RPL in the region specifies
the position in the tree. For example, the root node hasTyme<Root >, while the right child of the left
child of the root has typ@r ee<Root : Left: R ght >. Again, DPJ’s type system ensures this reasoning
is sound. We just need a way to express effects on the diffpeats of the tree, which we describe below.
Partially specified RPLs: To express recursive parallel algorithms, we must spedisces onsets of
regions(e.g., “all regions undeR”). To do this, we introduceartially specified RPLSA partially specified
RPL contains the symbel (“star”) as an RPL element, standing in for some unknown sege of names.

An RPL that contains ne is fully specified
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TreeNode<Root>

TreeNode<L> left Links

TreeNode<R> right Links \

1
]
I
TreeNode<L> ! TreeNode<R>
: * M
double mass L:M | double mass R:M '
- -t- - VS.
double force L:F : double force R:F «. F
| :
}
L:*vs.R:~

Figure 3.4: Graphical depiction of the distinctions showfigure 3.3. The denotes any sequence of RPL
elements; this notation is explained further in Section23.2

Distinctions from the left: In lines 11-15 of Figure 3.5, we need to distinguish the widtehi s.f or ce
(line 11) from the writes to theor ce fields in the subtrees (lines 13 and 15). We can use partiadlgited
RPLs to do this. For example, line 8 says thatmput eFor ces may read all regions undési nks and
write all regions undeP that end withF.

If RPLs R, and R, are the same in the firgtplaces, and they differ in place+ 1, and neither contains
a* in the firstn 4+ 1 places, then (because the regions form a tree) the set @negnderR; and the
set of regions undeR,; have empty intersection. In this case we say tRat* and R,: * aredisjoint,
and we know that effects on these two RPLs are noninterfefig call this a “distinction from the left,”
because we are using the distinctness of the names to thef kefily star to infer that the region sets are
non-intersecting. For example, a distinction from the éftablishes that the region sétsF, P: L: *: F,
andP: R =: F (shown in lines 10-15) are disjoint, because the RPLs all wi¢gh P and differ in the second
place.
Distinctions from the right: Sometimes it is important to specify “all fieldsin any node of a tree.” For
example, in lines 10-15, we need to show that the reads afdakes fields are distinct from the writes to
thef or ce fields. We can make this kind of distinction by using diffareamesafter the star: ifR; and
Ry, differ in the nth place from the right, and neither contains @ the firstn places from the right, then a
simple syntactic argument shows that their region setsigja@mt. We call this pattern a “distinction from

the right,” because the names that ensure distinctnesaafapthe right of any star. For example, in lines
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1 cl ass TreeNode<regi on P> {

2 region Links, L, R M F;

3 double nmass in P: M

4 doubl e force in P:F;

5 TreeNode<P: L> | eft in Links;

6 Tr eeNode<P: R> ri ght in Links;

7 TreeNode<*> |ink in Links;

8 voi d comput eForces() reads Links, *:Mwites P:x:F {
9 cobegi n {

10 I+ reads *: Mwites P:F */

1 this.force = (this.mss * |ink.nass) * R GRAV,
12 I+ reads Links, *:Mwites P:L:*:F */

13 if (left '=null) left.conmputeForces();

14 /* reads Links, *: Mwites PR *:F */

15 if (right '= null) right.conputeForces();

16 }

17 }

18 }

Figure 3.5: Using partially specified RPLs for effects anbitgping

10-15, we can distinguish the reads-ofMfrom the writes td°: L: *: FandP: R: =: F.
More complicated patterns: More complicated RPL patterns likoot : = : A: *: Bare supported by the
type system. Although we do not expect that programmersn@éld to write such patterns, they sometimes

arise via parameter substitution when the compiler is dngaokffects.

3.2.3 Subtyping and Type Casts

Subtyping: Partially specified RPLs are also useful for subtyping. kaneple, in Figure 3.5, we needed to
write the type of a reference that could point tbraee Node<P>, for any binding taP. With fully specified
RPLs we cannot do this, because we cannot write a type to wihélan assign botfir eeNode<L>
and Tr eeNode<R>. The solution is to use a partially specified RPL in the typg,,8r eeNode<+* >,

as shown in line 7 of Figure 3.5. Now we have a type that is flex@émough to allow the assignment, but
retains soundness by explicitly saying that we do not knaeittual region.

The subtyping rule is simple€'<R;> is a subtype of '<R»> if the set of regions denoted h¥; is
included in the set of regions denoted Ry. We write R C R» to denote set inclusion for the corresponding
sets of regions. IR; and R, are fully specified, therR; C R, implies R; = R,. Note that nesting and
inclusion are relatedR; < Ry implies Ry C R,: *. However, nesting alone doestimply inclusion of

the corresponding sets. For exam@eB < A, butA: B ¢ A, becausé\: B andA denote distinct regions.
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Tree<Root>
double force Root : F
double mass Root : M
Tree<Root : L> left Links
Tree<Root : R> right Links
Tree<*> link Links
»
\
\
\
\
\
Tree<Root : L> '\ < Tree<Root : R>
\ 7
4
double force Root:L:F \\ e double force Root:R:F
Ny
double mass Root:L: M //\\ double mass Root:R: M
\
Tree<Root : L : L> left Links ,', N Tree<Root : R : L> left Links
4 \
Tree<Root : L : R> right Links . *. | Tree<Root :R : R> right Links
4
\
Tree<*> link Links ’ Tree<*> link Links

Figure 3.6: Heap typing from Figure 3.5. Reference valueshown by arrows; tree arrows are solid, and
non-tree arrows are dashed. Notice that all arrows obeyulbigsing rules.

In the next chapter, we discuss the rules for nesting, imsnd disjointness of RPLs more formally.
Figure 3.6 illustrates one possible heap typing resultroghfthe code in Figure 3.5. The DPJ typing
discipline ensures the object graph restricted td thet andri ght references is a tree. However, the full
object graph including thkei nk references is more general and can even include cycledusisated in
Figure 3.6. Note how our effect system is able to prove tfeatiffdates to different subtrees are distinct, even
though (1) non-tree edges exist in the graph; and (2) thogesedre followed to do possibly overlapping
reads.
Type casts: DPJ allows any type cast that would be legal for the typesimdtdaby erasing the region

variables. This approach is sound if the region argumeetsa@msistent. For example, given

cl ass B<regi on R> extends A<R>,

a cast fromA<r > to B<r > is sound, because either the referendd<is>, or it is not any sort o8, which
will cause aCl assCast Except i on at runtime. However, a cast fro@j ect to B<r 1> is potentially
unsound and could violate the determinism guarantee, becdneCbj ect could be aB<r 2>, which

would not cause a runtime exception. The compiler allows ¢hst, but it issues a warning.
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While unchecked downcasts fro@bj ect can violate determinism, in practice they should not be
necessary in a DPJ program: because DPJ fully supportsigdayees, assigning to and fro@bj ect
iS never necessary, except for compatibility with legacglecoln particular, we were able to write all the
benchmarks discussed in Section 3.5 without any uncheabwdahsts. We could add runtime checking of

region compatibility at the point of the cast, as in [24].

3.3 Arrays

DPJ provides two novel capabilities for computing with gsrdndex-parameterized arrayandsubarrays
Index-parameterized arrays allow us to traverse an arrapjett references and safely update the objects
in parallel, while subarrays allow us to dynamically pastitan array into disjoint pieces, and give each

piece to a parallel subtask.

3.3.1 Index-Parameterized Arrays

A basic capability of any language for deterministic paaiedm is to operate on elements of an array in
parallel. For aloop over an array of values, it is sufficieritove that each iteration accesses a distinct array
element (we call this enique traversgl For a loop over an array of references to mutable objeotseter,

a unique traversal is not enough: we must also prove that amary locations updated by following
references in distinct array cells (possibly through arlwdireferences) are distinct. Figure 3.7 illustrates
an array of objects violating this property. Proving thisgeerty is very hard in general, if assignments are
allowed into reference cells of arrays. No previous effgstem that we are aware of is able to ensure
disjointness of updates by following references storedraya, and this seriously limits the ability of those
systems to express parallel algorithms.

In DPJ, we make use of the following insight:

Insight 1. We can define a special array type with the restriction thabhject reference value assigned
to celln (wheren is a natural number constant) of such an array has a runtinpe tyat is parameterized
by n. If accesses through cefl touch only regionn (even by following a chain of references), then the

accesses through different cells are guaranteed to beidisjo
We call such an array type andex-parameterized arrayTo represent such arrays, we introduce two
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Figure 3.7: An array with duplicate references. The smalklscare array cells, the large boxes are objects,
and the arrows are references. Traversing and followingdfegences and performing parallel updates can
violate determinism, even if the traversal is unique.

language constructs:
1. Anarray RPL elemenivritten| €] , wheree is an integer expression.

2. Anindex-parameterized array tyghat allows us to write the region and type of array eellsing
the array RPL elemerjte] . For example, we can specify that cellesides in regiofRoot : [ ¢] and

has typeC<Root : [ €] >.

At runtime, if e evaluates to a natural numbey then the static array RPL elemdnt] evaluates to the
dynamic array RPL elemeiftn] .

The key point here is that we can distinguiSkl[ e;] > from C<[ e5] > if e; andes, always evaluate
to unequal values at runtime, just as we can disting@sh,> from C<ry>, wherer; andr, are declared
names, as discussed in Section 3.2.1. Obviously, the cerspdapability to distinguish such types will
be limited by its ability to prove the inequality of the syntlbaexpressions:; ande,. This is possible in
many common cases, for the same reason that array deperatslygsis is effective in many, though not
all, cases [54]. The key benefit is thhe type checker has then proved the uniqueness of the Gbets,
which would not follow from dependence analysis alone

In DPJ, the notation we use for index-parameterized arey§ | <R>#i, whereT is a type,R is an
RPL, #i declares a fresh integer variakilen scope over the type, arijd] may appear as an array RPL
element inl” or R (or both). This notation says that array cellwheree is an integer expression) has type
T[i < e] and is located in regioR[i < e]. For exampleC<r 1: [i ] >[] <r 2: [ i ] >#i specifies an array
such that cele has typeC<r 1: [ €] > and resides in region2: [ ¢] . If T itself is an array type, then nested
index variable declarations can appear in the type. How#wemost common case is a single-dimensional

array, which needs only one declaration. For that case, weid® a simplified notation: the user may
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1 ¢l ass Body<region P> {
2 region Link, M F;
3 double nmass in P: M
4 doubl e force in P:F;
5 Body<*> |ink in Link;
6 voi d conputeForce() reads Link, *:Mwites P:F {
7 force = (mass * |link.mss) * R GRAV,
8 }
o }
10
u final Body<[_]>[]<[_]> bodies = new Body<[ ]>[N <[_]>;
12 foreach (int i in 0, N {
13 [+ wites [1] =*/
14 bodi es[i] = new Body<[i]>();
15 }
16 foreach (int i in 0, N {
17 [+ reads [i], Link, *:Mwites [i]:F =/
18 bodi es[i]. conput eForce();
19
}

Figure 3.8: Example using an index-parameterized array

90

10
L .. o]
Body<Root : [10]>
double force Root : [10] : F
double mass Root : [10] : M
Body<*> link Link

Figure 3.9: Heap typing from Figure 3.8. The type of array ¢é$ parameterized by. Cross-links are

\

Body<Root : [90]>

double force Root : [90] : F
double mass Root : [90] : M
Body<*> link Link

possible, but if any links are followed to access other acelig, the effects are visible.

omit the#q and use an underscorg as an implicitly declared variable. For exampl[ ] >[ ] <[ ] > is
equivalent toC<[ i | >[ ] <[ i ] >#i .

Figure 3.8 shows an example, which is similar in spirit to Bagnes-Hut force computation discussed
in Section 3.5. Lines 1-9 declare a cl&sly. Line 11 declares and creates an index-parameterized array

bodi es with N cells, such that cell resides in regior i] and points to an object of tyg@ody<[ i] >.

Figure 3.9 shows a sample heap typing, for some particulaevaof N.

Lines 12-15 show &or each loop that traverses the indiceés= [0,n — 1] in parallel and initializes

cell 7 with a new object of typdBody<[ 7] >. The loop is noninterfering because the typebofdi es
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says that celbodi es[ 7] resides in region ¢] , so distinct iterationg and ; write disjoint regiong 1]
and[ j]. Lines 16-19 are similar, except that the loop caltarput eFor ce on each of the objects.
In iterationi of this loop, the effect of line 16 iseads [ 7] , because it readsodi es] ] , together with
reads Link, »:Mwites [1i]:F, whichisthe declared effect of methodnput eFor ce (line 6),
after substituting 7] for P. Again, the effects are noninterfering fog ;.

To maintain soundness, we just need to enforce the invahahttat runtime, cel 7] never points to
an object of typeC<[ j] >, if i # j. The compiler can enforce this invariant through symbatialgsis, by
requiring that if typeC<[ e1] > is assigned to typ€<[ e;] >, thene; ande,; must always evaluate to the
same value at runtime; if it cannot prove this fact, then istmeonservatively disallow the assignment. In
many cases (as in the example above) the check is straightitr

Note that because of the typing rules, no two distinct cdlBnandex-parameterized array can point to
the same object. However, it is perfectly legal to reach #raesobject by following chains of references
from distinct array cells, as shown in Figure 3.9. In thatecas a parallel traversal over the array, either
the shared object is not updated, in which case the pasatlé$ safe; or a write effect on the same region
appears in two distinct iterations of a parallel loop, in @hcase the compiler can catch the error.

Note also that while no two cells in an index-parameterizedyacan alias, references may be freely
shared with other variables (including cells in other ing@xameterized arrays), unlike linear types [59, 25,
26]. For example, if cell of a particular array has type<|[ 7] >, the object it points to could be referred to
by celli of any number of other arrays (with the same type), or by afgreace of typeC<* >. Thus, when
we are traversing the array, we get the benefit of the alidgatdsn imposed by the typing, but we can still
have as many other outstanding references to the objects ksew

The pattern does have some limitations: for example, weatamove an element from positianto
positionj in the arrayC'<[ i ] >[ ] #i . However, we can copy the references into a different attay>[ |
and shuffle those references as much as we like, though wetoasethose references to update the objects
in parallel. We can also make a new copy of elemiewith type C'<[ j] > and store the new copy into
positionj. This effectively gives a kind of reshuffling, although thepging adds performance overhead.
Another limitation is that ouf or each currently only allows regular array traversals (includsigded

traversals), though it could be extended to other uniquetsals.
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class QSort<region P> {
DPJArraylnt<P> A in P;
Sort (DPJArray<P> A) pure { this.A = A }
void sort() wites P:* {
if (A length <= SEQ LENGTH) {
seqSort();
} else {
[+ Shuffle A and return pivot index =*/
int p=partition(A);
[+ Divide Ainto two disjoint subarrays at p */
final DPJPartitionlnt<P> segs =
new DPJPartitionlnt<P>(A, p, OPEN);
cobegin {
[+ writes segs:[0]:* =/
new QSort<segs:[0]:*>(segs.get(0)).sort();
[+ writes segs:[1]:* =*/
new QSort<segs:[1l]:*>(segs.get(1)).sort();
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Figure 3.10:  Writing quicksort with thePartiti on operation. DPJArrayl nt and
DPJPartitionl nt are specializations tont values. In line 12, the argume@PEN is an enum
that says to omit the partition index from the subarrays, by are open intervals.

3.3.2 Subarrays

A familiar pattern for writing divide and conquer recursiigrto partition an array into two or more disjoint
pieces and give each array to a subtask. For example, FiglilGesBows a standard implementation of
quicksort, which divides the array in two at each recurstep,sthen works in parallel on the halves. DPJ
supports this pattern with three novel features, which stilate with the quicksort example.

First, DPJ provides a clad3PJAr r ay that wraps an ordinary Java array and provides a view into
a contiguous segment of it, parameterized by start poski@nd lengthL. In Figure 3.10, the)Sor t
constructor (line 3) takes BPJAr r ay object that represents a contiguous subrange of the callendy.
We call this subrange aubarray Notice that theDPJAr r ay object doesnot replicate the underlying
array; it stores only a reference to the underlying arragl, the values o5 and L. TheDPJAr r ay object
translates an access to eleméimto an access to elemefit+ ¢ of the underlying array. If < 0ori > L,
then an array bounds exception is thrown, i.e., accessghrthe subarray must stay within the specified
segment of the original array.

Second, DPJ provides a cld3BJPar t i ti on, representing an indexed collection@PJAr r ay ob-
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jects, all of which point into mutually disjoint segmentstioé original array. To createl?PJParti ti on,
the programmer passesDRJAr r ay object into theDPJPar ti ti on constructor, along with some ar-
guments that say how to do the splitting. Lines 11-12 of FEdidl0 show how to split thBPJAr r ay

A at indexp, and indicate that positiop is to be left out of the resulting disjoint segments. Segnfent
is aDPJAr r ay representing the elements of the origi#J Ar r ay array with indices less tham and
segment 1 is ®PJAr r ay representing the elements of the original array with ingligeeater thap. The
programmer can access segmeat the partitionsegs by sayingsegs.get (i), as shown in lines 15 and
17.

Third, to support recursive computations, we need a sliglension to the syntax of RPLs. Notice that
we cannot use a simple region hame, likdor the type of a partition segment, because differenttjpars
can divide the same array in different ways. Instead, wavadld i nal local variablev (includingt hi s)
of class type to appear at the head of an RPL, for exampie The variablev stands in for the object
referencen stored into the variable at runtime, which is the actualagegiUsing the object reference as a
region ensures that different partitions get differeniorg, and making the variabfé nal ensures that it
always refers to the same region.

We make these “variable regions” into a tree as followsa'$ftype isC<R, ...>, thenv is nested
under R; the first region parameter of a class functions like ¢laer parametein an object ownership
system [39, 37]. In the particular case@PJPar ti ti on, if the type ofv isDPJPartiti on<R>, then
the type ofv. get () isw: [i] : *, wherev < R. Internally, theget method uses a type cast to generate
aDPJArray of typet hi s: [ 7] : * that points into the underlying array. The soundness ofype tast is
not checked by the type system, but it is hidden from the usge ¢ such a way that all well-typed uses of
DPJParti ti on are noninterfering.

In Figure 3.10, the sequence of recursd@ t calls creates a tree @Sort objects, each in its own
region. Thecobegi n in lines 13-17 is safe becau@JParti ti on guarantees that the segments
segs. get (0) andsegs. get (1) passed into the recursive paralebrt calls are disjoint. In the
user code, the compiler uses the type and effect annotat@reve noninterference as follows. First, from
the type ofQSort and the declared effect afor t (line 4), the compiler determines that the effects of
lines15and 17 areri tes segs:[0]:* andwites segs:[1]:*,asshown. Second, the regions

segs: [ 0]:* andsegs: [ 1] : = are disjoint, by a distinction from the left (Section 3.2.Bjinally, the

42



effectwri t es P:* in line 4 correctly summarizes the effectsdr t , because lines 6 and 9 wrikg
lines 15 and 17 write undexegs, andsegs is underP, as explained above.

Notice thatDPJPar ti ti on can create multiple references to overlapping data witlerdint regions
in the types. Thus, there is potential for unsoundness aeve are not careful. To make this work, we
must do two things. First, if; andvy represent different partitions of the same array, therget ( 0)
andwvs. get (1) could overlap. Therefore, we must not treat them as disjdihts is why we puk at the
end of the typev: [ 7] : » of v. get (i) ; otherwise we could incorrectly distinguish: [ 0] fromwvs: [ 1],
using a distinction from the right. Secondithas typeDPJParti ti on<R>, thenv. get (i) has type
DPJArray<wv: [ 7] : *> and points into EDPJAr r ay<R>. Therefore, we must not treat [ 7] : * as
disjoint from R. Here, we simply do not include this distinction in our typestem. All we say is that

v:[i] 1 * < R. See Section 4.3.2 for further discussion of the disjoisgrmlles in our effect system.

3.4 Commutativity Annotations

Sometimes to express parallelism we need to look at intréer in terms of higher-level operations than
read and write [74]. For example, insertions into a concurget can go in parallel and preserve determin-
ism even though the order of interfering reads and writed@theSet implementation is nondeterministic.
Another such example is computing connected componentgi@dn in parallel.

DPJ contains two features that address this problem. Elestses may contain declarations of the form
m conmmut eswi t h m’/, wherem andm’ are method names, indicating that any pair of invocatiornthef
named methods may be safely done in paralégardless of the read and write effects of the meth&es
Figure 3.11(a). In effect, theonmut eswi t h annotation says that (1) the two invocations a@i@micwith
respect to each other, i.e., the result will be as if one weduand then the other; and (2) either order of
invocation produces the same result.

The commutativity property itself is not checked by the cderp we must rely on other forms of
checking (e.g., more complex program logic [130] or statialgsis [45, 10]) to ensure that methods declared
to be commutative really are commutative. In practice, wicgate thatconmut eswi t h will be used
mostly by library and framework code that is written by expeced programmers and extensively tested.
Our effect system does guarantee deterministic resultarf@pplication using a commutative operation,

assuming that the operation is indeed
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1 class I ntSet<region P> {

2 void add(int x) wites P{ ... }
3 add comut eswi t h add;

4}

(a) Declaration of | nt Set class with commutative methodadd

I nt Set <R> set = new | nt Set <R>();

foreach (int i in 0, N)
/* invokes IntSet.add with wites R */
set.add(A[i]);

2w NP

(b) Usingconmut eswi t h for parallelism

1 cl ass Adder<regi on P> {

2 voi d add(I nt Set <P> set, int i)

3 i nvokes IntSet.add with wites P {
4 set.add(i);

5 }

6 }

7 Int Set <R> set = new I nt Set <R>();

s Adder <R> adder = new Adder <R>();

o foreach (int i in 0, N

10 [+ invokes IntSet.add with wites R */
1 adder. add(set, Ali]);

(c) Usingi nvokes to summarize effects

Figure 3.11: lllustration o€ onmut eswi t h andi nvokes

Second, our effect system provides a namgbcation effecof the formi nvokes m wi t h E. This
effect records that an invocation of methadoccurred with underlying effect&. The type system needs
this information to represent and check effects soundiyhegresence of commutativity annotations: for
example, in line 4 of Fig. 3.11(b), the compiler needs to reabatadd was invoked there (so it can
disregard the effects of othadd invocations)andthat the underlying effect of the method wasi t es R
(so it can verify that there are no other interfering effeetg., reads or writes @&, in the invoking code).

When there are one or more intervening method calls betwdearr @ach loop and a commutative
operation, it may also be necessary for a method effect suynimaghe program textto specify that an
invocation occurred inside the method. For example, infeigull(c), theadd method is called through
a wrapper object. We could have correctly specified the effeéddder . add aswri t es P, but this
would hide from the compiler the fact thAdder . add commutes with itself. Of course we could use
commrut eswi t h for Adder . add, but this is highly unsatisfactory: it just propagates thehecked com-

mutativity annotation out through the call chain in the @mdlon code. The solution is to specify the
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invocation effeci nvokes I nt Set. addwi thwites P, as shown.

Notice that the programmer-specified invocation effectosgs an internal implementation detail (i.e.,
that a particular method was invoked) at a method interfddewever, we believe that such exposure
will be rare. In most cases, the effechvokes C.m wi t h E will be conservatively summarized as
E (Section 4.1.4 gives the formal rules for covering effect&he invocation effect will be used only in
cases where a commutative method is invoked, and the cortimiytanformation needs to be exposed to
the caller. We believe these cases will generally be confiadugh-level public APl methods, such as

Set .add in the example given in Figure 3.11.

3.5 Evaluation

We have carried out a preliminary evaluation of the language type system features presented in this

chapter. Our evaluation addressed the following questions

e Expressiveness.Can the type system express important parallel algorithmsbject-oriented data
structures? When does it fail to capture parallelism andvhge each of the new features in the DPJ

type system important to express one or more of these digwsi

e Performance. For each of the algorithms, what increase in performanceaiized in practice? This

is a quantitative measure of how much parallelism the tygéesy can express for each algorithm.

e Usability. How much programmer effort is required to write a DPJ progremmpared to plain Java?

Is the effort worth it, given the strong determinism guaganthat DPJ provides over plain Java?

To do the evaluation, we extended Sup&vac compiler so that it compiles DPJ into ordinary Java
source. We built a runtime system for DPJ using Bwr kJoi nTask framework that will be added
to thej ava. uti | . concurrent standard library in Java 1.7 [3For kJoi nTask supports dynamic
scheduling of lightweight parallel tasks, using a workasitey scheduler similar to that in Cilk [22]. The
DPJ compiler automatically translatésr each to a recursive computation that successively divides the
iteration space, to a depth that is tunable by the programanek it translates aobegi n block into one
task for every statement. Code usirgr kJoi nTask is compatible with Java threads so an existing multi-

threaded Java program can be incrementally ported to DRA.&uale may still have some guarantees, e.g.,
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the DPJ portions will be guaranteed deterministic if theliekly threaded and DPJ portions are separate
phases that do not run concurrently.

Using the DPJ compiler, we studied the following programaralel merge sort, two codes from the
Java Grande parallel benchmark suite (a Monte Carlo finesicrulation and IDEA encryption), the force
computation from the Barnes-Hut n-body simulation [109m&ans clustering from the STAMP bench-
marks [90], and a tree-based collision detection algorittum a large, real-world open source game engine
called JMonkey (we refer to this algorithm as Collision Treleor all the codes, we began with a sequen-
tial version and modified it to add the DPJ type annotationse Java Grande benchmarks are explicitly
parallel versions using Java threads (along with equivaeguential versions), and we compared DPJ's
performance against those. We also wrote and carefullydttime Barnes-Hut force computation using
Java threads as part of understanding performance issties gode, so we could compare Java and DPJ

for that one as well.

3.5.1 A Realistic Example

We use the Barnes-Hut force computation to show how to writeadistic parallel program in DPJ.
Figure 3.12 shows a simplified version of this code. The mianpkfication is that the/ect or objects for
representing points in three-dimensional space are intstytavith f i nal fields (so there are no effects
on these objects), whereas our actual implementation usésbia objects. Figure 3.13 shows a partial
implementation of th&ect or class used in this code.

In Figure 3.12, clasdlode represents an abstract tree node containing a mass anibpo3ihe mass
and position represent the actual mass and position of a(abdyeaf) or the center of mass of a subtree (at
an inner node). Thilode class has two subclassdsaner Node, representing an inner node of the tree,
and storing an array of children; amibdy, representing the body data stored at the leaves, andg®@rin
force. TheTr ee class stores the tree, together with an arraBadly objects pointing to the leaves of the
tree.

The methodl'r ee. conput eFor ces does the force computation by traversing the array of baatiels
calling the methodBody. conput eFor ce on each one, to compute the force between the bddys and
subtree. If subt ree is a body, or is sufficiently far away that it can be approxmlaas a point mass,

thenBody. conmput eFor ce computes and returns the pairwise interaction betweendtiesn Otherwise,
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/[ Abstract class for tree nodes =/

abstract class Node<regi on R> {
/+* Region for mass and position =/
regi on WP
[+ Mass */
double nmass in R WP
[+ Position */
Vector pos in R M
}

/* I nner node of the tree */

cl ass I nner Node<regi on R> extends Node<R> {

/+* Region for children =/
regi on Children;
[+ Children */

Node<R *>[] <R Chil dren> children in R Children

}

/= Leaf node of the tree =/

cl ass Body<regi on R> extends Node<R> {

/+* Region for force x/
regi on Force;

[+ Force on this body */
Vector force in R Force

[+ Compute force of entire subtree on this body =/

Vect or conput eFor ce( Node<R: *> subtree)

}
}

/* Barnes-Hut tree =/

class Tree<region R> {
/+* Region for tree */
regi on Tree;
/* Root of the tree */
Node<R> root in R Tree
/* Leaves of the tree x/

Body<R [ _]>[]1<R [_]> bodies in R Tree;
/= Compute forces on all bodies */
voi d conputeForces() wites R * {

reads R +: Chil dren

foreach (int i in 0, bodies.length) {
/+* reads R Tree, R *:lnnerNode.Children, R[i],
R *: Node. MP wites R [i]:Node.Force =/
bodi es[i].force = bodies[i].computeForce(root);

Figure 3.12: Using DPJ to write the Barnes-Hut force conparta

a7

R *: MP {



1 /* Imutabl e vector representing a point in space */

2 class Vector {

3 /= Coordi nates of the vector =/

final double x, vy, z;

public Vector(double x, double y, double z) pure {
this.x = x; this.y =y; this.z = z;

}

/+* Add two vectors to produce a new vector representing the sum x/
public static Vector add(Vector a, Vector b) pure {

© o N o U »

10 return new Vector(a.x+b.x,a.y+b.y, a.z+b. z);
1 }

12 /+* NMore vector operations not shown */

13

14}

Figure 3.13:Vect or class for the Barnes-Hut force computation

it recursively callsconput eFor ce on the children osubt r ee and accumulates the result.

We use a region parameter on the node classes to distingsisinces of these nodes. Clas®e uses
the parameters to create an index-parameterized arrayesénees to distinct body objects; the parallel
loop inconput eFor ces iterates over this array. This allows distinctions from I for operations on
bodi es[i] (Section 3.2). We also use distinct region names for theeforass, and children fields of the
Node classes to enable distinctions from the right.

The key fact is that, from the effect summary in line 21 anddbeée in line 35, the compiler infers the
effects shown in lines 33—-34. Using distinctions from thé &ad right, the compiler can now prove that
(1) the updates are distinct for distinct iterations of tloe each; and (2) all the updates are distinct from
the reads. Notice also how the nested RPLs allow us to destirébentire effect of onmput eFor ces as
writes R . Thatis, to the outside world,onput eFor ces just writes under the region parameter of
Tr ee. Thus with careful use of RPLs, we can enforce a kind of endapien of effects, which is important

for modular software design.

3.5.2 Expressiveness

We used DPJ to express all available parallelism in the dlgos we studied. For Barnes-Hut, the overall
program includes four major phases in each time step: trédidmy center-of-mass computation; force
calculations; and position calculations. Expressing tited, center of mass, and position calculations is

straightforward, but we studied only the force computafiitne dominant part of the overall computation)
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for this work. DPJ can also express the tree-building pHasgeye would have to use a divide-and-conquer
approach, instead of inserting bodies from the root via thaver-hand locking,” as in in [109].

Briefly, we parallelized each of the codes as follows. Meaye8ses subarrays (Section 3.3.2) to per-
form in-place parallel divide and conquer operations fahbuerge and sort, switching to sequential merge
and sort for subproblems below a certain size. Monte Cads irglex-parameterized arrays (Section 3.3.1)
to generate an array of tasks and compute an array of re®liitsyed by commutativity annotations (Sec-
tion 3.4) to update globally shared data inside a reductop.l IDEA uses subarrays to divide the input
array into disjoint pieces, then uskesr each to operate on each of the pieces. Section 3.5.1 describes our
parallel Barnes-Hut force computation. Collision Treeursorely walks two trees, reading the trees and
collecting a list of intersecting triangles. At each nodeeparate triangle list is computed in parallel for
each subtree, and then the lists are merged. Our implerimntestes method-local regions to distinguish the
writes to the left and right subtree lists. K-Means uses catativity annotations to perform simultaneous

reductions, one for each cluster. Table 3.1 summarizesahe DPJ capabilities used for each code.

Table 3.1: Capabilities used in the benchmarks

Merge | Monte Barnes- | Collision
Capability Sort | Carlo | IDEA Hut Tree K Means
Index-parameterized array - Y - Y - -
Distinctions from the left Y Y Y Y Y -
Distinctions from the right - - - Y - -
Recursive subranges Y - Y - - -
Commutativity annotations - Y - - - Y

Our evaluation and experience showed some interestingptions of the current language design. To
achieve good cache performance in Barnes-Hut, the bodieslmeueordered according to their proximity
in space on each time step [109]. As discussed in Sectiot, 3u& use an index-parameterized array to
update the bodies in parallel. As discussed in Section 3fdidrequires that we copy each body with the
new destination regions at the point of re-insertion. Céaptof this thesis discusses this problem further
and proposes one solution, using object-oriented frankewvdie also believe we can ease this restriction

by adding a mechanism for disjointness checking at runtamé this is ongoing work in our research group.
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3.5.3 Performance

We measured the performance of each of the benchmarks ol R&¥) multiprocessor running Red Hat
Linux with 24 cores, comprising four six-core Xeon processand a total of 48GB of main memory. For
each data point, we took the minimum of five runs on an idle nme&ch

We studied multiple inputs for each of the benchmarks anul etperimented with different limits for
recursive codes. We present results for the inputs and gaeamalues that show the best performance,
since our main aim is to evaluate how well DPJ can expressdtadlglism in these codes. The sensitivity
of the parallelism to input size and/or recursive limit paeders is a property of the algorithm and not a
consequence of using DPJ.

Figure 3.14 presents the speedups of the six programsdof1,2,3,4,7,12,17,22} processors. All
speedups are relative to an equivalent sequential versibie programwith no DPJ or other multithreaded
runtime overheadsAll six codes showed moderate to good scalability for aluga ofp. Barnes-Hut and
Merge Sort showed near-ideal performance scalabilityh ®arnes-Hut showing a superlinear increase for
p = 22 due to cache effects.

Notably, as shown in Table 3.2, for the three codes where we meanually parallelized Java threads
versions available, the DPJ versions achieved speedups dfor IDEA and Barnes Hut), or better than
(for Monte Carlo), the Java versions, for the same inputshensame machines. We believe the Java
threads codes are all reasonably well tuned; the two Javad@raenchmarks were tuned by the original
authors and the Barnes Hut code was tuned by us. The manaadlifghzed Monte Carlo code exhibited a
similar leveling off in speedup as the DPJ version did beyaimolut 7 cores because both have a significant
sequential component that makes copies of a large arrapébrgarallel task. Overall, in all three programs,
DPJ is able to express the available parallelism as effigiasta thread-based parallel programming model
that provides no guarantees of determinism or even raeeldra.

Our experience so far has shown us that DPJ itself can be fferiget, even though both the compiler
and runtime are preliminary. In particular, apart from venyall runtime costs for the dynamic partitioning
mechanism for subarrays, our type system requires no rantimecks or speculation and therefawds
negligible runtime overhead for achieving determini€dm the other hand, it is possible that the type system
may constrain algorithmic design choices. The limitationreordering the array of bodies in Barnes-Hut,

explained in Section 3.5.2, is one such example.

50



Num Monte Carlo IDEA Barnes Hut

Cores | DPJ | Java| Ratio | DPJ | Java | Ratio | DPJ | Java | Ratio
21200 [1.80|1.11 [ 195 [1.99 |0.98 |1.98| 1.99 | 0.99
31282 | 250|1.13 | 2.88 | 297 | 097 | 296|294 | 1.01
41356 |3.09]1.15 |3.80 | 391 |097 |4.94|3.88 | 1.27
71553 | 465|1.19 | 6.40 | 6.70 | 0.96 | 6.79| 7.56 | 0.90
12| 8.01 | 6.46| 1.24 | 9.99 | 11.04| 0.90 | 11.4| 13.65| 0.84
17 | 10.02| 7.18| 1.40 | 12.70| 14.90| 0.85 | 15.3| 19.04| 0.80
221 11.50| 7.98| 1.44 | 18.70| 17.79| 1.05 | 23.9| 23.33| 1.02

Table 3.2: DPJ vs. Java threads performance for Monte A&xA encryption, and Barnes Hut. The DPJ
and Java numbers are speedups, and Ratio is the DPJ numbleddiy the Java number.

3.5.4 Usability

Table 3.3 shows the number of source lines of code (LOC) adthagd the number of annotations, relative
to the program size. Program size is given in non-blank, cmnment lines of source code, counted by
sl occount. The next column shows how many LOC were changed when aimgtaThe last four
columns show (1) the number of declarations using thgi on keyword (i.e., class regions, local regions,
and region parameters); (2) the number of RPLs appearinggamants ta n, types, methods, and effect
summaries; (3) the number of method effect summaries, c@uneads andwr i t es separately; and
(4) the number of commutativity annotations. As the tablews)) the fraction of lines of code changed
was not large, averaging 10.7% of the original lines. Theésy number of changed lines resulted from
writing RPL arguments to types (represented in column fdalpwed by writing method effect summaries
(column five).

More importantly, we believe that the overall effort of wmg, testing, and debugging a program with
any parallel programming model is dominated by the time regliceunderstand the parallelism and shar-
ing patterns (including aliases), and to debug the paretide. The regions and effects in DPJ provide
concrete guidance to the programmer on how to reason abaallphsm and sharing Once the program-
mer understands the sharing patterns, he or she explicgtdyrdents them in the code through region and
effect annotations, so other programmers can gain the behéfs or her understanding.

Further, programming tools can alleviate the burden ofimgiannotations. We have developed an inter-
active porting tool, DPIZER [122], that infers many of these annotations, using iteeatbnstraint solving
over the whole program. DIZER is implemented as an Eclipse plugin and correctly infershodeffect

summaries for a program that is already annotated with negiformation. We are currently extending
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Figure 3.14: Parallel speedups for the six benchmarks. Thebars in the legend are input sizes.

DPJzeR to infer RPLs, assuming that the programmer declares thenmgg

In addition, as future work, a good set of defaults couldHartreduce the amount of manually written
annotations. For example, although we have not exploreddea for this work, the design of DPJ could
easily be extended as follows. If the programmer does nobtaten a class field, its default region could
be the RPLdefault-parameterfield-name This default distinguishes both instances of the same elad

fields within a class. A programmer could override the degad@ifurther refinements are needed.

3.6 Related Work

We group the related work into five broad categories: effgstesns (not including ownership-based sys-
tems); ownership types (including ownership with effeatslique references; separation logic; and runtime
checks.

Effect Systems: The seminal work on types and effects for concurrency is FX [&L], which adds a

region-based type and effect system to a Scheme-like, gitiplparallel language. Leino et al. [77] and
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Total Annotated Region Effect

Program SLOC SLOC Decls RPLs Summ. Comm.
MergeSort 295 38 (12.9%) 15 41 7 0
Monte Carlo | 2877 220 (7.6%) 13 301 161 1
IDEA 228 24 (10.5%) 8 22 2 0
Barnes-Hut 682 80 (11.7%) 25 123 38 0
CollisionTree| 1032 233 (22.6%) 82 408 58 0
K-means 501 5 (1.0%) 0 3 3 1
Total 5615 600 (10.7%) 143 898 269 2

Table 3.3: Annotation counts for the case studies

Greenhouse and Boyland [59] first added effects to an objgetted language. None of these systems
can represent arbitrarily nested structures or arraytjenitig, nor can they specify arbitrarily large sets
of regions. Also, the latter two systems rely on alias restis and/or supplementary alias analysis for
soundness of effect, whereas DPJ does not.

Finally, there is extensive literature on using regionsrégion-based memory management [120, 121,
60]. That work primarily focuses on identifying aliasingydanot noninterference, because their goal is to
analyze lifetimes of memory objects.

Ownership Types: Though originally designed for alias control [39], objegtrership has grown far be-
yond this original purpose, and many variant systems haea peposed. Here we confine our discussion
to systems that combine ownership with effects. Some owipetmsed type systems have been combined
with effects to enable reasoning about noninterferenceh BOE [37, 111] and MOJO [30] have sophis-
ticated effect systems that allow nested regions and sffétbwever, neither has the capabilities of DPJ’s
array partitioning and partially specified RPLs, which arec@l to expressing the patterns addressed in
this thesis. JOE'sinder effect shape is similar to DPJs but it cannot express the equivalent of our
distinctions from the right. JOE allows slightly more psgon when a type or effect uses a local variable
that goes out of scope (our approach is stated preciselyarLar for typing expressions in the next chap-
ter), but we have found that this precision is not necessargxXpressing deterministic parallelism. MOJO
has a wildcard region specifi@; but it pertains to the orthogonal capability miltiple ownershipwhich
allows objects to be placed in multiple regions. Leino’'ssgsalso has this capability, but without arbitrary

nesting.
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Most ownership systems impose a restriction on the strecitiobject graphs calledwner dominates
though some do not [30, 80]. Lu and Potter [80] show how to dfexteconstraints to break the owner
dominates rule in limited ways while still retaining meagifl encapsulation guarantees. Tdrey context
of [80] is identical toRoot : * in our system, but we can make more fine-grained distinctibosexample,
we can conclude that a pair of references stored in variaflégpe C<R;: *> and C<Ry: * > can never
alias, if Ry: * andRs: * are disjoint.

Several researchers [24, 6, 68] have described effectrsgsta enforcing a locking discipline in non-
deterministic programs, to prevent data races and deall@dcause they have different goals, these effect
systems are very different from ours, e.g., they cannotesgparrays or nested effects.

Finally, an important difference between DPJ and most ogimnprsystems is that we alloexplicit
region declarationslike [82, 77, 59], whereas ownership systems generallypleotegion creation with
object creation. We have found many cases where a new regjiogeided but a new object is not, so the
ownership paradigm becomes awkward. Supporting field dpaityeffects is also difficult with ownership.
Ownership domainfl11] represent a kind of hybrid between ownership and aticiixdeclaration system;
this suggests a way that DPJ could be extended if the otheerrésaof ownership (such as alias control) are
desired.

Unique References: Boyland [26] shows how to usgnique referenceextended withfractional permis-
sionsto guarantee determinism for a simple language with pa@ritecells containing values. Terauchi and
Aiken [117] have extended this work with a type inferenceodthm that simplifies the type annotations
and elegantly expresses some simple patterns of determifiise Plaid language [115] also builds on this
work and aims to provide a more robust language for exprgstterministic parallelism.

Unique references are a well-known alternative to effeciogations for reasoning about heap access,
and in some cases they can complement effect annotation2$524]. Unique references have different
strengths and limitations from effect systems. For exapgampared to DPJ’s indexed parameterized array,
an array of unique references can be used to update the objgurallel and can be reshuffled. However,
in the strongest form of unique references, the array isestilip the restriction that no other reference in
the entire program may point to any of the objects referreid the array. This restriction is too severe to
be practical for many deterministic programs. While seversearchers have examined relaxed uniqueness

properties for specific applications [47, 38], designingealistic deterministic language that uses unique
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references is an open problem. As future work, it would bergsting to explore the tradeoffs between
DPJ’s effect mechanisms and uniqueness constraints foessipg determinism.

Separation Logic: Separation logic [103] (SL) is a potential alternative téeef systems for reason-
ing about shared resources. O’Hearn [95] and Gotsman é&]luge SL to check race freedom, though
O’Hearn includes some simple proofs of noninterferencekiRson [98] has extended C# with SL predi-
cates to allow sound inference in the presence of inhegtaRaza et al. [100] show how to use separation
logic together with shape analysis for automatic paraiéion of a sequential program.

While SL is a promising approach, applying it to realistiogmams poses two key issues. First, SL is
alow-levelspecification language: it generally treats memory as desergay of words, on which notions
of objects and linked data structures must be defined usingr&licates [103, 95]. Second, SL approaches
generallyeither require heavyweight theorem proving and/or a relativelgvyeprogrammer annotation
burden [98]or are fully automated, and thereby limited by what the commiga infer [58, 100].

In contrast, we chose to start from the extensive prior workegiions and effects, which is more mature
than SL for OO languages. As noted in [103], type systems dndyStems have many common goals
but have developed largely independently; as future rekeimwould be useful to understand better the
relationship between the two.

Runtime Checks A number of systems enforce some form of disciplined paliath via runtime checks.
Jade [105] and Prometheus [11] use runtime checks to gearalgterministic parallelism for programs
that do not fail their checks. Jade also supports a simpha fifrcommutativity annotation [104]. Multi-
phase Shared Arrays [42] and PPL1 [112] are similar in they tlely on runtime checks that may fail if
determinism is violated. None of these systems checksia@htsharing patterns at compile time.

Speculative parallelism [18, 51, 128] can achieve detasmirwith minimal programmer annotations,
compared to DPJ. However, speculation generally eitharinsignificant software overheads or requires
special hardware [99, 78, 124]. Grace [18] reduces the eegrlof software-only speculation by running
threads as separate processes and using commodity merotagtion hardware to detect conflicts at page
granularity. However, Grace does not efficiently supposeatial sharing patterns such as (1) fine-grain
access distinctions (e.g., distinguishing different fietd an object, as in Barnes-Hut); (2) dynamically
scheduled fine-grain tasks (e.or kJoi nTask); or (3) concurrent data structures, which are usually

finely interleaved in memory. Further, unlike DPJ, a spdargasolution does not document the paralleliza-
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tion strategy or show how the code must be rewritten to expasalelism.

Kendo [96], DMP [43], and CoreDet [17] use runtime mechaismmguarantee equivalence to some
(arbitrary) serial interleaving of tasks; however, thagrfeaving is not necessarily obvious from the program
text, asitisin DPJ. Further, Kendo’s guarantee fails ifghegram contains data races, DMP requires special
hardware support, and CoreDet has higher overhead (bugstrguarantees) than Kendo. SharC [13] uses
a combination of static and dynamic checks to enforce raeedfbm, but not necessarily deterministic
semantics, in C programs.

Aviram et al. [14] have recently proposed an approach in kvlsianemory consistency model called
deterministic consistendg enforced by the operating system using runtime mechassmilar to software
distributed shared memory (SDSM). In this approach, eackathreceives its own copy of the shared
address space at the point where the thread is created, é&nd ame local by default; merging of writes
occurs in a deterministic order only at synchronizatiompmoidentified in the program (for example, at the
end of a parallel loop). While deterministic consistency isromising approach, the overhead is high for
fine-grain sharing patterns (as it is for Grace). Furthés,arguable that copying input state at the beginning
of a computation, merging output at the end, and communigdtirough explicit synchronization points
is reminiscent of a functional or message passing styleisasssed in Section 2.5, rather than true shared
memory. By contrast, DPJ strives to keep the model closemdifa imperative shared memory.

Burckhardt et al. [29] describe a programming model congdfyt similar to that of Aviram et al., but
supported by a user-level runtime. Again, each parall&ldass its own copy of shared data, and updates are
merged deterministically at task join points. This mechanseems well suited for some parallel patterns,
such as a parallel reduction or a long-running backgrouskitteat must occasionally interact with the main
tasks. However, it does not seem well suited to many of thenpet that DPJ can express, such as disjoint
updates on concurrent data structures. Further, it is ear d this model actually provides amgyarantee
of parallelism: joins can be conditional on reading shatatesand the authors say they used this feature to
write a program that produces nondeterministic results.

Finally, a determinism checker [106, 48] instruments caddetect determinism violations at runtime.
This approach is not viable for production runs because estbwdowns caused by the instrumentation,
and it is limited by the coverage of the inputs used for theaalyic analysis. However, it is sound for the

observed traces.
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Chapter 4

Formal Language for Determinism

In this chapter we formalize a core subset of the languageribbes in Chapter 3, calleGore DPJ We also
prove that the Core DPJ effect systens@aing in the sense that the static type and effect annotatioo all
sound reasoning about noninterference at runtime. To niekéotmal presentation more tractable and to

focus attention on the important aspects of the languagenake the following simplifications:

1. We present a simple expression-based language, omititimg complicated aspects of the real DPJ

language such as statements and control flow.
2. Our language has classes and objects, but no inheritance.

3. Region names are declared at global scope, instead of at class scopey Elis has one region

parameter, and every method has one formal parameter.

4. To avoid dealing with integer variables and expressioves,require that array indices are natural

numbers.

Removing the first simplification adds complexity but raisessignificant technical issues. Adding in-
heritance raises standard issues for formalizing an cbpented language. We omit those here in order
to focus on the novel aspects of our system, but we descréra thformally in Section 4.4. Removing
simplifications 3 and 4 is purely a matter of bookkeeping. \&echchosen to make Core DPJ a sequential
language, in order to focus on our mechanisms for expresgfagts and noninterference. In Section 4.4,
we discuss how to extend the formalism to modeldbé&egi n andf or each constructs of DPJ. In Chap-
ter 6, we also describe such an extension formally ¢fobegi n) for a variant language with simpler
mechanisms for expressing noninterference, that alsesges nondeterministic computations.

The rest of this chapter proceeds as follows. In Sectionwelpresent the syntax and static semantics

of Core DPJ. In Section 4.2, we present the dynamic execsgomantics and prove the key property of
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Programs P R*Cre
Region Names R regionr
Classes C class C<p>{ F* M* comnt}
RPLs R Root |p|v|R:r|R:[4] |R:*
Fields F TfinRy
Types T C<R>|T[]<R>#i
Methods M Tm(Tz)E{e}
Effects E (|reads R|wites R|invokesC.mwithE|EFUFE
Expressions e letaz=eine|this. f=v|this. flv[n]=v]v[n] |v.m(v) |v]

newC<R> |newT[ n] <R>#i
Variables v this|z
Commutativity comm m comut eswi thm

Figure 4.1: Static syntax of Core DRJ, p, f, m, z, r, andi are identifiers, ana is a natural numbetk
denotes a fully specified RPL (i.e., containing*)o

type and effect preservatipnvhich says that static types and effects bound their dynamunterparts.
In Section 4.3, we define disjointness of regions and norierence of effect, and we prove the main
soundness property of DPJ, namely that expressions witmteofering static effects can be executed in
either order with identical results. Finally, in Sectiod 4we informally describe how to extend the core

language to add inheritance and explicit parallelism.

4.1 Syntax and Static Semantics

Figure 4.1 defines the syntax of Core DPJ. The syntax corfisite key elements described in Chapter 3
(region path lists, effects, and commutativity annotagjohung upon a toy language that is sufficient to
illustrate the features yet reasonable to formalize. A @mogconsists of a number of region declarations,
a number of class declarations, and an expression to esalGddss definitions are similar to Java’s, with
the restrictions noted above. As in Chapter 3, we denotelyadpecified region path list (RPL) &8, and
a general RPL a®.

The static typing is done with respect to an environméntvhere each element df is one of the

following:

e A binding (v, T') stating that variable has typeT. These elements come into scope when a new

variable { et variable or formal parameter) is introduced.

e A constraintp C R stating that region parameteris in scope and included in regidi. These ele-

ments come into scope when we capture the type of a variabtefasan invocation (see Section 4.1.5
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for more details).

e An integer variable. These elements come into scope when we are evaluatingantgpe or new

array expression.

Formally, we write that as follows:
Fe=wT)|pCR|i|TUT

4.1.1 Programs and Classes

Valid programs: The judgment- P means that prograr® is valid. The judgment holds if the classes of

‘P are valid, and the main expression/fs well typed with typel” and effect? in the empty environment:

PROGRAM VC.(FC) 0Oke:T,E
FC e

Valid classes:The judgment- C means that class definitighis valid. The judgment holds if the fields and

methods ot are valid. We check these facts in the environment that dimdss to the enclosing class.

CLASS

['=(this,C<p>) VE(TFF) YM.(TF M)

Fclass C<p>{ F* M*}

Valid fields: The judgment’ - F' means that field” is valid in environment’. The judgment holds if the

type and region of" are valid inI".

FlELb T'HFT TFHR

TFTfinR

Valid methods: The judgment” = M means that method/ is valid in environmenfl’. The judgment
holds if the method’s return type, formal parameter typel affiect are valid if"; its body type-checks in

I'u {(z,T,)}; and the body’s type and effect are, respectively, a subtyplee declared return type and a
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subeffect of the declared effect:

METHOD T+ T, T,,E I"=TU{(x,T.)} kte:T E T'FT =T, I'FE CE

PHT,. m(T,z) E{e}

Valid commutativity annotations: The judgment’ - commmeans that commutativity annotaticomm
is valid in environmenf”. The judgment holds if the methods named in the annotatierbath defined

methods of the enclosing class.

Comm (this,C<p>) €T defined(C. m) defined(C. m’)

' mcomrut eswi t hm’

Heredefined(C. m) means that a method namedis defined in clas§’.

41.2 RPLs

Valid RPLs: The judgment” - R says that RPLR is valid in environmenif. The rules for making the
judgment formally define RPLs, as described informally ict® 3.2. First, an RPL is valid if it iRoot ,

a variablev in scope, or a parametglin scope:

RPL-RooT RPL-VAR (v,C<R>) €T

I' - Root I'kFo

RPL-PARAM-1 (this,C<p>) el RPL-RAM-2 pC Rel

'kFp I'kFp
Second, a declared region namend array index elemept] , or a star may be appended to a valid RPL

to make another valid RPL:

RPL-INDEX THR i€l RPL-NAME T'HR regionreP RPL-STAR TFR

'k R:[1] I'-R:r ' R:*

The basic idea here is that all the rules but RPiats define fully specified RPL&; and adding a star to

an RPL refers to all RPLs under that one (see the next subsgcti
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Nesting Relation: The judgment’ - R < R’ says thaf? is nested undeR’; it establishes the tree structure
of RPLs. More information on the tree structure is given icti®m 4.3.1.

We formally define the nesting relation as follows. Firsg tRlation is reflexive and transitive:

I'- R<R'| UNDER-REFLEXIVE UNDER-TRANSITIVE 'FR<R' TFR <R

I'FR=<R '-R=<R"

Next, every RPL is nested undeoot :

I'-R=<R'| UNDER-RoOT

I' H R < Root

If variable v is bound to type’'<R>, thenv is nested undeR:

' R=<R'| UNDER-VAR (v,C<R>)€T

I'Fv=<R

Addingr, [ 7] , or* to the end of an RPL preserves nesting:

I'FR=<R'| UNDER-NAME TF+FR=<R UNDER-INDEX I'-R=<R

TR r=<R TR [i] <R

UNDER-STAR T'FR <R’
I'-R:* <R

Finally, inclusion implies nesting:

I'R=<R'| UNDER-INCLUDE ' RC R’

'R=<PR

Inclusion Relation: The judgment” - R C R’ says thatR is included inR’. That means that the set of
dynamic regions represented by the static RPIs included in the set of dynamic regions represented by

R’. More information on the set inclusion interpretation igegi in Section 4.3.1. We formally define the
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relationship on static RPLs as follows. First, the relagiup is reflexive and transitive:

' RCR'| INCLUDE-REFLEXIVE INCLUDE-TRANSITIVE 'FRCR T'HFR CR"

I'RCR I'RCR

Next, if R is nested undeR’, thenR is included inR’: *:

I'RCR'| INCLUDE-STAR T'FR=<R

I'FRCR:~

If Risincluded inR’, thenR: r andR: [ 7] are both included i®’: r:

I'-RC R'| INCLUDE-NAME 'rRCR INCLUDE-INDEX I'FRCR

'FR:rCR:r T'FR:[i] CR:[1]

If the environment says thatis included inR, thenp is in fact included inR.

I'RCR'| INCLUDE-PARAM pC ReT

I'FpCR

Finally, if R is included in a fully specified RPE/, thenR; is also included in?:

I'-RCR| INCLUDE-FULL T+ R C Ry

I'R;CR

4.1.3 Types

Valid Types: The judgment’ - 7" says that typd is valid in environment'. If C'is a defined class ankl
is a valid RPL, therU<R> is a valid type:

TyPe-CLASS defined(C) T'HR

I'-C<R>
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To check an array typ€[ | <R>#iin I', we checkl’ and R in the environment plus

TYPE-ARRAY T'U{i}FT,R

THET[] <R>#i

Subtyping: The judgment’ - T' < T” says thafl" is a subtype off”. If R is included inR’, thenC<R>is
a subtype of '<R’>:

T <T'| SuBTYPE-CLASS I'+RCR

I'C<R>=<C<R'>

If Ris included inR’ andT equalsT’ up to differing names of integer variables, thEp] <R>#i is a

subtype of"[ ] <R/>#i':

=T <T'| SuBTYPE-ARRAY TU{i}F RCR/[i' —i] T=T

T+ T[] <R>#i < T'[ | <R'>#i'

Here= means identity up to the names of integer variakldsfollows from the reflexivity and transitivity

of the inclusion relation on RPLs (Section 4.1.2) that spinty is reflexive and transitive.

4.1.4 Effects

Valid Effects: The judgment” - E means thatv is a valid effect in environmerf. The empty effect is

valid:

EFFECFEMPTY

reo

If Ris avalid region, themeads R andwr i t es R are both valid effects:

EFFECTREADS 'R EFFECTWRITES '-R
I'Freads R 'Fwites R

If m is a defined method af and £ is a valid effect, them nvokes C. mw t h E is a valid effect:

EFFECTINVOKES  defined(C. m) T'FE

I'+invokesC.mwithFE
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Finally, the union of two valid effects is a valid effect:

EFFECFUNION T'HFE TFE

'-EUEFE

Subeffects:The judgment” - E C E’ says thatF is asubeffecof £’. Intuitively, that meand”’ contains
all the effects ofF, i.e., we can usé&’ as a (possibly conservative) summarymfThe subeffect relation is

reflexive and transitive:

I'-ECFE'| SE-REFLEXIVE 'FECE SE-TRANSITIVE 'FECFE T'RE CE”

r-ECE

The empty effect is a trivial subeffect of every effect:

I'ECE'| SE-BupTY

'-0CE

If Risincluded inR’, thenr eads R is a subeffect of eads R’, and similarly fornr i t es Randwri t es

R

I'+ECE'| SE-ReADS I'RCR SE-WRITES I'RCR

I'reads R Creads R’ I'FwitesRCwites IR/

Also, writes cover reads:

I'ECE'| SE-READS-WRITES I'RCR

I'Freads RCwites R

Next we have two rules for the invocation effect. FirstEifcoversE, then an invocation of some method

with E’ covers an invocation of the same method with

I'ECE'| SE-INVOKES-1 I'-ECE

I'invokesC.mwithE CinvokesC. mw thZFE
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Second, we can conservatively summarize the effastokes C. mw t h F as justE:

SE-INVOKES-2

I'+invokesC.mwthECE

Finally, we have the obvious rules for subeffects of uniams @nions of subeffects:

I'ECE'| SE-UNION-1 r-ECFE SE-UNION-2 THE'CE THE'CE

r-ECE UE" '-EFUE"CE

4.1.5 Typing Expressions

Every well-typed expression hasype and aneffect The type is the familiar static type from Java, plus
the region information in the class types. The effect sunmmarthe heap effects that may occur when the
expression is evaluated. The following rules govern thantypf expressions.

Let expressions: To typel et x=ei n €', we typee, bind z to the type ofe, and typee’. If = appears in
the type or effect o', we weaken it taR: * to generate a type and effect for the whole expression tkeat ar
valid in the outer scope but still cover the actual type affiglef The type of the expression is the typeof

and the effect is the union of the effects of evaluatirande’:

LET Thre:C<R>E TU{(x,C<R>)}Feé : T E

'Flet z=eine :T'[x«— R:*|,EUE'[x — R: ]

Field access:To type field access, we look in the environment to get the ofbe enclosing class, check
that everything is well formed according to the class definjtand report the read effect on the declared

region of the field:

FIELD-ACCESS T fin Ry € def(C)) (this,C<param(C)>) el

I'Fthis. f:T,reads Ry

Hereparam(C') means the region parametein the definition of clas€”. Note that there is no need to
substitute for the class formal parameter in the resultypg or effect, because in this simple language we

allow field access only throughhi s.
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Field assignment: Field assignment is similar, except that we enforce subtyfor the assignment, and

we report a write effect:

FIELD-ASSIGN (this,C<param(C)>) eI’ (v,T) el T'finRyedef(C) T'-T T’

I'Hthis. f=z:T,wites Ry

Array access and assignmentArray access and assignment are almost identical to fielesacand as-

signment, except that we substitute the index for the indesakile in computing the type and effect:

ARRAY-ACCESS (v, T[] <R>#i) e T

I'Fwo[n] : T[i < n],reads R[i < n]

ARRAY-ASSIGN {(v, T[] <R>#i),(v/,T)} CT T FT <XT[i« n]

FFo[n]=v T wites R[i — n]

Method invocation: To type method invocation. m( v") , we find the clasg€’ bound towv in the environ-
ment and find the definition of: in C (if m is undefined, then the typing fails). Next we need to traaslat
the declared types and effectsaf to the current environment. We do this with two substitusiomhe sub-
stitution o takest hi s to v and the declared parameter@fto the RPLR appearing in the type af. We
useo to translate the declared return type and effeehipfeporting an invocation effect with that type and
underlying effect. The substitutios’ is similar, but it takeparam(C) to a fresh parameter, called the
capture parameterWe useo’ to translate the type ofi’s formal arguments to the current environment,
and we check that the type of is a subtype of this translated type, in an environment irctviine capture

parameter is contained iR.

INVOKE  {(v,C<R>),(v",T)} CT T, m(T,x)E{e} €def(C) o={this— v,param(C)— R}
o' ={this—v,param(C)+— p} TU{pCR}+-T <0'(Ty)

I'kov.m(v) :o(T),i nvokes C. mwi th o(FE)

The capture parameter represents that the actual typatatuntime isC<p>, where all we know about
pis p C R. This technique is similar to how Java handles the captusegaieric wildcard [57]. Note that

simply usingo to translate the formal parameter type would not be sounge&avhy, consider the example
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1 region r
2 class C<P> {
3 C<P>f in Root;
C<Root : *> weaken(C<P> x) { x }
C<P> assign(C<P> x) wites Root { f = x }
C<Root : *> unsound(C<Root:*> x) wites Root {
/1l Inferred type of x1 is C<Root:*>
l et x1 = weaken(new C<Root>) in
/1 Whoops! Assigning C<Root:r> to C<Root>
10 x1. assi gn(new C<Root : r>)
un }
12 }

© o N o U »

Figure 4.2: Example showing why we must capture partialgcefied RPLs

shown in Figure 4.2:

Without the capture parameter, the real tyfgdRoot > of the formal parameter of assi gn is weakened
too far toC<Root : *>in line 8, and the assignment 6kRoot : r > to x is (erroneously) allowed. With
the capture parameter, we can see that we are trying to &ssigoot : r > to C<P>, where all we know
aboutP is P C Root : *. This unsound assignment is disallowed by the rule given@bo

Variables and new objects:The rules for typingy andnew 1" are obvious:

VAR (v,T)eT NEW-CLASS 'k C<R>
F'kov:T,0 I'FnewC<R>: C<R>(
NEW-ARRAY TET[] <R>#i

I new T[ n] <R>#i: T[] <R>#i,0
4.2 Dynamic Semantics

4.2.1 Execution State

The syntax for entities used in the dynamic semantics is showigure 4.3. At runtime, we have dynamic
RPLs (R), dynamic typesdT’) and dynamic effectsi(F), corresponding to static RPL&], types (") and
effects F) respectively. Dynamic RPLs and effects are not recordedréal execution, but here we thread
them through the execution state so we can formulate ane p@yndness results [37]. We also have object
reference®, which are the actual values computed during the execution.

The dynamic execution state consists of (1) a hEaprhich is a partial function taking object references
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RPLs dR Root |o|dR:r|dR:[d] |dR:[n] |dR: *
Types dI' C<dR>|dT[] <dR>#i
Effects dE (|readsdR|witesdR|invokes Comw thdE|dEUdE

Figure 4.3: Dynamic syntax of Core DPJ

to objects; and (2) a dynamic environment which is a set of elements of the forfn, o) (variablev is
bound to reference) or (p,dR) (region parametep is bound to RPLIR). The dynamic environment
>} defines a natural substitution on RPLs, where we replacedhables with references and the region
parameters with RPLs as specified in the environment. Wetdédhe application of this substitution to
RPL R asX(R). We extend this notation to types and effects in the obvioag. Wotice that we get the
syntax of Figure 4.3 by applying the substitutiBrto the syntax of Figure 4.1.

An object is a function taking field names (for class objecishonnegative integers (for arrays) to
object references. Every object referelace Dom(H) has a type, and we writd + o : dT' to mean that
the reference has typelT with respect to heafl. An object reference either maps to an object, in which
caseH (o) is an object corresponding to the typeopr it does not map to any object, in which cd$éo)
is undefined. In the latter case, we say thet anull reference We define null references this way because
we need to track the actual types of different referencestablish soundness. In an actual implementation
that does not do this tracking, we can use a single valulefor every null reference. Dereferencing a
null reference at runtime causes the execution to fail byirgestuck. We do not explicitly model null

dereference errors or exceptions.

4.2.2 Evaluating Programs

We write the evaluation rules in large-step semantics imotatising the following evaluation function:

(e,%,H) — (o,H',dE),

wheree is an expression to evaluatg,and H give the dynamic context for evaluation,is the result of
the evaluation,H' is the updated heap, antl’ represents the effects of the evaluation. The progfam
is an implicit parameter that we omit for conciseness andalitity. Notice thaty does not appear on
the right-hand side, because we do not need to retain thexdgremvironment as global state. A program

evaluates to refereneewith heapH and effect/E if its main expression is and(e, ), ) — (o, H, dE).
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Let expressions:To evaluatd et x=ei n ¢/, we evaluate: to o, bind o to x, and evaluate’, updating the

heap and collecting effects as we go:

DYN-LET (e,X,H) — (0, H',dE) (¢/, 2 U{(z,0)},H") — (o/,H",dE")

(let z=eine/ %, H)— (o, H",dEUdFE’)

Field access:To evaluate field access, we look up the object bourtdhtios in ¥, and we read its field,

recording the read of the declared region after translatitjthe dynamic context:

DYN-FIELD-ACCESS (this,o)€¥ HtFo:C<dR> T finR;ecdef(C)

(this. f,X,H)— (H(o)(f), H,reads X(Ry))

Field assignment:Field assignment is similar, except that we update the hedpexord a write effect:

DYN-FIELD-ASSIGN {(this,0),(v,0')} CX HFo:C<dR> T fin Ry e def(C)

(this. f=v,X,H) — (0,Hlo— H(o)[f — d]],writes X(Ry))

f : A — B s a function, thenf[z — y] denotes the functiorf’ : A U {z} — B U {y} defined by
f(a) = f(a)if a # zandf'(x) = y.

Array access and assignmentArray access and assignment are nearly identical to fielelsscand assign-
ment, except that we use the array indeto access the array, and we substitut®r the index variable

in computing the region:

DYN-ARRAY-ACCESS (v,0) €X HFEo:dI[] <dR>#i

(v[n] X, H) — (H(o)(n), H,r eads dR[i < n])

DYN-ARRAY-ASSIGN {(v,0),(W',0} CX HFo:dl[]<dR>#i

(v[n] =0, E,H) — (o', H[o — H(o)[n — o]],wites dR[i — n])

Method invocation: To evaluate method invocatian m( v") , we find the bindings of andv’ in X, create
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a new environment for the invocation, evaluate the methaty,lbend record the invocation effect:

DYN-INVOKE Hto:C<dR> T,m(T,z) E{e} € def(C)
(e,{(thi s,0), (param(C),dR), (z,0' )}, H) — (0", H',dE)
(v. m( '), {(v,0), (W', )} UE, H) — (0", H',i nvokes C. mwi t h dFE)

Variables: To evaluate a variable expression, we just get the refereuicef 3:

DYN-VAR (v,0) € X

(v, 2, H) — (0, H,0)

New objects: To evaluatenew T, we translatél” to dT" usingo, after eliminating any from 7', e.g.,new
C<Root : »> is the same asew C'<Root >; this rule ensures that all object fields are allocated ity ful

specified RPLs. We then create a fresh object and a frestenefeiof the appropriate type.

DYN-NEW-CLASS o ¢ Dom(H) H' = HU{(o,new(C))} H'F o:C<X(R[:* «— €])>

(newC<R> Y, H) — (o, H', )

DYN-NEW-ARRAY o ¢ Dom(H) H' =HU{(o,new(T[n]))} H'Fo:X(T)[]<Z(R[: * «— ¢€])>#i

(new T[n] <R>#i,%, H) — (0, H',D)

new(C) is the function taking each field of clags with type 7' to a null reference of typ&(T"), and

new(T[ n] ) is the function taking each’ € [0,n — 1] to a null reference of typE(T").

4.2.3 Judgments for Dynamic RPLs, Types, and Effects

To state and prove the preservation result (Section 4\@elheed to establish judgments for dynamic RPLs,
types, and effects corresponding to the static judgmerisedkin Sections 4.1.2 through 4.1.4. As before,
C and= are reflexive and transitive.

Dynamic RPLs: The rules for valid dynamic RPLs are similar to the rules fatis RPLs (Section 4.1.2),

except that we do not allow region parameters in dynamic RBhg instead of the rule ¥N-RPL-VAR,
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we have the rule BN-RPL-ReF, which requires a valid reference:

DYN-RPL-RooT DYN-RPL-REF HFo:T DYN-RPL-INDEX HFdR
H I Root Hto HFdR: [ in]

DYN-RPL-NAME H FdR regionreP DYN-RPL-STAR  H - dR

HEdR: r HFdR: *

In rule DvN-RPL-INDEX, we write[ i|n] to indicate that an index variabfeor a numerical index can
appear in that position. Index variableappear in the RPL& of dynamic array type§'[ ] <R>#i; they
are always substituted away when the array is accessedythesuindex:, via rules DrN-ARRAY-ACCESS
and DrN-ARRAY-ASSIGN

The nesting relationship for dynamic RPLs is similar to tberesponding relationship for static RPLs
(Section 4.1.2), except that instead of the ruleNDUNDER-VAR, we have the rule BDN-UNDER-REF,

which says that an object reference is under the RPL of i&s:typ

DYN-UNDER-ROOT DYN-UNDER-REF DYN-UNDER-NAME
HFo:C<dR> HtdR < dR'

HFdR < Root HFo=dR HtdR:r <dR
DYN-UNDER-INDEX DYN-UNDER-STAR DYN-UNDER-INCLUDE
HtFdR < dR' HFdR =< dR' HFdR CdR

HFdR: [i|n] <dR":[i|n] HF dR: * < dR’ HFdR < dR'

The inclusion relationship for dynamic RPLs is similar t@ ttules for static RPLs (Section 4.1.2),

except that we do not have any region parameters:

DYN-INCLUDE-STAR DYN-INCLUDE-NAME DYN-INCLUDE-INDEX
HbFdR < dR’ HFdR CdR HFdR CdR'
HFdR CdR'": * HFAR: 7 CdR": r HEdR:[i| n] CdR":[i] n]

Dynamic Types and Effects: The rules for dynamic types and effects are nearly identaheir static
counterparts. Instead of writing out all the rules, whichudobe tedious and not all that enlightening, we

describe how to generate them via simple substitution floerales given in Sections 4.1.3 and 4.1.4. For
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every rule given in those sections, do the following:
1. Append I¥N- to the front of the name.
2. Replacd” with H and[ i] with [ n] .
3. ReplacerR with dR, T with dT', andE with dE.

Applying this transformation to all the rules in Section&.8.and 4.1.4 yields the rules for valid dynamic
types, dynamic subtypes, valid dynamic effects, and sabsff For example, here are the rules for valid

types and subtypes, generated via the substitution abonetfre rules stated in Section 4.1.3.

DYN-TYPE-CLASS defined(C) HF dR DYN-SUBTYPE-CLASS HEdR CdR

H - C<dR> H 't O<dR> < C<dR'>

The rest of the rules are similar.

4.2.4 Preservation of Type and Effect

In this section we show that the static types and effects thdlue dynamic types and effects.
Valid environments: We first define the concept of a valid environment. An envirenti’ is valid if its

variables are bound to valid types and its parameters asgreamed to be under valid RPLs:

ENV V(u,T)eT'THFT VpCReTl'THR

FT

Technically, a valid environment should also be well-defini@ the sense that every variable has at most
one binding. We omit this requirement from the definition alig environments, because it obviously holds
by the way that environments are constructed in the typitesru

Next we have a lemma showing that, for a well-typed progrgming an expression in a valid environ-

ment yields a valid type and a valid effect:

Lemma 4.2.1. For a well-typed program, lefl’ be a valid environment, and letbe an expression such that

I'ke:T,E.Thenl' T andl' - E.

Proof. Use induction on the height of the derivation. We can proeecthim directly in the following cases:

72



VAR, NEW-CLASS, and NEw-ARRAY: Obvious.
FIELD-ACCEss I' = T"andI' = Ry by rule Field.I' - r eads Ry by rule EFFECTREADS.

FIELD-ASSIGN I' - T because- I'and(v,T) € I'. I' - wri t es Ry by rules RELD and BFFECT
WRITES.

ARRAY-ACCESS Similar to HELD-ACCESS

ARRAY-ASSIGN Similar to HELD-ASSIGN

INVOKE: By rule METHOD, we have{(t hi s, C<param(C)>)} - T, E,,. Becausé- I"and(v, C<R>) €
I', we havel' - R. Therefore we have + o(T,.), o0 (E,,), because it is clear from the rules in Section 4.1.2
that a valid RPL results when we replaesvith a valid RPL in a valid RPL. The invocation effect is valid
by rule BFFECTFINVOKES.

Now consider the inductive case:

LET: The claim is true for the first judgment on the top of the rujetle induction hypothesis (IH).
Thereforel' - C<R>, sot- I' U {(z, C<R>)}, and the claim is also true for the second judgment on the
top of the rule by the IH. Any RPL appearingif or £’ must either not contaim at all, or must consist of
x followed by a sequence of elementsr . Therefore, substituting?: * for x results in a valid RPL, so

o(T") ando(E") are valid inl". Finally, E U o(E’) is valid inT" by rule EFFECFUNION. O

Valid dynamic environments: A valid dynamic environment is the dynamic analog of a vatatis envi-

ronment:

Definition 4.2.2 (Valid dynamic environments)A dynamic environmeri is valid with respect to heafl

(H + X)) if the following hold:
1. For every bindinqv,0) € ¥, Ht o : dT.
2. For every bindingp,dR) € ¥, H - dR.
3. If(this,o) € ¥,thenH - o : C<dR>, and(param(C),dR) € X.

This definition says that the bindings are to valid refersramed RPLs, and that the actual region of the
object bound td hi s is consistent with the binding for the class parameter §ipélcin the environment.

We can now define valid heaps:
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Definition 4.2.3 (Valid heaps) A heapH is valid (- H) if for eacho € Dom(H), one of the following
holds:

1. (@ H Fo:C<dR>and (b)H F C<dR> and (c) for each field” f i n R; € def(C), if H(o)(f) is
defined, ther{ - H(o)(f) : dTandH +- dT and H + dT' < T'[o < t hi s][dR <« param(C)]; or

2. @) H + o : dT[] <dR>#i and (b) H + dT[] <dR>#i and (c) if H(0)(n) is defined, therf +
H(o)(n) : dT"andH + dT and H + dT" < dT'[i < n].

This definition says that every object reference is well typ&th a valid type, and every field of every
object and every cell of every array contains a referencle avitalid type that is bounded by its static type,
translated to the dynamic environment.

Next we defineH - ¥ < I'" (*X instantiated” in H”):

Definition 4.2.4 (Instantiation of static environmentsi\ dynamic environmerX instantiates a static envi-
ronmentl’ (H - X <TI)if - I', - H, and H I~ 3; the same variables appear Dom(I") as inDom(%);
and for each paifv,T) e I'and(v,0) € ¥, H - v : dT and H + dT < 3(T).

This definition specifies a correspondence between statingyenvironments and dynamic execution
environments, such that we can use the typing in the staticoement to draw sound inferences about
execution in the dynamic environment. Next we need somalatdisubstitution lemmaswhich say that
under the correspondence established above, judgmenis sthoic RPLs, types, and effects carry over to

their dynamic translations:
Lemma4.25.1f H+ X <T'andl' - R, thenH F X(R); and similarly for typesl” and effects~.

Proof. Use induction on the height of the derivatibn— R. In the base case, we used one of rules RPL-
RooT, RPL-VAR, RPL-mRAM-1, or RPL-RRRAM-2. If we used RPL-ROT, thenR = ¥(R) = Root,
and the result follows by EN-RPL-RooT. If we used RPL-¥R, then by Definition 4.2.4% substitutes
a valid reference fopr, so we can use ¥N-RPL-REF to establish the result. If we used an RPARAM
rule, thenR = P, and again by Definition 4.2.4; takesp to a valid dynamic RPL.

In the inductive case, either (B = R’ : r, ¥(R) = X(R'): r, and RPL-MME is the last rule in the
derivation; or 2)R = R": [i], X(R) = X(R’): [ i] , and RPL-NDEX is the last rule in the derivation; or
(B)R = R": x,X(R) = X(R'): », and RPL-SAR is the last rule. In any case, the IH giveslis- X(R’),
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and we can use ¥N-RPL-NAME, DYN-RPL-INDEX, or DYN-RPL-STAR to complete the derivation of
HF X(R).
The result for types and effects follows from the fact thatrilles for valid types and effects are identical

in the static and dynamic cases, up to substituting valicadyin RPLs for valid static RPLs. O

Lemma4.2.6.If H+ Y <Tandl'+ R <X R/, thenH I ¥(R) < X(R’); and similarly forT' - R C R/,
T <Tandl'+- E C F'.

Proof. It suffices to prove the results fdk < R’ and R C R/; the results for types and effects then
follow from the exact correspondence (Section 4.2.3) betwke static and dynamic rules for subtyping
and subeffect. Use induction on the height of the derivafiohR < R orT'- R C R'.

For nesting, in the base case, we used one of rulgsHR-RoOOT, DYN-UNDER-VAR, or reflexivity. In
the case of WDER-ROOT or reflexivity the claim is obvious. In the case off ®-UNDER-VAR, from the
rule we havd” - v < Rand(v,C<R>) € I';and byH + ¥ < T, we havg(v, 0) € Y with H F o : C<dR>
andH + dR C ¥(R). The result follows by rules BN-UNDER-REF and DrN-UNDER-INCLUDE. For
inclusion, in the base case we used either reflexivity orimteLUDE-PARAM. For reflexivity, the claim is
obvious, and forNcLUDE-PARAM, the claim follows from Definition 4.2.4.

Now consider the inductive case. For nesting, we used&R-NAME, UNDER-INDEX, UNDER-STAR,
or UNDER-INCLUDE as the last rule in the derivation, and the claim followsigtrd#iorwardly from the IH
and the corresponding rule for dynamic RPLs. Similarly farliision using NCLUDE-STAR, INCLUDE-
NAME, INCLUDE-INDEX, or INCLUDE-FULL as the last rule. In the case ofdLUDE-FULL, we must have

dR = dR/, so the result follows by the reflexivity of the inclusionagon. O

Finally, we state and prove the type and effect preservatienlt. Note that the initial heafd is valid

by Definition 4.2.4 and the assumptight > <T'.

Theorem 4.2.7(Preservation) For a well-typed program, if' e : 7, FandH + ¥ < T"and(e, ¥, H) —
(o, H',dE), then (a)t H'; and (b) H' + dT < X(T'), whereH' + o : dT’; and (c) H' - dE; and (d)
H'+dE C X(E).

Proof. The derivation of(e, X, H) — (o, H',dF) is by the rules given in Section 4.2.2. Consider each

possibility for the last rule in the derivation. We can shéw tlaim directly in the following cases:
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DYN-VAR: (a) holds because the heap does not change. (b) holds bewfause Var, and by Defini-
tion 4.2.4. (c) and (d) trivially hold.

DYN-NEw: By rule New, we havd’ + C<R>. ThereforeH’ + C<X(R)> by Lemma 4.2.5; and
because omitting stars from a valid RPL yields a valid RPL g RPL-SAR, H' + C<X(c(R))>.
Further, we are extending the heap with a valid reference vaminitialize all the object fields with null
references of the correct type. This establishes (a). (llshHmecausé! + X(o(R)) C 3(R) by repeated
applications of rules BN-INCLUDE-STAR and DrN-INCLUDE-NAME. (c) and (d) trivially hold.

DyN-FIELD-ACCESS (@) holds because the heap does not change. (b) holds becdtis (c) holds
becausd’ - R by rule HELD, and by Lemma 4.2.5. (d) holds by comparing the reportecceififerule
FIELD-AccEsswith the actual effect in rule DN-FIELD-ACCESS

DYN-FIELD-ASSIGN (b) holds by rule FELD-AssIGN and by Definition 4.2.4. (a) holds because rule
FIELD-ASSIGN requiresI’ - T' < 7", and by the transitivity of subtyping. (c) holds becalise R by
rule Field. (d) holds by comparing the reported effect irerblELD-A SSIGN with the actual effect in rule
DYN-FIELD-ASSIGN

DYN-ARRAY-ACCESS Similar to DyN-FIELD-ACCESS

DYN-ARRAY-ASSIGN Similar to DyN-FIELD-ASSIGN

Now consider the possibilities for the inductive case:

DYN-LET: First, apply the IH to the left-hand reduction on the topwérLeT. This yieldsH’ - dT' =<
T, wheredT is the dynamic type of, andT’ is the static type of. That result implied?’ + X U {(z,0)} <
T"u T, which allows us to apply the IH to the right-hand reductientioe top of LET. Now (a) and (c) hold
by the IH and the correspondence between the top of ridegsahd DvN-LET. Further, by the IH, (b) holds
for the type ofée’, so it also holds for the weaker type obtained by substiguftn * for x in rule LET. A
similar argument for the effects establishes (d).

DYN-INVOKE: LetY'’ be the dynamic environment we used to evaluate the methoddiadule DyN-
INVOKE, and letl” be the environment we used to type rule METHOD. We need to show/ - X/ < T".
The only hard part is showingl + d7" < ¥/(T,), whereH o : dT’; we do this as follows. By
hypothesis,H + dT” < X(T"), whereX is the dynamic environment appearing on the bottom of rule
DYN-INVOKE, andT” is the type of variable’ in the environment® appearing on the bottom of rule

INVOKE. Now construct the dynamic environment = X U {(p, dR)}, wherep is the capture parameter
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appearing in rule NVOKE, anddR is the RPL in the type ob as shown in rule ®N-INVOKE. Then
HE Y <TU{p C R}, so from rule N\vOKE and by Lemma 4.2.6, we hawe’(T") < X" (c¢/(T,)).

Becausep is a fresh parameter that does not appedf’inon the LHS we have:(7") = ¥"(7"). And

becauser’ takesparam(C) to p andX” takesp to dR, while ¥’ takesparam(C') to dR, on the RHS we
haveX" (o' (T,)) = ¥/(T,). Putting all this together yieldd + d7" < 3(T") < ¥/(T), which is the result
we wanted.

Now by the induction hypothesis, rule®fHoD, and Lemma 4.2.6, we have (@)H’; (b) H' + dT" <
¥(T,),whereH' - 0" : dT"; (c) H' - dE;and (d)H' ++ dE C ¥/(F), whereT, is the return type ofn and
Eis the declared effect ofi. We just need to sho’ - 3/ (7}.) < X(o (7)) andH' - ¥'(E) C X(o(F)),
whereo is the substitution specified in ruleVOKE. Because neithéf,. nor E contains the variable (see
rule METHOD), the substitutiort’ is effectively{(t hi s, o), (param(C'), dR)}, while the substitutiort oo
is {(t hi s,0), (param(C), X(R))} Further, becausé&l’ > < T', we haveH’ - dR C X(R). Therefore
the types and effects are the same up to substituting a ogvB®PL fordR on the RHS, so the required

subtyping and subeffect relations hold. O

4.3 Noninterference

In this section we establish the main soundness results & BBJ. First we explain the set interpretation
of dynamic RPLs, which is essential to reasoning about idigjess. Then we definedasjointness relation
on RPLs, and we show that effects on disjoint RPLs imply disjeffects on the heap. Then we define
noninterference of effeavhich is the essential criterion for checking that two met of code may be safely
executed in parallel. Finally, we prove that if two expressi have noninterfering static effect summaries,

then their order may be interchanged without affecting thal fiesult.

4.3.1 Set Interpretation of Dynamic RPLs

In this section we explain the set interpretation of dynaRiRts. A fully specified RPLR; names a region
of the heap. Given a hed and a valid dynamic RPER, we define theset of regionsassociated witld R

as follows:

Definition 4.3.1. Let+ H and H + dR. ThenS(dR, H) is defined as follows:
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1. S(dRy, H) = {dR;}.

2. S(dR: r,H) = {dRy: r|dR; € S(dR, H)}.

3. S(dR: [n] ,H) = {dRy: [ n] |dR; € S(dR, H)}.
4. S(dR: *,H) = {dR;| H - dR; < dR}.

Intuitively, the definition says that a fully specified RPLnma@s a single regionyR: r appends- to all
the regions oflR; dR: [ n] appendg n] to all the regions ofiR; anddR: * names all the regions under
dR.

Now we establish some essential properties of RPLs integhies sets. The first property says that the
set of RPLs undediR;: r is distinct from the set of RPLs undéR;: +'; and similarly fordR;: [ n] and

dRy: [ n'] . This establishes the tree structure of dynamic RPLs.

Lemma4.3.2.1f r # v/, thenS(dRy: r: », H)NS(dRy: r'": * \H) = (. If n # n/, thenS(dRs: [ n] : *, H)N
S(dRy:[n]:*,H) = 0.

Proof. We prove the first statement; the proof of the second statemedentical, usind n] instead of
r. By part 4 of Definition 4.3.1, it suffices to show thatAf + dR} = dRy: r, then it is impossible to
derive H + dR} = dRy: r’. From the rules in Section 4.2.3, there are three ways toelfirsgt derivation:
(@H) dR} = dRy:r; or (2) dR} =oandH F o : C<dRy: r>; or (3) R} satisfies one of the first two
possibilities with names appended. In the first case it is clear from the RPL syntaxvileatannot have
H & dR, < dRy: r'. Inthe second case, sinedas only one type, we could only haie- dR’, < dRy: r

if H-dRys: r = dRy: r'. To get this we would have to apply ruleNDER-NAME repeatedly until we got
to o’ such that/R; begins witho’ andH + o’ < dRy: r’. But this would mean that’ would have to appear
in its own type, which is impossible from the way we constrdighamic types (Section 4.2.2). Finally, in
case (3), appending namesvould just require that we use ruleyR-UNDER-NAME until we got back to

case (1) or (2). O
Next we establish that the RPL inclusion relation agreeh sét inclusion:

Lemma 4.3.3.1f H + dR C dR’, thenS(dR,H) C S(dR',H), where the second occurrence ©f

represents set inclusion.
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Proof. Use induction on the height of the derivatiéht- dR C dR’. In the base case, we used reflexivity,
and the claim is obvious. Otherwise, the last rule was oneawfsttivity, DyN-INCLUDE-STAR, DYN-
INCLUDE-NAME, or DYN-INCLUDE-INDEX. Inthe case of transitivity, the result follows by the IH &biger
with the fact that set inclusion is transitive. In the cas®®N-INCLUDE-STAR, we need to show that if
H+ dR < dR', thenS(dR,H) C S(dR'’: », H); but this follows by Definition 4.3.1 and the transitivity
of the nesting relation. Finally, in the case of -INCLUDE-NAME or DYN-INCLUDE-INDEX, the result

follows directly from the IH and Definition 4.3.1. O

4.3.2 Disjointness

We define the disjointness relation for static RPLCsH R # R’) as follows. First, we have “distinctions
from the left”. given two fully specified RPLs that start withe same elements then diverge at the last
element, any RPL under the first is disjoint from any RPL urtiersecond. These rules reflect the tree

structure of RPLs:

DISIOINTFLEFT-NAME 7 # ¢ T'FR=<R;:r T'FR <X Ry v

T+R#R

DISJOINFLEFT-INDEX i#4¢ THFR=<XR;[i TFR <XRp[i]

T+ R#R

DISJOINTFLEFT-NAME-INDEX T'FR=<Rs:r T'FR <X Ry:[1]

I'+R#R
Second, we have “distinctions from the right”: any two RPhattdiffer in the same position before a star

from the right are disjoint:

DISJOINTRIGHT-NAME r#£r DISJOINTFRIGHT-INDEX i £

THRr#R: o DE R[4 # R[4

DISJOINTRIGHT-NAME-INDEX

Tk R:r#R:[1]
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Disjointness is symmetric, as may be seen from the symmétingoules. We extend the relation to dynamic
RPLs (generating rulesYN-Di1sJOINTLEFT-NAME, etc.) in the same way described in Section 4.2.3.

We can now establish that RPL disjointness implies disj@ss of the region sets.
Proposition 4.3.4.1f H - dR# dR', thenS(dR, H) N S(dR', H) = 0.

Proof. If we used one of the EN-DISJOINTRIGHT rules to prove disjointness, then there can be no ele-
ment in the intersection because of the syntactic differdratween the elements in the two sets. Otherwise,
we a used DN-DISJOINTLEFT rule. A simple induction shows that #f - dR = dRy, then for all

dR; € S(dR,H), H \- dR}; < dRy. The result then follows from Lemma 4.3.2. O

Next we defingegion(o, f, H), the region of fieldf of class object € Dom(H ), andregion(o,n, H)
then region of cellh of arrayo € Dom(H ). This definition formalizes the idea that regioRsn the field

declarationd” f i n R partition the heap:

Definition 4.3.5 (Region of a field or array cell)lf H - o : C<dR>andT fin R; € def(C), then
region(o, f, H) = R¢[t hi s « o|[param(C) < dR]. It H - o : dT[] <dR>#i, thenregion(o,n, H) =
dR[i < n].

Note thatregion(o, f, H) is fully specified (i.e., it is a region), because only fullyesified RPLs are

allowed in evaluatingnew expressions (rule BN-NEw-CLASS). Similarly for region(o, n, H).

Proposition 4.3.6. At runtime, disjoint regions imply disjoint locations. Ths, if
H = region(o, f, H) # region(d’, f', H),

then eithero #£ o’ or f # f’; and if H I region(o, n, H) # region(o’,n’, H), then eithew # o' orn # n'.

This claim follows directly from Proposition 4.3.4 and tteet that the class definition together with the
region binding in the type aiewspecifies exactly one fully specified region for each objetti fat the time

the object is created.
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4.3.3 Noninterference of Effect

We define the noninterference relation for static effe€ts~ £ # E’) as follows. The noninterference
relation is symmetric:
NI-SYMMETRIC I'+ E#E'

THE#E

Pairs of reads always commute:

NI-READ

I'reads R#reads R’

Read-write and write-write pairs commute only if the looas are disjoint:

NI-READ-WRITE I'FR#R NI-WRITE I'FR#R

I'reads R#wites R Pwites R#wites R

An invocation effect commutes with another effect if the erging effect of the invocation commutes with
that effect:

NI-INVOKES-1 I'FE#E

I'+invokes C.mw th E#FE’

Two invocation effects commute if they are declared to cotenmegardless of their underlying effects:

NI-INVOKES-2 m conmut eswi t hm’ € def(C)

I'FinvokesC.mwith E#invokes C.m'withE

Finally, we have the obvious rules for empty sets and setnsnio

NI-EMPTY NI-UNION ' E#E" T'kE' #E"

THO#E T+EUE #E"

We extend the relation to dynamic effects as described iticdes.2.3.
Now we can prove that expressions with noninterfering éffeommute. First we defingasic effects

which are the actual effects produced by program execution:
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Definition 4.3.7. A basic effect is one of the followingeads Ry, wri t es Ry, ori nvokes C. mw th

dE", wheredE" is a possibly empty union of basic effects.
Lemma 4.3.8.1f (¢, X, H) — (0, H',dFE), thendE is a possibly empty union of basic effects.
Proof. Obvious from the rules given in Section 4.2.2. O

Next we formally define what it means for a commutativity atation m conmut eswi t h m’ to be

correct:

Definition 4.3.9. For a program’P, an annotationm conmut eswi t h m’ appearing in clas€ of P is
correctif for every pair of heaps? and H’ and objects» and o’ in H such that executing. m and then
o'. m/ with initial heap H produces heai’, executing the methods in reverse order (b€.jn’ theno. m)

in initial heap H also produces heapl’.

Informally, m andm’ commute if the order in which they appear in the program eti@eis irrelevant.
Note that we define commutativity in terms of physical heatestwhich is somewhat stronger than we
might want in a real application: for example, we might wantreat two methods as commutative if either
order of execution produces the same abstract data steyetith possibly different internal representations.
The formalism given here could easily be extended to reptésgher-level notions of equivalent heap state,
such as equivalent data structures with different intergaidesentations.

Now we can state a proposition about the dynamic effectsymeiby program execution: if we evaluate
e thene’ with the same dynamic environmexnt and if the dynamic effects produced by the two evaluations

are noninterfering, themande’ arecommutativei.e., we get the same result as if we evaludtiene:

Proposition 4.3.10.If all annotationsm conmut esw t h m/ appearing inP are correctande, >, H) —
(o,H',dFE)and(¢/,X, H') — (o', H",dE")and H" \- dE # dF’, then there exist&l"” such thate’, ¥, H) —
(o/,H" dE") and (e, X, H") — (o, H" ,dFE).

Proof. First, note that the rules in Section 4.2.2 faithfully rettine heap effects of expression evaluation:
whenever we read a region, we record a read effect to thatr¢BivN-FIELD-ACCESS; whenever we write
aregion, we record a write effect to that regionvfDFIELD-ASSIGN); and whenever we invoke a method,
we record an invocation with all the effects that occurredrduthe evaluation of the method body {®-

INVOKE). Further, by rules NI-EPTY and NI-UNION, it is clear that two effects are noninterfering if and
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only if their component basic effects are pairwise nonfetang. Thus it suffices to prove the proposition
in the case where each éF’ anddFE’ is a basic effect.

Note that the invocation effect is recursive (invocatiofeets can appear in the effetE” ini nvokes
C. mw t hdE"). So use induction on the total number of times thavokes appears inlE anddE’. In
the base case of zero times, the result is obvious from thimteoference rules, Proposition 4.3.6, and the
semantics of read and write. In the inductive case, eittieor dE’ (or both) is an invocation effect, and
we must have used eitheryR-NI-INVOKES-1 or DYN-NI-INVOKES-2 to proveH + dE # dE'. Assume
without loss of generality thatE' = i nvokes C. mwi t h dE”. If we used DIYN-NI-INVOKES-1, then
we haveH + dE" # dE’, and by the IH all the operations that creatdd’ can be interchanged with the
operation that createtl’. Therefore the method invocation that produdétican be interchanged with the
operation that producedF’. If we used I¥YN-NI-INVOKES-2, then by Definition 4.3.9, the operations can

be interchanged without changing the resulting heap state. O
By extending this result to static effects, we obtain themsaiundness property of Core DPJ:

Theorem 4.3.11.1f T+ e: T,EFandT' ¢ : T/ E'andT' - E# F andH X <Tand(e,X, H) —
(o,H',dE) and (¢/,X, H') — (o', H",dE"), then there exist#{"” such that(e’, >, H) — (o', H" ,dE")
and(e, %, H") — (o, H",dE).

Proof. By Proposition 4.3.10, it suffices to prove thdt' - dE # dE’, and again we can assume thdt
anddFE'’ are basic. By Theorem 4.2.7, we have &) + dE C X(F) andH"” + dE' C X(E'), and by
Lemma 4.2.6, we have ()" - X(FE) # X(E’). Now consider the possibilities fatE anddE’. Again we
use induction on the total number of times thatvokes appears iniE’ anddE’. In the base case of zero

times, there are three possibilities, up to reordering:
1. dE =reads dRy, dE' =reads dR}: Obvious because pairs of reads always commute.

2. dE =reads dRy, dE' =wites dR}: By (a) together with rules DN-SE-READS, DYN-SE-
READS-WRITES, and DrN-SE-WRITES, there exists an effecteads dR orwri t es dR in X(E)
such thatd + dRy C dR, and there exists an effeat i t es dR’ in ¥(E’) such thatH dR} C
dR'. By (b) and the rules for noninterference of effect, we hatfe dR # dR'. Lemma 4.3.3 and

Proposition 4.3.4 then establish tht ; anddR} are distinct regions.
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3. dE =witesdRy, dE' =wites dR}: Nearly identical to case 2, except that onlyND SE-

WRITES is used, and both effects are covered by a write.

In the inductive case, there are a further three posséslitagain up to reordering:

4. dE =reads Ry, dE' =i nvokes C. mw t h dE": By the rules for subeffects, together with (a),
dE is covered by eithereads dRorwr i t es dRin X(F); and eitheii nvokes C. mwi t h dE"
appears i3 (E') with H” + dE' C dE" (rule Dyn-SE-Invokes-1), off” - dE” C % (E’) (rule
Dyn-SE-Invokes-2). In the first case, by ruler®-NI-INVOKES-1, we have that the covering read
or write effect is disjoint fromdE", and by the IH we have thateads Ry is disjoint fromdE”,
which gives the result, again by rulerR-NI-INVOKES-1. In the second case, the IH gives the result

directly.

5. dE =writes Ry, dE' =invokes C. mw thdE": Same as case 4, except thaf is covered

only by a write effect.

6. dE = invokes C. mw thdE", dE' = invokes C'.m'withdE": If we used rule NI-
Invokes-1 to prove that the two covering effects are noniatg, then this case reduces to the
IH. Otherwise, each of £ anddE’ is covered by an invocation effect, and the two effects are no
interfering by rule NI-Invokes-2. In this case, we have= C’, m comut eswi t hm’ € def(C),

andH" = E" # E". ThereforeH” \ dE # dE’, again by rule NI-Invokes-2.

O
Theorem 4.3.11 says that if two expressions have noninmiegfetatic effects, then their actual runtime
effects are noninterfering as well. Therefore, we can usesthtic effect information to reason soundly
about noninterference at runtime.

4.4 Extending the Language

In this section, we informally discuss how to extend Core BP@llows: (1) adding parallel constructs to

the sequential language; and (2) adding inheritance.
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4.4.1 Adding Parallel Constructs

As discussed in Chapter 3, the actual DPJ language incfuaiesac h for parallel loops and obegi n for

a block of parallel statements. We can easily add an expressibegi n( e, ¢’) that says to executeand

¢’ in the same environment, in an unspecified order, with anigibpdin at the end of the execution. We can
simulatef or each by composing expressions in parallel and evaluating each one in environmeéh}
containing the binding!, i), wherel is an induction variable defined in the scope offtloe each, andi is

a natural number. In all cases we extend the static typiregria say that for any pair of expressianand

¢’ as to which the order of execution is unspecified, then trextffofe ande’ must be noninterfering (Sec-
tion 4.3.3). It follows directly from Theorem 4.3.11 thatrallel composition of noninterfering expressions
produces the same result as sequential composition of thgeessions. This guarantees determinism of
execution regardless of the order of parallel executioriclvis exactly the result we wanted.

However, there is one subtlety here that we should not owkriBecause we used large-step semantics
to define the dynamic semantics (Section 4.2.2), therdwamefinitionno interleavings between the exe-
cutions of two expressionsande’: we either execute thene’ or e thene’. This means we essentially
get atomicity of expression execution “for free.” In a reebgram execution, there may be arbitrary inter-
leavings between the effects of parallel code sectionsiniolate these interleavings, we could use a more
complicated execution model, such as small-step sematunicaodel the global effect of each individual
step of expression execution, instead of treating theeeaipression as a unitary effect.

Notice, however, what we actually showed in the course ofipgoTheorem 4.3.11: that if expressions
e ande’ have noninterfering static effects, then the individuaiba&ffects generated by their executions are
pairwise commutative. It is therefore straightforwardtiow that if we adopted a more fine-grain execution
model (such as small-step semantics), then we could usesthenatativity of the individual basic effects
to establish the commutativity of the groups of basic effgmnerated by executirgande’. In fact, this is
essentially what we did in proving Theorem 4.3.11, just withexplicitly modeling the interleavings in the
rules for dynamic execution.

Finally, in Chapter 6, we give just such a small-step sernanmtiodel for a simpler deterministic lan-
guage. There we explore the interactions between detestigirind nondeterministic execution, so it is
important to model the parallel execution. Here, by comtraar purpose is to develop type and effect

mechanisms for noninterference. So we defer the detailatehud parallel execution to the later chapter.
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4.4.2 Adding Inheritance

Syntax and Static Semantics:We add inheritance to the syntax and static semantics of D&& as
follows. First, we extend the definition of valid types to aant for the inheritance hierarchy. We add
the typeObj ect, and we change the class definitions to the fainass C<p> ext ends 7', whereT

is a type that is valid in the environment containingc Root : *. We put a relation< on class names
that represents the class hierarchy in the obvious way;dlhymit is the reflexive, transitive closure of the
relation given byC' < C"if cl ass C<p>ext ends C'<R> € P.

Next, in order to describe the semantics of inheritance, aexirto be able to translate types, effects,
and RPLs written in terms of the parameters of a superclass tlo the subclass. To do this, we use the
parameter substitutions implied by tBet ends clauses to define@ntext translation operatdrans¢c. ¢
that rewritesparam(C') in terms ofparam(C’) if C' < C": First, if C = C’, thentransc._c/(p) = p.
Second, ifcl ass C<p>ext ends C'<R> € P, thentransc._ ¢ (param(C’)) = R. Third, if C < C' =<
C”, then

transgo._ o (param (C”)) = transg._ ¢ (tl’anSCu_C// (param (C//) ) ) R

where we extenttanss._ - in the obvious way to an operation on RPLs. We also exteants_ ¢ in the
obvious way to an operation on types and effects.

Now we just have to amend the rules for the static semantiesd¢ount for the fact that RPLs, types,
and effects may be inherited from superclasses, and thatiieth entities must be translated to the context

in which they are used:

1. To the rules for subtyping (Section 4.1.3), add the follmywules. First, every type is a subtype of
Qbj ect . Second, ifC’ < C, thenC’<R> is a subtype of”<o(trans¢r.(param(C)))>, where

o = {param(C’) — R}.

2. Methods are inherited or overridden by subclasses asva Ja the rule MeTHOD (Section 4.1.1),
check that ifC’. m overridesC. m, then (1) the parameter and return types match after amplyin
transc._ ¢ to the types appearing ifi. m; and (2) the declared effect ¢f’. m is a subeffect of

transcrc(E), whereFE is the declared effect af'. m.

3. In rule HELD-ACCESS look forT' f i n Ry € def(C’), with C < C’, and record effect eads

transc.cv(Ry); and similarly for RELD-ASSIGN. In rule INVOKE, look for T, m(T, z) E { e } €
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def(C"), with C < C’. Usetransc._ ¢ (T;.) instead off.; and similarly for7, and E.

Dynamic Semantics:To extend the dynamic semantics, we &g ect as a valid dynamic type. We also
extend the rules for valid dynamic types and subtypes asiteddn Section 4.2.3, using the extensions to
the static type rules described above. Again, we have touatdor the fact that RPLs, types, and effects

may be inherited from superclasses:

1. Inrule DvN-FIELD-ACCESS look forT' fin Ry € def(C’), with C' < C”, and record effeateads

Y(transc.—c(Ry)); and similarly for rule IYN-FIELD-ASSIGN

2. In rule INVOKE, look for T, m(T,, x) E { e } € def(C"), for C < C’, and record effeat nvokes

C'.mw thdF.

3. Inrule New, the type o’ is C<X(o(transc: o (R)))>, whereC" is the class in the type af, and

C" is the class in whose definition timew expression actually appears.

Noninterference and Soundness:We extend rule NI-Invokes-2 (Section 4.3.3) so that two @atmn
effects commute if the methods m andC. m' are declared to commute either of the methods overrides
a method that is declared to commuteormally, if m commut eswi t h m’ € def(C), then it is assumed
that C’. m commutes withC”. m’ for all ¢’ < C andC” < (C, and these facts must be guaranteed by
the implementations of subclasses(f In this sense the commutativity annotation is “inheritedhis
rule is necessary to ensure sound inference about comwilytati the presence of polymorphic method
invocation.

We extend the operatdrans . to static environments as follows. (if hi s, C<param(C)>) € T,

thentransq. (") is defined to be

{(t hi s,C’'<param(C")>)} U {(v,transcro(T))|(v, T) € T Av #thi s}

U{p Ctranscrc(R)|p C R €T}

Intuitively, we replaceC'<param(C')> with C’<param(C’)> in the binding oft hi s and translate the
RHS of all bindings and constraints to the environmen€af It is straightforward to show that for every

essential relationship (valid RPLs, types, and effectsting, inclusion, subtyping, etc.) that holdslin
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the same is true itrans.._(T") for the entities after translation lisansq/. . Lemma 4.2.1 then follows
immediately for the extended language.

Next we extend Definition 4.2.4 (instantiation of static ieowments by dynamic environments) as fol-
lows: H - ¥ < T if this is boundtoclas€ inT, this is boundtoclas€’ in¥, andHd F ¥ <
transc._(I") according to Definition 4.2.4 as given in Section 4.2.4. Tkierded definition accounts
for the fact that the class of the actual object bounthio s at runtime may be a subclass of the statically
enclosing class of the method we are executing. It is stifamigard to extend the proofs of Lemmas 4.2.5
and 4.2.6 and Theorem 4.2.7 under this extended definition.

The definitions and results in Section 4.3.1 and 4.3.2 do epénd on the extended language, so those
carry through unchanged. The proof of Proposition 4.3.@idaus once we extend rule NI-Invokes-2 as

described above. The proof of Theorem 4.3.11 then goesghrexactly as stated in Section 4.3.3.
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Chapter 5

Effect System and Language for Determinism by Default

This chapter describes DPJ’'s mechanisms for controlledetenminism, building on the effect system and
language described in the previous chapters. Section plaieg the new language mechanisms for creating
parallel tasks with possibly nondeterministic result$ngshe Traveling Salesman Problem algorithm as an
example. Section 5.2 explains the new effect system featheg cooperate with @weakly isolatedrans-
actional runtime (in our implementation, an STM) to enfotice safety properties described in Chapter 1.
Section 5.3 describes additional effect system featurasitiprove the performance of the transactional
runtime by allowing the compiler to remove unnecessary Issorgzation overhead. Section 5.4 describes
a prototype compiler implementing the techniques. Sedidndescribes an evaluation of the techniques

using three nondeterministic parallel benchmarks. Rin8lkection 5.6 discusses related work.

5.1 Expressing Nondeterminism

To express nondeterministic computations, we introdueddtowing new language mechanisms:

1. foreach._nd: We add a nondeterministic parallel loop, denotext each_nd. Thend denotes
“nondeterministic.” It is the same dr each discussed in previous chapters, except that inter-
ference is allowed between the loop iterationd of each_nd. Executing these loop iterations in

parallel therefore may permit nondeterministic results.

2. cobegi n_nd: We add a nondeterministic parallel statement compositlenpteccobegi n_nd. It

is the same asobegi n except that again, interference is allowed between thetask

3. Atomic statementsWe introduce aratomic statementvith the syntaxat om c S, whereS is a
statement. A statemeat omi ¢ S indicates thatS is to be run as ifall other concurrent execution

were suspended whilg is executing. This is called strong isolation [84, 108].

89



We also extend the effect system to enforce the safety piepatated above (including strong isolation).
The safety properties and the effect system extensionssmaesded further in the next section.

We illustrate the new language features with a running examipthe traveling salesman problem, or
TSP. TSP is the well-known problem of finding a shortest cycle weighted graph that visits all the nodes
once (i.e., a Hamiltonian cycle). TSP can be solvedbt®nch and bound searcta common algorithm
for solving optimization problems and a classic examplenf@ndeterministic computation. A branch and
bound algorithm divides the search space into sets of pbisg(the “branch”) and “bounds” each set by
estimating how far it is from the optimization goal. Branstibat are no better than previously explored
ones are discarded, while ones that are potentially betesxplored.

Figures 5.1-5.3 show simplified Java-like pseudocode fé&. F8r now we discuss only the mechanisms
for task creation and synchronization; the region and effi@notations for proving safety properties are
discussed in the next section. The global data structuiress(lL—13) include a weighted graph that is the
input to the program; a priority queue for storing the patbimyy explored; and a “best” (i.e., shortest) tour,
which is refined as the computation progresses, eventuallyng the answer. The main computation loop
(lines 15-23) illustratefor each_nd. It iterates in parallel over several worker tasks. Eack temerates
a prefix to search (using the pseudocode in Figure 5.2) amdhsssit (using the pseudocode in Figure 5.3),
until there are no more prefixes to search. The prefix geoeraticurs in isolation because of theoni ¢
statement at lines 18—-20 of Figure 5.1.

Figure 5.2 shows the code for generating a prefix. If theraysuseful work remaining on the priority
gueue, the worker task removes a prefix from the queue. If texpalready contains enough edges, it
returns that prefix to be solved. Otherwise, it generates prefixes by adding one edge to that prefix,
putting it on the priority queue, and repeating (lines 8-18ptice that all the worker threads are calling
gener at eNext Pr efi x (and therefore reading and writing the priority queue) corently. Atomic
access to the queue is therefore essential for correctness.

Note that while the calls tgener at eNext Pr ef i x are effectively serialized, each worker can start
its call tosear chAl | Tour sWt hPr ef i x as soon as its call tgener at eNext Pref i x is done, in a
pipelined manner. This pattern can achieve good speedupside most of the work in this code is done in

sear chAl | Tour sWt hPrefi x.
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/+* Regions for partitioning data */
regi on ReadOnly, atomic Mitabl e;

/* Graph we are working on; inmmutable */
Graph<ReadOnl y> graph in ReadOnly = the TSP graph;

[+ Priority queue for tour prefix paths =/

final PriorityQueue<Path<ReadOnly>, Mitable> priorityQueue =
new PriorityQueue<Pat h<ReadOnl y>, Mitabl e>();

priorityQueue. add( new Pat h<ReadOnl y>(start Node)) ;

© © N o o~ W N B

PP
F o

12 [* The answer =/
3 Pat h<ReadOnl y> best Tour in Miutable = infinite path;
14

s foreach_nd(int i in 0, NWORKERS) {

i

-

16 Pat h<ReadOnl y> prefix = null;

17 while (true) {

18 atomic { prefix = generateNextPrefix(); }
19 if (prefix == null) break;

20 }

21 }

Figure 5.1: Global data and main computation for the TrageBalesman Problem

1 Path generateNext Prefix() reads ReadOnly wites Mitable {

2 while (!priorityQueue.iskEnpty() &&

3 priorityQueue.best().length() < bestTour.length()) {
4 Pat h<ReadOnl y> prefix = priorityQueue.renoveBest();
5 i f (prefix.nodeCount() > PREFI X CUTOFF) {

6 return prefix;

7 } else {

8 for (each edge edge that can be added to prefix
9 whi |l e stayi ng under best Tour.length()) {

10 Pat h<ReadOnl y> newPrefix =

1 new Pat h<ReadOnl y>(prefix, edge);

12 priorityQueue. add( newPrefi x);

13 }

14 }

15 }

16 return null;

17 }

Figure 5.2: Generating the next tour prefix
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voi d searchAl | Tour sWt hPrefi x( Pat h<ReadOnl y> prefi x)
reads ReadOnly wites atom c Miutable {
for (each Hamilton cycle tour in graph with prefix prefix) {
atom c {
if (tour.length() < bestTour.length()) {
best Tour = tour;

}

Figure 5.3: Searching all tours with a given prefix

Figure 5.3 shows the code for searching tours starting wgiiven prefix. The construction of the tours
is read-only on the graph, so no synchronization is needeatfiess to the graph. The only synchronization
needed is for the concurrent read-modify-write accesBest Tour, at lines 5-7, which also must be

atomic.

5.2 Enforcing Safety Properties

As discussed in Chapters 1 and 2, our goal is to enforce, apit®iimme, four safety guarantees for the
extended language with nondeterminism: (1) freedom frota dzces; (2) strong isolation for statements
markedat om c; (3) sequential equivalence for deterministic paralletstoucts; and (4) determinism by
default. We now discuss several extensions to the detesticigiffect system described in Chapters 3 and 4
that allow these four properties to be enforced.

Data race freedom and strong isolation:We use the following strategy to ensure both data race fraedo

and strong isolation:
1. Atransactional runtime guarantees at least weak isolatiat om ¢ statements.

2. The effect system ensures that for any pair of conflictiegnory accesses, both of the accesses occur
insideat om c statements. This requirement ensures strong isolatiaause no conflicts between
unguarded memory accesses aidmi ¢ statements are allowed. It also ensures race freedom,

because no conflicts between pairs of unguarded accessafoared.

Part 1 of our strategy is familiar from previous work on laage mechanisms supported by transactional

runtimes [62, 8, 65, 44]. Part 2 is new, and it leads to twoifitant advantages. First, our strategy guaran-
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tees strong isolation even if the underlying implementagioarantees only weak isolation. This property
is very important, because it allows our language to be lomltop of a standard software transactional
memory (STM) implementation. Typically, STM guaranteeswesolation, because the overhead of guar-
anteeing strong isolation in software is prohibitive. Setoour strategy prohibits all data races. Even TM
systems with strong isolation generally allow data racds/iéen pairs of accesses, both of which occur
outside any transaction.

Effect system extensionko ensure that pairs of conflicting accesses both occurargidm c statements

(part 2 above), we extend the DPJ effect system describetiapt€r 3 as follows:

1. Internally, the compiler distinguishes read and wrifeas as eitheatomic (meaning the effect oc-
curred inside aat oni ¢ statement) onon-atomigmeaning the effect occurred outside atyoni ¢

statement).

2. To support sound reasoning about atomic effects acrogsoh@wocations, we extend the syntax of
DPJ’s method effect summaries to denote whether effectatamsic. An atomic effect is denoted by
writing the keywordat om ¢ before the RPL. For example, an effeati t es Ry, atom ¢ R,

denotes a non-atomic write 1, and an atomic write td,.

3. We extend DPJ’s rules for subeffects so a non-atomic teff@eers an atomic effect, but not vice

versa.

4. In checking & or each_nd or cobegi n_nd statement, interference is allowed between the com-
ponent parallel tasks only between pairs of effects thategheer mutually noninterfering or both

atom c.

Together, these rules ensure that any pair of conflictingssss both occur iat om ¢ statements. The
first three rules ensure that atomic effects are reporteg where there is, in fact, an enclosiag omni ¢
statement. The fourth rule disallows interference withataimic effects, i.e., without enclosirag oni ¢
statements.

TSP exampleThe TSP example discussed in the previous section illestritie effect system extensions.

As shown in line 2 of Figure 5.1, two regions are used to hotddata:ReadOnl y for fields that will not
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be modified during the computation, aktlt abl e for those that will be. The type

PriorityQueue<Pat h<ReadOnl y>, Mit abl e>

of the priority queue indicates that the queue containsobbjef typePat h<ReadOnl y>, and that the
internal data used to represent the queue itself is in redidrabl e. Here are examples of how the four

rules stated above are used to check the correctness of EhexgE®nple:

1. In Figure 5.3, the read effect on regi®@adOnl y is not atomic, because it is generated in the
test condition of thé or loop, outside that oni ¢ statement. However, the write effect on region
Mut abl e is atomic, because it is generated by the assignment to theblebest Tour at line 6,

inside theat om ¢ statement.

2. The effect summary in line 2 of Figure 5.3 says that theengftect onVut abl e is atomic (but the

read effect orReadOnl y is not).

3. It would be permissible (but conservative) to rewrite ¢fffect summary in line 2 of Figure 5.3 as

reads ReadOnly wites Mitabl e,

becausew i t es Mut abl e coverswri t es at om ¢ Mt abl e, which is the actual effect gen-
erated in line 6. However, it would be a compile-time erromtite r eads at om ¢ ReadOnly,

because the effect dReadOnl y is not atomic.

4. In thef or each_nd at lines 15-23 of Figure 5.1, the effects Be@adOnl y are all reads, and
Mut abl e andReadOnl y are distinct regions. Therefore, the only interfering effeacross itera-
tions of the loop are the atomic writeslttait abl e generated by the calls gener at eNext Pref i x
andsear chAl | Tour sWt hPrefi x. The first call occurs inside &t oni ¢ section, so it gener-
ates atomic effects. The second call occurs outside an @t#ction, but as noted above, the write
effect in the signature afear chAl | Tour sW t hPr ef i x is marked atomic (line 2 of Figure 5.3.
On the other hand, if that oni ¢ statement at line 18 of Figure 5.1 were removed, or the wifitee
in line 2 of Figure 5.3 were made non-atomic, then a comte-terror would occur in checking the

f or each_nd loop.
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Programmer benefitTogether, race-freedom and strong isolation convey tHewaig benefits to the pro-

grammer in this language:

1. Sequential consistencBecause there are no data races, the Java memory modeltgeararsequen-
tially consistent execution. That means the observed ¢xecis consistent with program order (i.e.,

the order of execution defined by the program text).

2. Reduced interleaving®ecause code occurring outsidearon ¢ statement is either noninterfering
or not parallel by definition in this language, a program’s@#ion is determined by only two things:
(1) the actual order of execution of concurrent, interfgam om ¢ statements, and (2) program order.
Further, program order does not introduce any schedulendepee over and above (1). Therefore,
the only source of non-equivalent interleavings is fronfed#nt orderings of concurrent, interfering

at om c statements

The first property is important because it is well known thequentially consistent executions are much
easier to reason about than non-sequentially consistest dilme second property is important because many
programmers (and testing tools) analyze program behayicgdsoning about the possible interleavings (or
schedules) of parallel operations. Reducing the effectiveber of interleavings makes such reasoning
easier.

Sequential equivalence for deterministic constructs:As discussed more formally in the next chapter,
a basic property of DPJ as described in Chapter 3 isdbatgi n andf or each behave exactly like a
program-ordered sequential composition of their compbtaesks. We wish to preserve this property for the
extended language that includesbegi n_nd andf or each_nd. We view this property as essential for
allowing local, compositional reasoning about the inteoas between deterministic and nondeterministic
operations.

To guarantee this property, we incorporate the following tules in the type system:

1. Interference is allowed only between parallel branchea foor each_nd or cobegi n.nd. No
interference is allowed between parallel branchesaiflaegi n orf or each, even if the interfering

accesses are both guardeddtyom ¢ sections.

2. Inside & or each_nd orcobegi n_nd, interference is allowed betweercabegi n statement and

other parallel code only if the entieobegi n statement is enclosed in ah oni ¢ statement. This
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ensures that everyobegi n executes as if it were an isolated, sequential statemeat iegide a

f oreach_nd orcobegi n_nd.

The motivation for the first rule is fairly obvious. For exalmpwe wish to disallow code like this:

X =0
cobegin {
atomc x =1; // S1
atomc x = 2; /] S2
}

Even though the writes to variable are enclosed imt om ¢ statements (so there is no data race), the
order of execution of the statemer& and S2 is nondeterministic, as is the final result. The point of
cobegi n is to indicate deterministic composition, so we just dsallsuch interference. In the typing
rules, the rule for checkingobegi n/f or each is then exactly the same as in Chapter 3, while the rule
for cobegi n_nd/f or each_nd is as stated above (interference is allowed, but only whesedgd by
at om c statements). The next chapter gives these rules formally.

The motivation for the second rule is perhaps more surgisiio see the motivation, consider the

following program:

z = 0;
cobegi n_nd {
cobegin {
atomc x = z; // S1
atomcy =2z; /] S2
}
atomc z = 1; /1l S3
}

In our view, this program has a serious problem: it destrbgsproperty we want to carry over from the
deterministic language, i.e., thabbegi n behaves like a program-ordered sequential compositiots of i
component tasks. According to the semanticeobegi n_.nd andcobegi n, the statements could be
executed in the orde®2, S3, S1, producing the resulk = 1, y = 0. This result is impossible for a
sequentially consistent execution of the program obtaimedrasing theobegi n: for that programS1
must occur befor&2; and so ifx equals 1, the$3 must have executed befogd and S2, andy must equal

1 as well. In effect, the presence of the interfering writez tm the othercobegi n_nd branch exposes
the fact that the order of execution 81 andS2 was different forcobegi n than it could be for ordinary

sequential composition.
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Because we want programmers to be able to reason awiutgi n as program-ordered sequential
composition, we disallow this program. Specifically, weuieg that theentire cobegi n statement ex-
ecute as an isolated operation (as if it were surroundedegntoy at omi ¢) whenever it occurs inside
cobegi n.nd. We express this requirement in the effect system by simiglydting” anyat om c state-
ments occurring inside theobegi n, for purposes of computing the effect of the entir@begi n. For
example, in the fragment above, thebegi n branches generate atomic effectsxqly, andz at the point
of the assignments. However, when those component effeetscaumulated into the effect of the entire
cobegi n, they are transformed into non-atomic effects, so the effethe entire cobegin is aon-atomic
read ofz and a pair ofnon-atomicwrites tox andy. In particular, because the read ofs non-atomic
in the first branch of theobegi n_nd, the conflicting write taz in the second branch is disallowed (even
though it is atomic). Again, these rules are stated moreditiynm the next chapter.

Notice the following (slightly different) programs that eogrammemaywrite in our language. First,
if the entirecobegi n is enclosed in amt oni ¢ statement, then the effects of thebegi n are made
atomic again, and the composition is allowed:

z =0
cobegi n_nd {

atomic cobegin { x =z; y =12z; }
atomc z = 1;

This code is permissible, because &teom ¢ statement in the first branch of tcebegi n_nd guarantees
that thecobegi n executes in isolation, despite the interference with ticerse branch.
Second, a programmer who truly wants both interference atediéaving can write @obegi n_nd
instead of & obegi n:
z =0
cobegi n_nd {

cobegin_nd { atomic x = z; atomicy = z; }
atomic z = 1;

Because the inner parallelism is createccloypegi n_nd, and notcobegi n, the effects ox, y, andz are
reported as atomic effects to the outerbegi n_nd, and so the interference is allowed.
Determinism by default: The typing rules discussed above also guarantee the folipprioperty: evalu-

ation of any isolated statement that does not dynamicakg@be & or each_nd or cobegi n_nd yields
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a fixed output heap state for a fixed input heap state, up teenéial details like the addresses of objects
on the heap. From the discussion above, an isolated statésr(@hanyat omi ¢ statementcobegi n, or

f or each; or (2) any statement not occurringfior each_nd or cobegi n_nd (including the entire pro-
gram); or (3) any statement that does not dynamically exemuht om ¢ statement (because if a statement
executes n@t oni ¢ statement, then the type system ensures that it runs withtaderence from any
other parallel statement). We call this propeaifgterminism by defaylbecause it says that nondeterminism
occurs only where explicitly requested ¥iar each_nd orcobegi n_nd. We view this property as essen-
tial to any language that allows the composition of deteistimand nondeterministic parallel constructs.

This property is stated and proved formally in the next chapt

5.3 Performance: Removing Unnecessary Barriers

To enforce isolation ot om ¢ statements, we elect to use a Software Transactional Me(8diyl) run-
time system [63] because it provides weak atomicity withpdérprogrammer annotations, better compos-
ability than locks, and potentially better scalability tHacks because of optimistic rather than pessimistic
synchronization. One key drawback of STMs is the overhea&dtdtransactional read and write barriers
for every load or store to shared data (e.g., see [129]). elbasriers are small sections of code, often
automatically inserted by a transaction-aware compilat invoke the STM runtime to implement some
transactional concurrency control protocol. The barrgens either read and write shared memory directly
(so-calledin-place updateéSTM) andundoall transactional operations when a transaction abortsheyr
can buffer updates into a private data structure (so-calieét bufferingSTM) and apply all the buffered
changes into shared memory when a transaction successtutiynits. In both cases, barriers can incur
significant overhead, and minimizing them is essential &fgrmance.

The DPJ effect system can help with this problem. Althoughprpose of the system to this point has
been to enforce safety guarantees such as determinism @néreadom, we observe that we can leverage
the DPJ effect system to remove STM barriers that are notssacg because the accesses guarded by the
barriers can never cause a transactional conflict. To doweasneed some slight extensions to the DPJ
effect system. As described to this point, the effect systedesigned to report interferenag¢ the points
where parallelism is createde.g., at acobegi n or cobegi n_.nd. Effects are generated at the point of

use, then propagated back to the parallel task creatiomeienethod effect summaries. However, to safely
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remove TM synchronization, we must ensure that the coder maueses interference in any use. Thisis a
slightly different property, as illustrated in Figure 5hat figure shows a simple program with a method
set Xthat atomically updates a variabte a methods et XY that atomically updates variablgsandy, and
a main method that callset X andset Y in parallel. If the whole program is represented in the figure
then the write toy in line 16 needs no synchronization, because it does naféngewith anything in the
cobegi n_nd atlines 5-8. However, there is no way to tell that from theyboidmethods et XY, because it
is a property of theisesof the method. Further, nothing in the effect system desdrib this point encodes
this property.
cl ass BarrierRenoval {

region X Y,

int xin X yin,;
void work() {

cobegi n_nd {
set X(1);
set XY(0);
}

}

void setX(int x) wites atomc X {
[+ This wite needs synchronization */
atomc this.x = X

}
void setXY(int x, int y) wites atomic X, Y {
atom c {
/* This wite needs synchronization */
this.x = x;
[+ This wite does not =/
this.y =vy;
}
}

}

Figure 5.4: lllustration of the problem of barrier remové¥hether the writes in lines 11, 17, and 19 need
synchronization depends on how they are used. Here, theéruless 6—7 dictate that lines 11 and 17 need
synchronization, but line 19 does not.

Atomic regions: Fortunately, we can encode this information with some sinegkensions to the effect sys-
tem. We extend the effect system to distinguish between tadslof regions: those that may interfere (and
so need barriers everywhere) and those that cannot (andrsat deed synchronization barriers anywhere).
We call the first kind of region aatomic region and the second kindreon-atomic region Atomic regions

are not limited to access inside an atomic statement: baotltskbf regions can be accessed either inside or

outside an atomic statement. However, only access to ategiens is guarded by the transactional runtime
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cl ass Atom cRegions {
region atomc X, Y;
int xin X yin,;
void work() {

cobegi n_nd {
set X(1);
set XY(0);
}

}

void setX(int x) wites atomc X {
atomic this.x = x;

}
void setXY(int x, int y) wites atonmic X, atonmic Y {
atom c {
this.x = x;
this.y = vy;
}
}

—

Figure 5.5: Illustration of atomic regions.

inside an atomic statement.

We extend the syntax of region declarations so that the anogrer can put the keyworat om ¢
before the region name, indicating that the declared regi@bomic. This syntax is illustrated in line 2 of
Figure 5.5 (for regiorX) as well as line 2 of Figure 5.1 for regidvut abl e in the TSP example.

We also slightly change the rules for atomic effects from twhadescribed in the previous section:
now, only operations on atomic regions generate atomictsffeOperations on non-atomic regions never
generate atomic effects, even inside a transaction. Fongbea in Figure 5.5, only regioiX is declared
atomic (line 2), so the write to regio¥ in line 16 generates a non-atomic effect, even though it @ccu
inside an atomic statement. Notice that the effect sumnralipné 13 now reports the write effect ohas
non-atomic, as it must according to the rules stated in theigus section. Similarly, in the TSP example,
the read of regiorReadOnl y in Figure 5.3 generates a non-atomic effect, even though iitside the
at oni c block at line 4. The write to regioRut abl e generates an atomic effect.

These rules allow the compiler to perform the following optiations for transactional operations on

non-atomic regions:

1. A read operation on a non-atomic region never interferigs anything, and has no effect on the

heap. Therefore, it needs no special TM code generatiot; #t@dn be implemented as an ordinary
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read operation. This optimization completely eliminaté$S&M overhead for transactional reads on

non-atomic regions.

2. A write operation on a non-atomic region also never iete$ with anything, so it cannot cause a
transaction abort and does not need any synchronizatiom.eXample, in a TM that uses write-
versioning, the version for that variable need not be uptlad@d in a TM that acquires locks before
writing, no lock need be acquired. However, because theosimg transaction could be aborted, in a
TM implementation that uses in-place writes and undo logigtihe old value must still be logged, so
that it can be restored on abort. In a TM that uses write buaffethe new value must still be written

to the write buffer.

For example, in Figure 5.5, the compiler can avoid updatingrsion or taking a lock for the write in line 16.
In the TSP example, no TM overhead at all is generated by au/teeregiorReadOnl y (for example the
read access to the TSP graph in line 3 of Figure 5.3). Whike dptimization does not remove all TM
overhead for writes, it still produces substantial savibhgsause (1) transactional reads often outnumber
transactional writes; (2) locking and versioning représesubstantial part of the TM overhead on writes;
and (3) even in cases where there are no actual conflictscessey TM locking or versioning can lead to
false conflicts due to hash collisions, causing more abodsrapeding scalability. We will say more about
the performance impact of the optimizations in Section 5.5.

Atomic region parameters: Because region parameters function as RPLs, we also let ieedeclared
atomic or non-atomic. Then the same code generation rulgly ag discussed above: reads and writes
on non-atomic region parameters generate non-atomictgffand transactional barriers are removed or
simplified for accesses to non-atomic region parameters.

However, to ensure soundness, we must be careful about tdr@dhon between region names and
region parameters. To see the problem, consider the cod@imeF5.6. Regiorr is declared atomic
(line 2), so the effects on in lines 7—8 are also atomic, and are allowed to interferewéler, inside the
body ofset X (lines 11-13), parametd® is not declared atomic, so the write in line 12 does not get any
synchronization barrier, even wheet Xis used in a transaction, as in lines 7-8. (As explained mdhe f
in the next section, when a method is used in a transactiemcioned, and barriers are inserted for all its
accesses to atomic regions.) Therefore, this code canroartectly compiled according to the rules stated

above.
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cl ass Atom cRegi onPar ans<regi on R> {
atom c region r;

int xinR
voi d wor k( At om cREgi onPar ams<r > arp) ({
cobegi n_nd {

/* wites atomic r */
atom c arp.set X(0);
/* wites atomc r =/
atomic arp.setY(1);
}
}
void setX(int x) wites R {
[+ wites R */
this.x = x;

—

Figure 5.6: Inconsistent bindings of region names to regamameters. As explained in the text, this code
is disallowed.

The solution we adopt is to disallow this code. Specificalg require that bindings of regions to
parameters be consistent: only atomic regions may be bauaidinic region parameters, and similarly for
non-atomic regions and parameters. This rule ensureshi@atctual runtime region bound to a parameter
is atomic if and only if the parameter is declared atomic. réfare, the compiler can soundly use the
parameter declaration to do code generation.

This solution does impose one important limitation. If agreommer wishes to use a class region
parameter as an atomic region in some context and a non@tegion in some other context, then the
class must beloned the programmer must create two copies of the class, onethéthtomic parameter
and one with the non-atomic parameter. A similar limitategpplies to method region parameters. An
alternative approach is to have the compiler automatiaddipe the classes and methods, similarly to what
C++ already does for templates. This would complicate th@ementation, and we have not done it for the
prototype implementation discussed in the next sectionit boes not raise any significant technical issues.

An alternative would be to introduce polymorphism over ileeta class region parameter is atomic.

5.4 Prototype Implementation

To implement the nondeterminism support, we extended th& dmpiler described in Section 3.5. We

implemented atomic blocks using the Deuce STM library [4]e Uged the well-respected Transactional
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Locking Il (TL2) algorithm [44]. TL2 is a write-buffering (e., lazy versioning) algorithm with optimistic
reads. Deuce supports concurrency control at the objedtléeél, and it uses a lightweight custom reflec-
tion mechanism to access object fields inside transactions.

We selected this STM system for pragmatic reasons of easamémentation, and because it im-
plements a well-known high-performance STM algorithm. Veedhnot attempted to maximize absolute
performance in our implementation; it could probably betioved by using a different STM system, such
as one integrated with the JVM. Our method is applicable herotypes of STM systems and algorithms
(including those utilizing in-place updates).

For each atomic block, the compiler generates code to ex¢oaitbody of the atomic block as a transac-
tion, retrying until the transaction commits successfulliested atomic blocks are flattened. Methods that
are transitively callable within atomic blocks are clongdrsions containing barriers are used when they
are called within atomic blocks. Within atomic blocks, thempiler inserts normal read and write barriers
for accesses to fields in atomic regions. As discussed ingebt3, the compiler omits barriers for read
accesses to non-atomic regions, and it generates loggigdaarriers for write accesses.

We modified the TL2 implementation in Deuce to support thggarozed logging-only barriers. How-
ever, because TL2 is a write-buffering algorithm, we woldgidnto use read-barriers to obtain correct values
in the read-after-write cases. To avoid read barriersadptiwe modified the algorithm to perform in-place
updates for these locations, and we maintain a separatelogdmrevert the effects of such updates in case
the transaction aborts. Reads to such locations do not reggdrs because they can now obtain their values

directly from the original memory location.

5.5 Evaluation

The ideas presented in this thesis raise four key questmmexperimental investigation: (1) Can the lan-
guage express nondeterministic algorithms in a naturaPw@y Can the algorithms expressed in the lan-
guage give good performance? (3) How effective is the ogaition of STM barriers? (4) What is the
annotation overhead of the language?

We used four nondeterministic algorithms to evaluate tlypsestions: two different versions of TSP,
Delaunay mesh triangulation from thenestar Benchmarkg], andOO7, a synthetic database benchmark

that has been used in previous studies of parallel perfaxenf27, 108]. These codes are discussed further
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below.

5.5.1 Expressing Parallelism

Traveling Salesman Problem: We studied two versions of the TSP algorithm, which we ¢&P-PQ
andTSP-R. TSP-PQ is the algorithm described in Section 5.1. As dsedishere, the algorithm proceeds
in two phases: the first phase breaks the problem up into shlgons and adds them to a priority queue,
and the second phase concurrently removes items from theeqral processes each one using sequential
recursive search. The priority queue orders the work, satioae promising subtrees are explored first.

TSP-R is a variant that eliminates the priority queue ang useursion to express the entire algorithm.
At each level of the tree, the algorithm computes a bounddohesubtree and compares the bound against
the global current best tour. Bounds that are definitely ritebéhan the current best are excluded, while
bounds that may be better are explored recursively. Thesiecuoccurs in parallel until a specified depth
of the tree; in our studies we used a depth varying with thefdge number of threads. TSP-R is a simpler
algorithm than TSP-PQ, but it potentially suffers from mooatention, as the global best tour must be read
before every recursive descent into a subtree to avoid Brgléoo many bad paths. By contrast, because
TSP-PQ uses a priority queue to order the paths, it can readltibal best tour less often (once per tree
level).

We adapted both versions of TSP from code that was used ifopsestudies of STM performance [108,
107]. Our TSP-PQ code uses the identical algorithm to thgir@i code, and expresses the parallelism in
the same way. The original code had a data race, and we addeextra atomic block to eliminate that
race. Our TSP-R code is a transformation of TSP-PQ that mdites the priority queue, checks the bound
at each level of the tree, and parallelizes the recursion.

Delaunay Mesh Refinement: This code uses Chew’s algorithm [36, 74] to find and elimiriaid tri-
angles,” i.e., those that do not satisfy some quality cairgtfrom a Delaunay triangulation of a mesh of
points. The program is nondeterministic since differewlecs of processing of bad elements lead to differ-
ent meshes, although all such meshes satisfy the qualistred@mis [36]. The program use$ ar each _nd
loop, and each iteration of the loop spawns a new worker thfaamost one per core). Each worker thread
has a private worklist of bad triangles. In each iteratiothefworklist loop, the worker selects one bad tri-

angle from the work list, forms @avityaround it, re-triangulates the cavity, and adds any new fistgies
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back to the worklist. Cavity finding and re-triangulatingdecsections access the shared mesh data structure
and are enclosed in atomic blocks.

0O07: 007 simulates a number of clients, each performing a fixedbeurof queries on an in-memory
database. Each query is enclosed in an atomic block. Therpwihce metric is the throughput (queries
per unit time), and we measure how this scales by varying tingbier of clients while keeping the number
of queries performed by each one constant. The program uses @ach_nd loop, with one iteration
corresponding to each client. We configured it to use a nurabelients equal to the number of worker
threads, so there is always one thread per client. Thusptakamount of work performed is proportional
to the number of threads.

Summary: We successfully expressed all the parallelism that did setdata races in these four nonde-
terministic algorithms. As discussed above, we eliminaedce in TSP-PQ that was presumably there to
avoid synchronization; we could have also written TSP-Rhwitsimilar race. The four codes do not use
any deterministic algorithms but such algorithms do nouireny runtime performance overheads in our
language; such overheads are dominated by that of atomiorsedn nondeterministic components. We

studied the performance and expressivity of the languageef@rministic algorithms in Chapter 3.

5.5.2 Performance

To evaluate performance, we measured the self-relativedsipe(i.e., the speedup compared to running the
transactional code on one thread) achieved by the threescalle focused on self-relative speedup rather
than absolute speedup because (a) optimizing the codeagiemefor atomic statements has not been a
focus of this thesis, and (b) the Deuce STM, although usingaa glgorithm, lacks many many essential
performance features of a high performance Java STM [10¢€]f-r8lative speedups have the effect of
“factoring out” some of the performance impact of the STM lempentation while capturing the scalability
of the benchmarks.

We ran and measured the codes on a 24-core system using feliXeon E7450 processors (each
with six cores), running Windows Server 2008. Figure 5. /mghthe self-relative speedups with barrier
optimizations enabled, using running times for Delauna/B&P, and throughput scaling for OO7. Because
the runtimes are nondeterministic, we averaged 5-10 rureafth data point, using an interquartile method

to exclude a few extreme outliers. For both TSP variants, seduthe one-thread version of TSP-PQ,
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which was the faster of the two, as the baseline. Both vessadm SP show good scaling, and OO7 shows
moderately good scaling, throughout the range of numbetisreddst we examined. TSP-R shows better
(superlinear) speedup for smallerthis is because the parallel algorithm is very efficienthattrange: it
rules out subtrees quickly, and so visits only aboit of the tree nodes at = 2 compared tat = 1.
However, the scaling curve for TSP-R flattens out axreases, most likely due to higher contention than
TSP-PQ.

The speedup curve for Delaunay is poor: it flattens out anchiesaonly 3x on 22 threads. We profiled
the code to understand the source of this behavior and titticettie methody st em i denti t yHashcode()
in the JVM. This standard Java function is extensively usddeauce to index into lock tables. We observed
that the time spent in this function grows with the numberwéads. In Delaunay, which has large trans-
actions, this overhead negatively affected the speedwg cilihis problem can by solved by modifying the

JVM, but we leave that (and other optimizations &roni c) to future work.
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Figure 5.7: Self-relative speedups. For OO7, we scaled riauat of work with the number of worker
threads, and measured speedup based on throughput scalinbdr of queries done per unit time). The
barrier optimization was enabled for all of these benchmark

5.5.3 Impact of Barrier Elimination

We compared the performance of two versions of the paraild or each benchmark: with and without the
barrier simplification optimization for non-atomic regsnFigure 5.8 shows the improvement in running
time for the optimized code compared to the unoptimized cdéigure 5.9 shows the reduction in the

number of dynamically-executed barriers due to our opttigns.
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Figure 5.8: Ratio of optimized runtimes (with barrier elivation) to unoptimized runtimes (without barrier
elimination). A value lower than 1 means the optimizatiocréased performance.
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Figure 5.9: Reduction in barriers due to optimizationswihg the proportion of barriers from the unopti-
mized version that are eliminated entirely, simplified t@-mly write barriers, or that remain as full barriers
in the optimized version, for each of the three benchmarkis &i7, 12, and 22 worker threads.

The optimization has a substantial impact on performancéhfee of the four benchmarks (TSP-PQ,
Delaunay, and OO7). The performance improvements coerglatl with the barrier reductions. The op-
timizations give essentially no improvement for TSP-R,caese the transactions are very short (reads and
read-modify-write operations on the best tour). As a red)lthere are few if any barriers to remove; and
(2) transactional overhead is not a significant componetiteodverall runtime. On the other hand, TSP-PQ,
007, and Delaunay use longer transactions, providing mgpertunities for reducing overhead.

Our optimizations can eliminate barriers both by actuadijmoving barrier operations on certain state-
ments and also by reducing the number of times that trasecinust be retried. The latter effect occurs
because removing unnecessary barriers reduces the nufifabseoconflicts incurred by the STM system.
As shown in Table 5.1, this effect is more pronounced witgdamumbers of worker threads, so our op-

timizations not only reduce scalar overheads but also imgszalability. For example, in Delaunay, the

107



Delaunay 007

threads| opt | unopt| opt [ unopt
2 0.999| 0.944| 0.944| 0.932
3 0.975| 0.848| 0.877| 0.872
4 0.998| 0.810| 0.822| 0.560
7 0.993| 0.647| 0.700| 0.210
12 0.996| 0.405| 0.539| 0.100
17 0.995| 0.291| 0.442| 0.071
22 0.994| 0.244| 0.369| 0.071

b

Table 5.1: Ratio of committed transactions to started &etisns for Delaunay and OO7. Lower numbers
indicate more aborted transactions. For both versions & alBnumbers are 1.000.

Total  Annotated Region Effect
Program | SLOC SLOC Decls RPLs Params Summ.
TSP-PQ 433 77 (17.8%) 2(2) 101(4) 6(2) 14/20
TSP-R 200 34 (17%) 2(2) 42(4) 2(0) 6/12

007 1570 105 (6.7%)  4(1)  76(7) 6(0)  52/104
Delaunay| 1994 302 (15.1%) 3(1)  374(3) 21(7) 165/216
Total | 4197 518(12.3%) 11(4) 593(18) 35(9) 237/352

Table 5.2: Annotation counts for the four benchmarks. Inrtédle columns, the numbers in parentheses
represent the number of annotations markéadni c. In the last columny/y means ofy total method
definitions in the program; were annotated with effect summaries.

optimization changed this ratio from 0.944 to 0.999 on 2ddsebut from 0.244 to 0.944 on 22 threads.

5.5.4 Annotation Overhead

Table 5.2 provides a quantitative measure of the annotatenhead of writing the four benchmarks in
our language. Column 1 after the vertical bar shows the tataiber of non-blank, non-comment lines of
source code, counted Isy occount . Column 2 gives the count of annotated lines, as an absolutder
and as a percentage of the total lines. The following thréenmas show the number of region declarations,
RPLs (including arguments tion, arguments to types and methods, and arguments to effecharies),
and region parameters. The number of annotations makedi c is shown in parentheses after the main
number. The last column shows the number of effect summbeiese the slash, and the number of method
definitions after the slash.

While the average number of annotated lines (12.3%) is maatdtrwe believe it is not unduly high, given
the strong safety properties of the programming model. Amiimprior work [23], most of the RPL annota-

tions were arguments to types. The overhead could be redyciederring some of the annotations [122],
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but we leave that for future work.

Our approach does impose the limitation that if a programwishes to use a class region parameter
as an atomic region in some context and a non-atomic regisarite other context, then the class must be
cloned the programmer must create two copies of the class, onethatlatomic parameter and one with
the non-atomic parameter. The cloning is required becaitfeeesht barriers must be generated for methods
of the class that operate transactionally on the paramaégpending on whether the region bound to the
parameter is atomic. The cloning could be done automatibglthe compiler, similarly to what C++ does
for templates. While we have not implemented this approaghbelieve it does not raise any significant
technical issues.

In the benchmarks we studied, only Delaunay required clesgng. In Delaunay, we needed both

atomic and non-atomic versions of the list and map strustused in the benchmark.

5.6 Related Work

We group the related work into five categories: type and effgstems; language support for STM correct-
ness; compiler and runtime support for STM correctness;pidemand runtime support for optimizing STM
overheads; and general work on nondeterministic paraitegjramming models.

Type and Effect Systems: Several researchers have described effect systems facenfa@ locking
discipline in nondeterministic programs that preventsadates and deadlocks [24, 6, 68] or guarantees
isolation for critical sections [52]. Matsakis et al. [B&vVe recently proposed a type system that guarantees
race-freedom for locks and other synchronization contrusing a construct called an “interval” for ex-
pressing parallelism. While there is some overlap with oarkwn the guarantees provided (race freedom,
deadlock freedom, and isolation), the mechanisms are \v#gyant (explicit synchronization vs. atomic
statements supported by STM). Further, these systems gwawatle determinism by default. Finally, there
is no other effect system we know of that provides both raeedomand strong isolation together.

STM Correctness (Language): STM Haskell [64] provides an isolation guarantee, but foruaep
functional language that uses monads to limit effects tardresactional store, unlike our imperative shared-
memory language. Moore and Grossman [91] and Abadi et aligéltypes and effects to guarantee strong
isolation for an imperative language, but their languagesnit races where neither access occurs in a

transaction. Finally, none of these languages allows bratistictional and non-transactional effects to the
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same memory, as our language does.

Beckman et al. [15] show how to use a form of alias controletbdiccess permissior[26] to verify
that the placement of atomic blocks in a threaded prograpents the invariants of a specification written
by the programmer — for example, that a condition is checketlacted upon atomically. This approach
is complementary to ours: we provide guarantees of racedrae strong isolation, and determinism by
default for all programs in our language; on top of that ondacheck that additional programmer-specified
invariants are satisfied.

STM Correctness (Compiler and Runtime): Several STMs guarantee strong isolation by preventing
interference between transactions and non-transactewwdsses at runtime. Most of these systems use
a combination of sophisticated static whole-program aig)yruntime optimizations, and other runtime
techniques like page protection to optimize strong isotafil08, 107, 28, 7]. While these techniques
can significantly reduce the cost of strong isolation, thaynot completely eliminate it. In contrast, our
language-based approach provides strong isolation withqaosing extra runtime overhead.

Reducing STM Overheads: Much research has been devoted to reducing the cost of campil
generated STM barriers on transactional memory accessady Work [8, 65] showed how to eliminate
several classes of transactional overhead including dathirbarriers, barriers for accesses to provably im-
mutable memory locations, and certain barriers for aceessebjects allocated in a transaction. Recent
work by Afek et al. [9] uses the logic of program reads and egritvithin a transaction to reduce STM
overhead: for example, a shared variable that is read ddiraes can be be read once and cached locally.
These optimizations complement ours, as they target diftekinds of STM overhead from our work.

Beckman et al. [16] show how to use access permissions tovee®@®M synchronization overhead.
While the goals are the same as ours, the mechanisms aneuiffalias control vs. type and effect anno-
tations). The two mechanisms have different tradeoffs pressivity and power: for example, Beckman et
al’s method can eliminate write barriers only if an objecaccessed through a unique reference, whereas
our system can eliminate barriers for access through shafetnces, so long as the access does not cause
interfering effects. However, alias restrictions can esgrsome patterns (such as permuting unique refer-
ences in a data structure) that our system cannot. As futark, Wt would be interesting to explore these
tradeoffs further.

Finally, several researchers have eliminated STM overfegatcesses to thread-local data using whole-

110



program static escape analysis [108] and programmer aiortdo specify code blocks that do not require
instrumentation [129]. Unlike our work, this work eithegrgres whole-program analysis, or it relies on
unverified programmer annotations.

Nondeterministic Parallel Programming: Several research efforts are developing parallel models fo
nondeterministic codes with irregular data access pattauch as Delaunay mesh refinement. Galois [74]
provides a form of isolation, but with iterations of parhlleops (instead of atomic statements) as the
isolated computations. Concurrency is increased by deteconflicts at the level of method calls, instead
of reads and writes, and using semantic commutativity pt@se Lublinerman et al. [81] have proposed
object assemblieas an alternative model for expressing irregular, gragetaomputations.

These models are largely orthogonal to our work. In Galaisng isolation holds if all shared data is
accessed through well-defined APIs, but this property isemébrced, either statically or at runtime. We
believe that our type and effect mechanisms could be apmi€thlois to ensure this property. The object
assemblies model may have stronger isolation guarantaashlois, but it is very specialized to irregular
graph computations, in contrast to the more general farkfjopodel we present here.

Kulkarni et al. [73] have recently propostask typess a way of enforcing a property they gadirvasive
atomicity This work shares with ours the broad goal of reducing thelrarof concurrent interleavings the
programmer must consider. However, Kulkarni et al. adogtaar-inspired approach, in which data is non-
shared by default, and sharing musk occur through speeisk ‘thtbjects.” This is in contrast to our approach
of allowing familiar shared-memory patterns of programgnibut using effect annotations to enforce safety

properties. Finally, none of the work discussed above des/any deterministic-by-default guarantee.
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Chapter 6

Formal Language for Determinism by Default

To make precise the ideas discussed in the previous chdpsechapter presents three variants of the same

formal language, each one building on the last:

1. The first variant, which we call th@mplified deterministic languagés the same as Core DPJ dis-
cussed in Chapter 4, with two exceptions. First, we have Iffisgbthe effect system to focus on the
important elements for this Chapter. In particular, we diimphe RPLs, and we omit arrays, vari-
able regions, and commutativity annotations. Second,ithgliied deterministic language explicitly

models parallel execution.

2. The second variant, which we call tbeterministic-by-default languagadds nondeterministic par-
allel composition, atomic expressions, and atomic effextthe simplified deterministic language.

These features formalize the new language features irteatin the previous chapter.

3. The third variant, which we call thetomic regions languageadds atomic regions for removing or

simplifying transactional barriers.

Without loss of generality, we includeobegi n andcobegi n_nd only in these simple languages; the

treatment foif or each andf or each_nd is similar.

6.1 Overview of Language Variants

We first explain the syntactic structure of all three langaga@nd we summarize the soundness guarantees
that each one provides. In the following subsections, wéaéxphe formal semantics of each language vari-
ant, state the soundness guarantees more formally, and firatvthe guarantees follow from the semantic

definitions.
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Programs P := R*C*e
Classes C == classC<p>{F*M*}
RegionNames R := regionr
Fieds F == T finR
Methods M = Tm(Tz)E{e}
Regions R = rlp
Types T == C<R>
Effects E == 0(|readsR|witesR|EUFE
Expressions e == this. f|this. f=e|e.m(e) |v|newT |seq(e, e) | cobegin(e,e)
Variables v == this|z

Figure 6.1: Syntax of the simplified deterministic langua@ep, f, m, andz are identifiers.

Simplified deterministic language: Figure 6.1 gives the syntax of the simplified deterministicguage.
A program’P consists of zero or more region declarations, zero or massaefinitions, and an expression
to evaluate. A clas€ consists of a class nanté, a region parametes, zero or more field declarations,
and zero or more method declarations. A fiéldspecifies a type, a field name, and a region. A method
M consists of a return type, a method name, a formal paramater & formal parameter, an effect, and an
expression to evaluate. A regidiis either a region name or a region parametgr. A typeT is a class
instantiated with a region parameték R>. An effect E/ is a possibly empty union of read effects and write
effects on regions.

For expressions, we model field access, field assignment, method invocatanmables, new objects,
sequential compositiors €q), and deterministic parallel compositiondbegi n). A variablevist hi s or
a method formal parameter The operational semantics of the first five expressionsgargi4.1 is exactly
as in Java. The last two expressions evaluate both comperpréssions (either sequentially or in parallel)
and return the value of the second component as the value efitire expression.

The simplified deterministic language provides the follogvsemantic guarantees, stated more formally
as Theorems 6.2.9 and 6.2.10 in Section 6.2. They follow ftbenfact that the executions of the two

branches of angobegi n expression are required to be noninterfering:

1. Equivalence otobegi n andseq: In terms of the final result (final value produced and final heap
state), there is no difference between executiogegi n( e, ¢’) andseq( e, €¢’) . As a consequence,
the entire program is guaranteed to behave like a sequentigtam (the one that results by replacing

cobegi n everywhere witlseq).

2. Determinism:If an expressiore evaluates to completion, then the value it produces is isétestic.
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Effects F =:= ...|atomicreads R|atomicwites R
Expressions e = ...|cobeginnd(e ¢e) |atonice

Figure 6.2: Syntax of the deterministic-by-default langgigextends Figure 6.1).

Moreover, the final state of the heap locations accessedidyeterministic, and i¢ is evaluated in
a sequential context (i.e., not insideabegi n), then the entire final heap state is deterministin.

particular, the final heap produced by a terminating exenutf the whole program is deterministic.

Deterministic-by-default language: Figure 6.2 shows the additional syntax for the determiciisyi-default
language. We extend the syntax of effects to reedrdni c effects. We also add (Hobegi n_nd, which
is the same asobegi n, except that it allows interference guarded by atomic esgioms; and (2) ex-
pressionsat oni ¢ e, which signal that expressianshould be executed iisolation that is, as if it were
executed all at once, with no interleavings from the reshefaxecution.

The deterministic-by-default language provides the folig semantic guarantees, stated more formally

as Theorems 3-6 in Section 6.3:

1. Race freedom and sequential consisterfégogram execution contains no data race. This result fol-
lows because the effect system requires that all paratietference occur between pairs of accesses
guarded by atomic expressions. Further, in the Java memodeinrace freedom implies sequen-
tial consistency, i.e., one can reason about executionpasgaam-orderedinterleaving of memory

operations.

2. Strong isolation:For the same reason that the program is race free, expresdiami c e execute
e in isolation, even if the underlying implementation guarantees only visalation Moreover, the
effect system disallows any interference betweerciieegi n and concurrent operations that would
violate isolation of theeobegi n. Therefore, evergobegi n expression executes in isolation. To-
gether, race freedom and strong isolation imply that execus a sequentially consistent interleaving

of isolated expressions

3. Equivalence otobegi n andseq: Becauseobegi n( e, ¢) executes in isolation, it is equivalent

1If ¢ is evaluated in a parallel context, then the state of otheations not accessed laydepends on the scheduling of the
parallel computations that access those locations. Fongbea suppose changes the value of variabtefrom 0 to 1, e’ changes
the value of variable from 0 to 1, ande ande’ are executed in parallel. Then at the end of executitige value ofx will always
be0; but the value of/ at that point will depend on whethef has executed yet.
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Regions R == ...|atomcregionr
Classes C == ...|classC<atomcp>{F* M*}

Figure 6.3: Syntax of the atomic regions language (exteigla& 6.2).

to an isolated execution sfeq, i.e.,at oni ¢ seq( e, ¢') . For the deterministic-by-default language,
we makecobegi n behave likeat o ¢ seq, and not jusseq, to guarantee thatobegi n executes

deterministically,even inside & obegi n_nd.

4. Determinism by defaultBoth atomic and cobegin expressions execute determaligtinn the same
sense as discussed for the simplified deterministic largyeagn inside @obegi n_nd, unlessthey

contain a dynamic instance obbegi n_nd.

Atomic regions language: The third variant of the formal language allows some regitanbe marked
at oni ¢, andonly operations on those regions generate atomic effé@fgerations on non-atomic regions
never generate atomic effects, even in an atomic expressigare 6.3 shows the new syntax.

The execution semantics of this language variant is identic that of the deterministic-by-default
language, except that the compiler can distinguish, anengiatly optimize, operations within an atomic
expression that never interfere with concurrent tasks.eltiGn 5.4, we discussed a prototype compiler that
uses these rules to optimize our STM by omitting or simptifybarriers (inside an atomic expression) for

such noninterfering operations.
6.2 Simplified Deterministic Language
This section gives the formal semantics and soundnessgésuthe simplified deterministic language.

6.2.1 Static Semantics

The typing is with respect to an environmdhtwhich is a possibly empty union of elemeltts 7') stating
that variablev has typ€erl
I

0| (v,T)|TUT

Programs and Classes:The rules for valid programs and classes are nearly idérticihose given in
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Chapter 4, except that in this simplified language there arommutativity annotations.

PROGRAM CLASS
VC(HC) OFe:T,E I'=(this,C<p>) VE(I'+F) VM.(TF M)
FC*e Fclass C<p>{ F* M*}
FIELD METHOD
I+T TFR TFM| T+T, T+T, TFE TU(@T)Fe:T,,E THECE
THT finR LT, m(T,2) E{e}

Regions and Types:The rules for valid regions and types are simplified from Géagp. There are no rules
for subtyping in the static semantics, because in this sfiagllanguage, we require identity of types at

assignments.

REGION-NAME REGION-PARAM TYPE
regionrc?pP (this,C<p>) el ET| classC<p>{F*M*}ecP TFR
T'kr T'kp ' C<R>

Valid effects: The rules for valid effects, subeffects, and noninterfgeffects are also a subset of the rules
from Chapter 4. Again, the subeffect relation is reflexivd &ansitive, and the noninterference relation is

symmetric (obvious rules omitted).

EFFECFEMPTY EFFECTFREADS EFFECTFWRITES EFFECTFUNION
I'HE 'R 'R I'-E T'FE
THO I'Freads R T'FwitesR T'FEUE
SE-BvPTY SE-READS-WRITES

r-gcCcer I'Freads RCwites R

SE-UNION-1 SE-UNION-2
I'-ECE I''+EFFCE T'THFE'CE
I'-ECEUR" I''-EURE"CE
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NI-EMPTY NI-READS NI-WRITES

I'-E#FE e
TFO#E I' -reads r#reads r’ F'Fwitesr#witesr’
NI-READS-WRITES NI-UNION
r# IFE#E" TFE#E"
I'kFreadsr#wites I'EURE #E"

Expressions:As in Chapter 4, every expression has a type and an effectju@igenentl” - e : T', F means
that expressiom is well typed with typ€el” and effectly in environment".

Basic operations from Chapter #ield access and assignment, method invocation, variabksa, and new
objects all work the same way as described in Chapter 4. Tdrer@o arrays or et expressions in this

language.
FIELD-ACCESS

I'Fe:T,E| (this,C<p>) el F(C,f)=TfinR

I'kthis. f:T,reads R

FIELD-ASSIGN

(this,C<p>) el Tre:T,E F(C,f)=TfinR

PEthis. f=e: T,FUwWites R

INVOKE

I'ke:C<R>FE Tteé:oc<p>(Ty), B M(Com)=T, m(Tyx) E, { "}

ke m(e) :oc<p>(Ty), EUE Uoc<p>(Fm)

VARIABLE NEwW
(v,T)el I'eT
TkFo:T,0 I'newT :T,0

In rule INVOKE, the substitutiorrc< > substitutesk for the region parameter of classC'.
Sequential compositionfo type a sequential composition expresss@y( e, ¢’) , we type the component
expressiong ande’. The type of the expression is the typeof ¢’. The effect is the union of the effects

andE’ of e ande’.

I'te:T,FE| SEQ T'ke:T,E T'ke:T FE

I'tseq(e, ¢) : T, EUEFE
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Deterministic parallel composition:Typing deterministic parallel compositionobegi n(e, ¢’) is the

same as for sequential composition, except that we rechareftects of ande’ to be noninterfering.

I'te:T,FE| COBEGIN I'te:T,E ThHe:T E THE#E

I'cobegin(e, ¢) : T, EUE’

6.2.2 Dynamic Semantics

Execution Environment: We extend the static expression syntax (Section 6.1), t@sept computations.
In addition to an expression from the static syntax, an esgio@ can also be an object referengeor
a local execution statge, 3, E), whereX is a dynamic environment (defined below); @r wherei is a
unique identifier:

ex=...|lo|(e,5,E) e
The additional expressions have the following meanings:
e Object references are the values produced by reducing expressions.

e A local execution statée, >, E') records an expressianto evaluate, an environmei containing

the bindings for the free variables inand the effec of reducinge.

e The identifierg are “tags” that allow us to refer unambiguously to subexgices that are undergoing

reduction.

Reducing local execution state “in place” allows us to rethe recursive structure of an execution history,
as opposed to, e.g., flattening everything into threadss ithiurn makes it easier to state and prove the
desired properties of the execution.

As in Chapter 4, we define a dynamic environmErthat maps variables to references:

IR

0| (v,0)|ZUX

An objectO is a mapping from field name&to object references.

O:=0|f—o|OUO
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A heapH is a partial function from object referenceso pairs(O,T"), whereO is an object, and” is the
type of O:
H:=null|o— (O,T) | HUH

null is a special reference that isbom(H ) but does not map to an object. Attempting to invoke a method
of null causes the execution to fail.

Program Execution: We describe program execution as a small-step operatienastics. The execution
state is(e, H), consisting of an expression to evaluate and a heap. Progxaoution is defined by the
transition relation

(e, H) — (¢, H").

Informally, a single step transforms an expression intdlaroexpression and updates the heap. The rules

defining this relation are stated below. FormallyPit= C* ep, then an execution of prograf is given by

((ep,0,0);, null) —* (e;, H),

for somei, e;, andH, wherei is an arbitrary index denoting the top-level expressiom@reductiong; is
the evolution of expressiofep, (), 0);, andH is the evolved heap (represented as a domain contamihg
plus all object referencesadded during the execution). A terminating executiondas (o, (), £);, where
o is the “answer” computed by the program, afids the union of all effects o/ done in the execution.

Operational Semantics of ExpressionsFirst, we need a standard rule for evaluating subexpression

DYN-SUBEXP

(e, H) — (¢/, H')

(¢, H) — (e"[e; — €], H')

Rule DyN-SUBEXP says that if we know how to evaluate expressioio ¢’ with respect to heapi, and

e appears as a subexpressiorefwith index:, then we can reduce’ by rewriting the subexpressian

in place and updating the heap. Because there are in gepgambhbsubexpressiornrs that are eligible for
rewriting in this way, we use the indicéso identify which one is being reduced. The choice of whick on

to reduce next is, in general, nondeterministic.
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Next we give the rules for evaluating local state expressienX, F)). For expressions with nontriv-
ial subexpressions, we (1) convert the subexpressibné e into the form(e’, 3’ 0);, wherei is a fresh
identifier; (2) evaluate the subexpressionsdd’, F'); using rule DrN-SUBEXP; and (3) use the results to
finish evaluating the main expressienNotice that in the subexpression evaluatigrgvaluates te, >’ is
unchanged, and the effect changes fibmo some effecty. An expression reduction always starts out as
(e, X, 0), wheree is an expression in the program text; goes through vari@mstormations; and ends up
as(o, X, F), whereo is an object reference, arfd collects the effects of the reduction.

Field access:For field access hi s. f, we read the value of fielg out of the heap and record the read

effect:
DYN-FIELD-ACCESS

(this,o)e¥ H(o)=(0,C<r>) F(C,f)=TfinR
((this. f,%,0),H) — ((O(f),Z,reads oc<,>(R)), H)

In computing the effect, rule IN-FIELD-ACCESSuses the substitution <> defined in Section 6.2.1.
Field assignment:For field assignment hi s. f=e, we evaluate:, then update the heap and record the

write effect:;
DYN-FIELD-ASSIGN-EVAL

fresh(7)

((this. f=e,%,0),H) — (this. f=(e,%,0);, H)

DYN-FIELD-ASSIGN-UPDATE

(this,o)e¥ H(o)=(0,C<r>) F(C,f)=TfinR

((this. f=(0,%,E);, H) — (!, X, EUW i tes oc<,>(R), H[o — (O[f — 0], C<r>)])
fresh(i) means that is a fresh identifier.f[a — b] denotes the function identical b everywhere on its
domain, except that it mapsto b.
Method invocation: For method invocatiore. m( €’) , we evaluates to o, evaluatee’ to o/, execute the
method body in the environment with the correct method patanbindings, and accumulate the results.

The aggregate effect of the expression is the union of theetsffof evaluating the two arguments and the
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method body.

DYN-INVOKE-EVAL -THIS DYN-INVOKE-EVAL -ARG
fresh(i) fresh(y)
((6. m( 6I) 725 Q])v H) - ((63 Ev @)1 m( 6/) 7H) ((07 Za E)Z m( 6) 7H) - ((07 Za E)Z m( (63 Ev m)J) 7H)

DYN-INVOKE-EVAL -METHOD-BODY

H(o) =(0,C<r>) M(C,m)=T, m(T,z) B, {e} fresh(k)

(0,3, E)i. m( (0,3, E");) ,H) — (((e, (this,o)U(z,0),0),2, EUE"), H)

DYN-INVOKE-ACCUMULATE

(((0,3%,E);, X', E"),H) — ((0,X',EUFE"),H)
Notice that ife evaluates taul | , then DrN-INVOKE-EVAL-METHOD-BODY cannot be applied. This is
effectively a “null dereference.” We don’t model error stat exceptions explicitly; instead a null derefer-
ence just means that we have reached a “stuck state,” suchalsaiccessful program execution including
that state is possible. All of our soundness results (Seéti®.3) are stated in terms of successful executions.

Variable accessFor variables, we just read the value out of the environment:

DYN-VARIABLE
(v,0) € X
((v,%,0),H) — ((0,%,0), H)

New objects:For new we create a new object of the correct type, initialize itsdBefo null, and add a

reference to the object to the heap:

DYN-NEW
o¢ Dom(H) O = Ufeﬁe'dS(C)(f — nuII)
((newC<R>%,0),H) — ((0,%,0), HU o+ (0,05 5(C<R>)))

ox, 1 is the following function that takes regions to regions gypo types, and effects to effects:
1. If (t hi s,0) does not appear iB for anyo, thenos; z is the identity function.

2. Otherwise, if(t hi s,0) € Y andH o : C<r>, thenoy, g is oc<,>, as defined in Section 6.2.1.
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Note thatoy, f is undefined if(t hi s, nul | ) € 3, but it is obvious that this cannot happen.
Sequential compositionFor sequential compositioseq( ¢, ¢’) , we first evaluate: to o, and then we
evaluatee’ to o’. We useo’ as the result of the whole expressianig§ thrown away; the evaluation efis

only for its side effects). The aggregate effect of the esgimn is the union of the effects of executing each

branch.
DYN-SEQ-EVAL -FIRST

fresh(7)

((SGQ(e, 6/) 72)5H) - (Seq( (6,2,@)1', 6/) vH)

DYN-SEQ-EVAL -SECOND
fresh(j)
(Seq( (Oa Ev E)“ 6) aH) e (Seq( (Oa Ev E)“ (67 Za Q)J) 7H)

DYN-SEQ-ACCUMULATE

(seq( (o, %, E)i, (0,5, E');) , H) — ((o', 5, EUE'), H)
Deterministic parallel compositionEor deterministic parallel compositimobegi n( e, ¢’) , we evaluate
e to o ande’ to o’ “in parallel,” i.e., we allow the evaluation steps of the texpressions to be arbitrarily

interleaved. For the accumulation step, again wedliss the result of the whole expression.

DYN-COBEGIN-EVAL
fresh(i) fresh(y)
((cobegi n(e, ¢'),%,0), H) — (cobegi n( (e, %,0), (¢/,%,0),), H)

DYN-COBEGIN-ACCUMULATE

(cobegi n( (0, %, E);, (/,%,E");),H) — ((¢/,X,EUE"),H)
Notice that all rule applications are deterministic (iteere is only one next rule to apply) except in the
case ofcobegi n. Note also thatobegi n still provides deterministicesults because the type system
guarantees noninterference of heap accesses betweenctieamches. However, the actual sequence of

steps in the execution is nondeterministic.
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6.2.3 Soundness

Static Environments: A static environment' is valid if its elements are valid with respect to itself:

ENV V(u,T)eT'THT

FT

Our first theorem says that typing a valid expression in awvafivironment produces a valid type and

effect:

Theorem 6.2.1(Validity of static expression typing)lf = P and+ T" andT' + ¢ : T, F, thenT' - T and
'+ FE.

Proof. By induction on the structure ef showing the result for each expression typing rule in edi2.1.
Base casesFIELD-ACCESS Follows from the typing of class fields in Section 6.2.1.

VARIABLE: Follows fromt T.

NEew: Follows from the condition of the rule.
Inductive casesFIELD-ASSIGN Follows from the induction hypothesis applied to the typai e, plus the
same argument as fonE.D-ACCESS

INVOKE: The induction hypothesis gives th&t £, and E’ are valid. Rule MeTHOD gives that,. and
E,, are valid in the environment in whidhhi s is bound toC'<p>. But thenoc<g>(T,) andoc<p>(E,)
are valid inI", becausé’ - R, andoc< > substitutesk for p.

SEQ: Follows directly from the induction hypothesis.

CoBEGIN: Follows directly from the induction hypothesis. O

Reference typesThe execution state includes thell type /', which is the type ofull:

T:=...|N
We also add rules for typing references:
TYPE-OBJECTREF TYPE-NULL
0= (0.T)eH
HbFo:T HbEFnul: N
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And because we have a null type, we need simple rules for sngty

SUBTYPE-REFLEXIVE SUBTYPE-NULL

'-7<T FrEN=T

Heaps: A heap is valid if its elements are valid:

HEAP-NULL HEAP-OBJECTREF HEAP-UNION
HF(0,T) FH FH
H +null HFor (0,7T) FHUH'

An object-type painO, C<r>) is valid if (1) C<r> is a valid type in the empty environment; and (2) for
every fieldf of C, O(f) is defined, its type is valid and a subtype of the static typg, affter substituting-

for the parameter of’:

OBJECT

HE(O,T)| 0FC<r> YT finRefields(C).(0F oc<,>(T)ANHFO(f) : T"NH T < 0c<,>(T))

HFE (0,C<r>)

r is a region name. Notice that we check the dynamic type of fgtbbr object field in the empty environ-
ment, because all region parameters have been substituégd a

Dynamic environments: A dynamic environmenk is valid if all its elements are valid with respect to a

heapH:
DYN-ENV-EMPTY DYN-ENV-ELT DYN-ENV-UNION
HET HFo:T HFT HFT
HEQ HFE (v,0) HrTUTY

Instantiation of environments: The judgmentd - ¥ < T' says that the dynamic environmeéntinstanti-
atesthe static environmerit. That means the heap and both environments are valid; thables appearing
in both environments match; and the corresponding typeldrethvironments match, after translation to

the dynamic environment. Instantiation lets us use th&digiing of expressions to infer that the dynamic
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execution of those expressions is well-behaved.
The basic rule for instantiation just checks everything Vfalidity and records the original dynamic
environment to the left of the. This makes the original dynamic environment available agligsect it to

compare it to the static environment element by element:

INSTANTIATE
HFY T FIT FH HEY X HEXXT
HFEX T

Next we have the element-by-element rules:

INST-EMPTY INST-UNION
S,HEY T S HEY =T $,HFY <T”
DHEQ)=0 S HEXY UY <17ur”
INST-ELT

HEo:C'<r> (F C'<r> <05 y(C<R>)

S, HF (v,0) < (v,C<R>)
os,m is the translation function defined in Section 6.2.2.
Execution state: The judgment” - ((e,3,0), H) : T, E states that local execution stdte, >, 0), H) is
valid with respect to static environmehtwith typeT" and effectl. That meang instantiated”, ande is

well typed inI" with typeT" and effectE.

STATE
T+ ((e,1),H):T,E| H-rS=<I The:T.E
'k ((e,%,0),H): T,E

Preservation of Type and Effect: In this section we prove that for successful executionssthagc types
and effects of expressions computed according to Sectibth Bpproximate the dynamic types and effects
produced during actual execution according to Sectior26First we need some technical lemmas. Again,
oy, g is the translation function defined in Section 6.2.2.

AssumeX instantiated” with respect to heagl . If region R is valid inT', then regiorvy, (R) is valid

in the empty environment; and similarly for types and efect
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Lemma6.2.2.1f H+ X <T andI' - R, then( I o5, z(R). The same result holds replacidgwith 7" or
E.

Proof. For regions, the result is obvious unleRgs a region parameter. But in that case, we must have
t hi s bound toC<p> in T" andt hi s bound too in 3, whereH + o : C'<r> for some valid region name
r. (The last fact holds becauseH implies H - o : T'and() - T, soT must be a class type with a region
name for its region argument;cannot benul | .) Thenoy, ; substitutes for p, so the result holds. For

types and effects, the result holds from the way that typdseffiects are constructed from regions. [

Again assume: instantiated” in heapH. If effect E is included inE’ with respect td", then effect

ox. m(E) isincluded inoy, ;7 (E') with respect to the empty environment:
Lemma 6.23.1f H+- X <Tandl' - E C E', then( I- o5, y(E) C ox g(E').

Proof. By the rules for unions of effects, it suffices to assume fiatnd £’ are both individual read or
write effects. In that case, either reflexivity or rule SEADS-WRITES must apply, with the same regidn
appearing in both effects. R is a region name, then the result holds directly. R is a region paramete,

then the result holds becausg ; substitutes the same region nanfer the parameter in both effects]

Next we have the preservation result. Informally, if a pesgris well-typed and a local state expression
(e, X, 0) reduces tdo, 3, E) starting with a good state, then the resulting heap is véiie;resulting type
is valid and is a subtype of the static typeepfF is valid; andF is a subeffect of the static effect ef To
state the result precisely, we need a notation to descriveetfuction of expressior{s, X, ) occurring as

a subexpression of the main program expression. We write
((67 27 (D)Zv H) P (ei> H/)

to mean thaf is well typed with main expressiosp, expressiore appears in the text g, and there exist

expressiong; ande’; such that
((ep,0,0);,null) —* (e;, H) —* (e;,H’),
(e,X,0); is a subexpression af;, ¢; is the first expression in which expressiomppears, and; is a
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subexpression of;. (e;, H) is called theinitial state of the reduction, ande’;, H') is called thefinal state
of the reduction.

Note that in general, the reduction @f, X, H),; can occur “under @obegi n” (i.e., in reducing one
of the two branch subexpressions otabegi n expression); so in general, the reductien, H) —*
(e;-, H') can contain steps reducing expressions other than expmessi hese steps are still “part of the
computation” of reducing expressian because in theory, their effect on the heap state couldtatfie
reduction of expressioi However, the goal of this section is to prove that in factehie no interference

between the reduction of these other expressions and thetienl of expression.

Theorem 6.2.4(Preservation) If ((e,%,0);, H) ~p ((0,%, E);, H"), and all steps that do not reduce
expression take a valid heap to another valid heap, then @)t ((e, >, (), H) : Ty, E, whereT', is the
environment used to typein typingP; and (b)F H'; and (c)H' F o : T; and (d)0 - T < ox x(T5); and
()0 E;and (0 + E C ox, g(Es).

Proof. It suffices to prove that for every reductiéte, 2, 0);, H) ~p ((0, X, E);, H'), if () holds, then the
theorem holds for that reduction and all subexpressionscestiduring the course of that reduction. This is
because every reduction is a subexpression of the wholegmogeduction, and (a) is clearly satisfied for
the whole program. We prove this equivalent result by indactn the structure of.

Base casesField access:Except for steps that do not reduce expressiothe reduction occurs in
one step via rule BN-FIELD-ACCESS (b) holds because reducing expressiaioes not changé/, and by
assumption all other steps preservél. (c) and (d) hold by~ H. (e) holds by rule FELD and Lemma 6.2.2.
(f) holds by construction (comparingvd-FIELD-ACCESSwith FIELD-ACCESS.

Variable access:Except for steps that do not reduce expressiothe reduction occurs in one step
via rule DyN-VARIABLE. (b) holds for the same reason as stated for field access.ndcjcB hold by
H X <T. (e) and (f) trivially hold.

New objectsEExcept for steps that do not reduce expressjdhe reduction occurs in one step via rule
DYN-NEW. (c) holds becausE - C<R>, so by Lemma 6.2.2) - o5, z(C<R>). (b) holds because the
other steps preserte H by assumption and the fields of the newly created object di, becausenul |
is a subtype of every type. (d) holds by construction. (e)@nlivially hold.

Inductive cases:Field assignmentThe induction hypothesis applies to the reduction from phaiea-

tion of DYN-FIELD-ASSIGN-EVAL to the application of PN-FIELD-ASSIGN-UPDATE. (b) holds because
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by the induction hypothesis, the dynamic typeobfs a subtype obs; i(T.), whereT, is the static type
of ¢; and by rule FELD-ASSIGN, T, is equal to the static type of fielfl. (c) and (d) hold by the induction
hypothesis and by construction. (e) holds because therregig is valid inI', and by Lemma 6.2.2. (f)
holds by construction.

Method invocation: The induction hypothesis applies to the evaluation of tlgeiment tot hi s and
the argument to the formal parameter For the evaluation of the method body, we need to show that
H T <1, wherel” = (t hi s,0)U(z, o) is the environment in which we execute the method body, and
I = (this,C<p>)U (z,T,) is the environment in which we typed the methbt{C, m). The types of
the bindings td hi s match by construction. As to the bindingsatpfrom INVOKE we have that the static
type of ¢’ matchessc<r>(7)), and by the induction hypothesis, we have that the dynanpe of o’ is a
subtype ofos i (oc<r>(1:)) = 0c<os y(r)> = or 1 (T2)-

Now we can apply the induction hypothesis to the executidgh@method body. This gives (b), (c), and
(e) directly. As to (d), the induction hypothesis gives théin DYN-INVOKE-ACCUMULATE) is a subtype
of or y(T:) = ox, u(oc<r>(T,). A similar argument using Lemma 6.2.3 establishes (f).

Sequential compositiorzollows directly from the induction hypothesis.

Deterministic parallel compositiorFollows directly from the induction hypothesis. O

Noninterference: In this section we prove that the executions of the two brasabf acobegi n are
mutually noninterfering. First we have a technical lemnaisg that static disjointness of effect implies

dynamic disjointness of effect, under translationoy;;:
Lemma 6.25.1f H+- X <Tandl' - E# E', thend \ oy, g (E) # ox.u(E").

Proof. Obvious for this language, because we form noninterfergubgments only for effects that either
are (1) both read effects or (2) operate on distinct regioneg Neither of these properties is affected by

Os.H- Ol
Next we have the theorem:

Theorem 6.2.6(Noninterference of effect farobegi n branches) If

((CObegi n( €, 6/) >E>®)i7H) P (CObegi n( (OazaE)j’ (0,>E>E,)k’) Z‘aH/)>
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then) - E# F'.

Proof. By the static typing rule focobegi n, the static effects of ande’ are noninterfering. By Theo-
rem 6.2.4, the dynamic effects of executing@nde’ are contained in the static effects after translation by

os,m. By Lemma 6.2.5, that translation preserves disjointnéssfect. O

Determinism: In this section we prove that the executionaafbegi n is deterministic. First we need a

definition formalizing the idea that every object field on Heap resides in exactly one region:

Definition 6.2.7 (Region of afield) If H - o : C<r>andT fi n R € fields(C), thenregion(o.f, H) =

oc<r>(R).

It is obvious that if(e, H) —* (¢/, H'") andregion(o.f, H) = r, thenregion(o.f, H') = r, because
Dom(H ) only ever grows, not shrinks, and the dynamic type of a refse € Dom(H ) never changes.

Next we have a lemma stating that at runtime, disjoint regiamply disjoint locations:
Lemma 6.2.8. If region(o.f, H) # region(o’.f’, H), then eithero # o or f # f'.

Proof. Let R andr be as shown in Definition 6.2.7. tegion(o.f, H) # region(o’.f’, H), then eitherR
or » must be different when the two regions are computed i different, we must either have a different
class in the type of’, implying o # o’; or we must have a different field of the same class, implying f’.

If  is different, we must have a different type fdr implying o # o’. O

Now we can prove thatobegi n is semantically identical teeq. That is, replacingobegi n with

seq produces identical results:

Theorem 6.2.9(Semantic equivalence cibbegi n andseq).

(CObegi n(eve/)727®)j7H) P ((0>E>E)j7H/)

with initial state(e;, H) if and only if

(SGC](G, e,)’ 2, (Z))j’ H) P ((Oa 2, E)j7H/)

with initial state(e;[(cobegi n(e, ¢),X,0); < (seq(e, ¢),%,0);], H).
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Proof. The if direction is obvious, because the reductiorsef] is one legal reduction atobegi n. For
the only if direction, first assume that the reduction of eggion;j does not occur inside @obegi n, so

all steps reduce expressignThen by the rules for reducingobegi n, the first reduction implies

(cobegi n( (¢/,T);, (¢",T)x) ;,, H') ~p (cobegi n( (o, E);, (o', E')x) ,, H").

By Theorem 6.2.6, the effects and E’ are noninterfering; and by the rules for noninterferingeefs,
together with Lemma 6.2.8, all read-write and write-writdrp of accesses, one from each reduction, are
disjoint. Further, the rules for field access and assignragthifully record the effects of every heap access,
so there can be no interfering accesses in the two branclmese tBe only possible dependences between
the two reductions are through the heap, and we just shoved Hire no such dependences, every step
in the reduction of expressiohcommutes with every step in the reduction of expresgioBy a simple
induction on the length of the execution sequence, we caaftire produce an equivalent result by reducing
expressiory first and then reducing expressidnwhich is exactly the reduction rule fereq.

Now assume that expressigroccurs inside & obegi n. By a simple induction, it suffices to consider
the case of oneobegi n. In that case, by the same noninterference argument giveveabone of the
steps reducing interfere with the steps that don’t redugeSo again we can rearrange theeducing steps

so that they first reduceto o, and then reducé to o'. O

Finally, we can state the determinism result:

Theorem 6.2.10(Input-Output Determinism)If

((67 X, (D)jv H) P ((07 E>E)j>H/)

and

((6, X, (Z))j7 H) ~p ((Ola X, El)j’ H”)
with the same initial state, then= o', where= denotes equivalence up to renaming object references, and
E = E'. Moreover, if(e, ¥, 0)); is not a subexpression of aspbegi n expression, thelil = H'.

Proof. First, consider the case whefte, X, ()); does not occur in angobegi n expression. By Theo-

rem 6.2.9, if we replace all instancesaifbegi n in e; with seq, we get exactly the same executions. But
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except for thecobegi n reduction rules, the dynamic semantics rules are entiretgrahinistic (there is
only ever one thing to do next), except for the choice of dhi@entifier in rule DrN-NEw and the choice
of fresh expression identifiers when introducing new exgpoes to be reduced. Clearly nothing in the
semantics depends on the choice of these identifiers.

Now suppose thate, =, ()); occurs in exactly oneobegi n expression. It is nondeterministic what
effects of the othecobegi n branch are complete at the point whéeeX, 0); is reduced tqo, X, E);,.
However, by the same argument as in the proof of Theorem,®ar of those effects can interfere with the

computation ob. A simple induction extends this argument to more thanaoilgegi n expression. [

6.3 Deterministic-by-Default Language

This section describes the semantics and soundness ifesulie deterministic-by-default language.

6.3.1 Static Semantics

For the extended language, we need to extend the definitiefieatts and the typing of expressions.

Valid effects: We add a rule for valid atomic effects.

EFFECTFATOMIC
' FE I'+FE

I'atomic E

Subeffects:We add rules stating when atomic effects are subeffectshef atffects.

SE-Aromic-1 SE-ATOMIC-2
' ECFE '+ ECE '+ ECE
I'-atomc ECE I'-atomcFECatonmc E’

Rule SE-Aowmic-1 formally expresses the idea that non-atomic effects rcat@mic effects, i.e., ity
occurred in an atomic expression, then we can summarizeffédet as eitheat onmi ¢ F or E. Note that
the converse is not true, i.e., we cannot summakizgith at om ¢ £. Rule SE-Aomic-2 says that two
atomic effects are subeffects if the underlying effects are

Noninterfering effects: We add a rule stating that an atomic effect is interferingnaiother effect if the
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underlying effect is.
NI-ATOMIC

' E4#F '+ E#E
' atomc E#E'

Safe nondeterministic executionThe judgment” - nondet(E, E’) states that it is safe to run expressions

with effectsZ and £/ nondeterministically in parallel.

NONDET-SYMMETRIC NONDET-NI
I'+ nondet(E,E’)| T+ nondet(E,E’) T+ E#FE
'+ nondet(E', E) '+ nondet(E, E')
NONDET-ATOMIC NONDET-UNION

'+ nondet(E,E"”) T F nondet(E’',E")

I' - nondet(at omi ¢ E,atonmi c E') ' nondet(E U E',E")

The rules formally express the idea that it is safe to let tffeces run insidecobegi n_nd if (1) they
are mutually noninterfering (DINDET-NI); or (2) they both occur inside atomic expressionsO(NET-
ATOMIC); or (3) they can be decomposed into unions of effects tlesafe to run nondeterministically in
parallel (NONDET-UNION).

Expressions:We add new rules for typingobegi n_nd andat omi ¢ expressions. We also revise the rule
for typing cobegi n expressions.

Nondeterministic parallel compositiorRule CoBEGIN_ND is similar to GOBEGIN, except that noninter-
ference is not required as to the effects of the two brandnstead, it is sufficient that the effects are safe

to run nondeterministically in parallel.

COBEGIN_.ND

'Fe:T,E| Tre:T,E Tke:T' E TF nondet(E,E’)

I' - cobegi n.nd(e, ¢) : T, EUE'

Atomic expressiondRule Aromic collects the effecE of the expressiomr, then marks all the constituent
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read and write effects atomic, to reflect the fact thaiccurred inside an atomic expression.

ATOMIC

'e:T,E| Tkre:T,E | atomic(E)=FE'

F+atomice:T,E

The judgmentl’ + atomic(E) = E’ says that effectt’ is the result of takingtl and marking all its

constituent effectat oni c.

ATOMIC-EMPTY ATOMIC-READS
' - atomic(E) = F’
I' - atomic(0) = () I' - atomic(r eads R) = at omi c reads R
ATOMIC-WRITES ATOMIC-ATOMIC
I' - atomic(wites R)=atomcwites R I' - atomic(atomic E) =atonic E

ATOMIC-UNION

'k atomic(E) = E’ T F atomic(E") = E"

I' - atomic(EUE")=E' UE"

Deterministic parallel compositionEinally, rule COBEGIN has changed. In addition to checking noninter-
ference, as in the basic language, the new rule converttoali@effects occurring inside treobegi n to

ordinary effects. This ensures thrad atomic effects are ever propagated outward from insidelaegi n.

COBEGIN

'te:T,E THe:T,E' THE#E Fnonatomic(EUE')=E"

T'cobegin(e, ¢) : T, E"

The judgmentl’ - nonatomic(E) = E’ says thatF’ is the result of converting akt oni ¢ effects to

ordinary effects in¥.

NONATOMIC-EMPTY NONATOMIC-READS

' - nonatomic(E) = E’

I' F nonatomic () = () I' - nonatomic(r eads R) =reads R
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NONATOMIC-WRITES NONATOMIC-ATOMIC

I' F nonatomic(wites R)=wites R I' F nonatomic(atonmic E) = FE

NONATOMIC-UNION

I' F nonatomic(E) = E' T nonatomic(E") = E"”

I' F nonatomic(F U E') = E” U E"

6.3.2 Dynamic Semantics

We describe the dynamic semantics of the nondeterminestigudage in two parts, the first operational and
the second non-operational. The first part is just the sameustics as for the deterministic language, with
a few minor adjustments to accommodate the new features.s@tmnd part describesveeak isolation
constrainton execution histories generated by the first part. The dwyaamic semantics comprises all
execution histories described by the operational sensttitat also satisfy weak isolation. In practice, weak
isolation would be enforced by a runtime implementatiorcksas software transactional memory). Such
implementations are well understood and have been deddriletail elsewhere [63].

Semantics of ExpressionsThe execution environment and definition of program execoutire the same
as in Section 6.2.2. We add operational semantics rulesdbegi n_nd and atomic expressions, and we
amend the rules forobegi n to account for atomic effects.

Nondeterministic parallel compositioriExecution ofcobegi n_nd is identical to execution ofobegi n.

For completeness, we state the rules in full.

DYN-COBEGIN-ND-EVAL
fresh(i) fresh(j)
((cobegi n.nd(e, ¢),%,0), H) — (cobegi n.nd( (e, %, 0);, (¢/,%,0);),H)

DYN-COBEGIN-ND-ACCUMULATE

(CObegi n—nd( (Oa EvE)i' (O/vzaE/)j) aH) - ((O/a Y, EU E/)vH)

Atomic expressionsTo execute an expressi@t om ¢ e, we execute the expressienthen mark all its
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effectsat om c:

DYN-ATOMIC-EVAL DYN-ATOMIC-MARK-EFFECTS
fresh(i) ()t atomic(E) = E’
((atom ce,X,0),H) — (atomic (e, %,0);, H) (atom ¢ (0,%,E);, H) — ((0,%,E"), H)

Note that the environment used for marking effects is thetgrapvironment, because there are no region
parameters in the runtime effects.
Deterministic parallel compositioniWe modify the rule 'N-COBEGIN-ACCUMULATE to mark the effects

of the expression non-atomic:

DYN-COBEGIN-ACCUMULATE

() - nonatomic(E U E') = E”

(cobegi n( (0, %, E);, (o/,X,E");) ., H) — ((¢/,X,E"),H)

Weak Isolation Constraint: We state the weak isolation semantics as a constraint onomlbe execu-
tions given by the operational semantics rules stated abohat is, we assume that executions that are
allowed by the rules, but that violate weak isolation, ararganteed never to happen (because, e.g., they

would cause a transactional memory implementation to aattroll back).

Definition 6.3.1(Reduction histories)Supposé(e, X, 0);, H) ~p ((0, %, E);, H'). Any sequence of steps

in an execution of witnessing this fact is called @eduction history We denote such a histoR.

By the definition of a reduction histoif, and the definition of a reduction,H witnesses(e, 3, 0);, H) ~p
((0,%, E);, H'), then there must exist a history witnessiigp, 0, 0);, null) —* (e;, H) —* (e}, H'), with
(e,X,0); a subexpression af;, and(o, X, E); a subexpression ca‘; andH is the sequence of steps wit-
nessing(e;, H) —* (e}, H'). As before,(e;, H) and (e}, H') are called the initial and final states of the
reduction. Note that in general, a reduction histbfyis not unique, because (1) parallel tasks may have
different interleavings; and (2) the choice of expressibentifiers and object references in the history is
arbitrary.

In the special case that the initial statelfis the initial program execution statéep, 0, 0);, null), we
denote the corresponding reduction history (represemtprggram executiorfl», and we call it gprogram

execution historylIf one historyH; is contained within another orld-, we say thaiH; is asubhistoryof
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H,. In particular, all histories occurring in an execution aodhistories oHp.
Now we define a conflict relation oat oni ¢ expressions that allows us to state the weak isolation

assumption. First, we need a notion of parallel executiafeuaobegi n_nd:

Definition 6.3.2(Parallel histories underobegi n_nd). Fix a program execution histoldp, and consider
any pair of subhistorie$l; andH, of Hp. H; andH; occurin parallel undercobegi n_nd if H; occurs
in reducing subexpressianandH, occurs in reducing subexpressignof the same expression introduced

by rule DYN-COBEGIN-ND-EVAL.
Then we can state the conflict relation:

Definition 6.3.3 (Conflict relation orat om ¢ expressions) Fix a program execution historidp, and let
I be the set of expression identifiers appearindip that label atomic expressions (i.e., expressions intro-
duced by ruleDyN-ATOMIC-EVAL). Theconflict relation on atomic expressions ikl is the transitive
closure of the following relation: the pait, j) is in the relation ifi, j € I, i # j, and there are conflicting
memory accesses anda; (i.e., two accesses to the same location, with at least ongte)wuch that (a)
a; occurs in the reduction of an atomic expressign(b) a; occurs in the reduction of an atomic expression

ej; (c) the reductions o¢; ande; occur in parallel undercobegi n_nd, and (d)a; precedes:; in Hp.

Notice that we put the relationnly on parallel expressions underobegi n.nd expressions, not
cobegi n expressionsand wedo not include any conflicts occurring outside of atomic egpions That
is because the type system will guarantee that there amntt@nflicts betweerobegi n tasks or outside
of atomic expressions; this is the soundness result thatrewe in the next section.

Now we can define the weak isolation constraint on execuiitize language:

Definition 6.3.4 (Weakly isolated histories)Let H be a history. If the conflict relation oait om ¢ expres-

sions inH is a partial order, then we say tha&l is weakly isolated

In the rest of this chapter, we assume we have an implememtidiat guarantees weakly isolated histo-
ries. It should be clear that this assumption is equivalemidak conflict serializabilityi.e., serializability
of tasks with respect to accesses occurring in atomic esiores), which is guaranteed by any standard

transactional implementation, even a “weakly atomic” one.
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6.3.3 Soundness

Static Environments, Preservation, and Noninterference:First we reassert Theorem 6.2.1 for the ex-

tended language.

Theorem 6.3.5(Validity of static expression typing)Theorem 6.2.1 holds for the deterministic-by-default

language defined in Section 6.3.

Proof. By a simple extension of the proof of Theorem 6.2.1, usingypang rules for the new expressions,

and the fact thasitomic andnonatomic take valid effects to valid effects. O

Lemmas 6.2.2 and 6.2.3 obviously hold for the determinisyielefault language. We reassert Theo-

rem6.2.4:
Theorem 6.3.6(Preservation) Theorem 6.2.4 holds for the language defined in Section 6.3.

Proof. Again by structural induction. The arguments for all expiess except the three with new rules
(cobegi n_nd, at omi ¢, andcobegi n) carry over from the proof of Theorem 6.2.4. For those three

expressions, the result follows from the induction hypsitieand by construction. O
Lemma 6.2.5 and Theorem 6.2.6 obviously hold for the extétaleguage. We reassert the theorem:

Theorem 6.3.7(Noninterference of effect farobegi n branches) Theorem 6.2.6 holds for the language

defined in Section 6.3.

Race Freedom:The following theorem implies that program execution irfree, assuming an implemen-
tation that imposes a synchronization orderadrom ¢ expressions consistent with the conflict relation in
Definition 6.3.3. This property is true, for example, of argrisactional memory implementation.

To state the theorem, we extend Definition 6.3.2 in the ols/igay to include parallel histories under
cobegi n. We say that two histories that occur in parallel under eitt@egi n or cobegi n_.nd (or

both) occuiin parallel.

Theorem 6.3.8(Synchronization of conflicting memory operation§upposd- P, and fix a program
execution historyHp». Then for any two conflicting memory accessgs®nd a, occurring in Hp, either
(1) a1 and ay do not occur in parallel; or (2)a; and as are ordered by the conflict relation given in

Definition 6.3.3.
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Proof. Supposez; anday are conflicting accesses that occur in parallel. Theoren8 8ays they cannot
occur in parallel under aobegi n, so they must occur in parallel undecabegi n_nd with subexpres-
sionse; ande;. Now suppose (without loss of generality) does not occur inside any atomic expression
contained ire;. Then the effect of branchof thecobegi n_nd contains the effect generated by which

is not an atomic effect. By Theorem 6.3.7, the static efféthe first branch of theobegi n_nd contains

a supereffect of that effect, and similarly for the othemlofa But that means thath- nondet(E, E’) is not
satisfied as to the static effects of the two branches, sddakE=GIN_.ND does not apply, and the program

is not well typed. O

Corollary 6.3.9 (Race freedom)If - P, then a historyHp that is weakly isolated according to Defini-
tion 6.3.4, and has synchronization orderings consistétit thie conflict relation stated in Definition 6.3.3,

contains no data race.

Strong Isolation: The strong isolation result says that certain expressioagaaranteed to be reduced
“as if in isolation” (i.e., as if there were no interleavingéthe steps of reducing other expressions with
the steps of reducing that one). To state the result formakyuse the well-known concept sérializable

histories[97].

Definition 6.3.10(Serial histories) A history H witnessing((e, 2, 0);, H) ~p ((0,%, E);, H') is serial
with respect to expressiohif every step in the history transforms expression a subexpression of expres-

sion;.
For example:

e The whole program history is serial with respect to the maogmm expression, because all of it

reduces the main expression.

e If the main program expressiam is seq( e, €') , then the histories reducingande’ are each serial

with respect to those expressions.

e Ingeneral, the reductions efande’ embedded in the reductions@bbegi n( e, ') orcobegi n.nd( e, ¢)

are not serial.

e In general, ifseq( e, €¢') is reduced inside aobegi n or cobegi n_nd, then the reductions of
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ande’ are not serial, because they may be interleaved with thectieds of the other expression of

thecobegi norcobegi n_nd.

Definition 6.3.11(Serializable histories)Fix a program execution histodd», and letH be a subhistory of
Hp witnessing((e, X, 0);, H) ~p ((0, %, E);, H'). H is serializable with respect to expressiarif there
exists a program execution histol, such that (1JH’, contains a subhistor§d’ with the same initial and
final states a¥; and (2)H' contains subhistorl” witnessing (e, 3, 0);, H") ~p ((0, X, E);, H") that

is serial with respect to expressionfor some heaps/” and H"”.

Intuitively, an expression reduction is serializable if foe@uld have done it serially,” with the same
results. For example, in any execution historyPofvhereep is cobegi n( e, €’) , the reductions of and
¢’ are serializable with respect to those expressions, bedhese are no conflicts between the steps of

reducinge ande’ (Theorem 6.2.6).

Theorem 6.3.12(Strong isolation) Suppose- P, let Hp be a weakly isolated history executify and
let H be a subhistory oHp witnessing((e, X2, 0);, H) ~p ((0,%, E);, H'). ThenH is serializable with
respect to expressiohif (1) (e, X, 0); is not a subexpression of ampbegi n_nd expression; or (2) no

atomic expression appears l; or (3) e is acobegi n or atomic expression.

Proof. (1) If (e, X, 0); is not a subexpression of acpbegi n_nd, then eitherH is a serial reduction, or
(e, X, 0); is a subexpression of one or marebegi n expressions. In the latter case, for eactbegi n
branch of which the reduction dt, X, ()); is a subsequence, reduction of the otbebegi n branch is
noninterfering (Theorem 6.3.8). Therefore, there can beomdlicts with the reduction of other expressions,
soH is serializable with respect to expression

(2) By (1) it suffices to show that the reduction(ef 3, {}); does not interfere with any reduction occur-
ring in parallel undecobegi n_nd, because noninterference implies serializability. Ssppbere exists a
cobegi n_nd expression with branch expressianisande,, such that the reduction of expressiois con-
tained in the reduction af;, and the reduction of;, interferes with the reduction of expressiorBecause
the reduction of expressioinhas to atomic expressions, it cannot produce atomic effetierefore the
reduction of expressionhas a non-atomic dynamic effect that conflicts with someceffethe reduction of
ex. By the argument given in the proof of Theorem 6.3.8, thisncamappen for a well-typed program.

(3) cobegi n(¢€, ¢”): Same argument as for (2), because by rulNBCOBEGIN-ACCUMULATE,

reducing acobegi n expression cannot produce an atomic effect.
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atomi c ¢': Assume expressions ande; as in thecobegi n case. By Theorem 6.3.8, any pair
of interfering accesses, one in the reductiorepfnd one in the reduction ef;, are both contained in
atomic expressions contained in the enclosindpegi n_nd. The result follows by the assumption of weak

isolation. O

Determinism by Default: We now show that the nondeterministic languagieigrministic-by-defaultthat
is, if an expression has a serializable reduction accorifiheorem 6.3.12, and the expression reduction
does not contaicobegi n_nd, then the reduction has deterministic input-output seiosnt

First, we state the equivalent of Theorem 6.2.9 for the ntamdenistic language:

Theorem 6.3.13(Semantic equivalence cfobegi n andat oni ¢ seq). Supposé- P. Then

(cobegi n(e,e’), %, 0);, H) ~p ((0,3, E);, H')

with initial state(e;, H) if and only if

(atonic seq(e,¢),S,0)s, H) ~p ((0,3, E);, H')

with initial state (e;[(cobegi n(e, €') ,%,0); < (atoni ¢ seq(e, €),%,0),], H).

Proof. As in the proof of Theorem 6.2.9, the if direction is obviobscause the reduction ekq is one
legal reduction ot obegi n. For the only if direction, if the reduction of expressipdoes not occur inside
acobegi n_nd, then the result follows from Theorem 6.2.9. Otherwise, bgdrem 6.3.12, there exists a
history witnessing

(cobegi n(e,e),3,0);, H) ~p ((0,%, E);, H')

with initial state (e;, /), in which the subhistory witnessing the reduction of expi@s: is serial with

respect to expressian By Theorem 6.2.9, that history witnesses the result. O
Finally, we state and prove the property of determinism e

Theorem 6.3.14Determinism by default)Supposé- P, and letH be a history witnessing(e, 3, 0);, H) ~»p
((0, %, E);, H') that is serializable with respect to expressigmhere nacobegi n_nd expression appears

in the reduction ot. If ((e, 3, 0);, H) ~p ((¢/, X, E");, H") with the same initial state as H, theno = o,
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where= denotes equivalence up to renaming object referencesFardE’. Moreover, if(e, ¥, 0)); is not

a subexpression of amyobegi n or cobegi n_nd expression, thell’ = H".

Proof. If (¢,%,(); is not a subexpression of aspbegi n_nd expression, then the result follows directly
from Theorem 6.2.10. Otherwise, by the definition of a siemadlle history,o’ and E’ must be defined by
a history that is serial with respect to expressjomwhich (as discussed in the proof of Theorem 6.2.10), is

unique up to the choice of object reference identifiers. O

6.4 Atomic Regions Language

This section describes the static and dynamic semanticgtsdesr the atomic regions language. If the
isolation semantics of atomic expressions (Section 6i8i#)plemented via software transactional memory
(STM), then atomic regions allow for more efficient STM implentations, by telling the compiler where
memory accesses are guaranteed to be noninterfering isigidec expressions. No STM synchronization

operations (sometimes called “barriers”) are necessarguch accesses.

6.4.1 Static Semantics

We add the predicatatomic(p) to the environment, to indicate whethBris an atomic region parameter:
I ::=...|atomic(p)

Basic Program Elements: We modify the rules for valid classes and types, to make shae atomic
parameters are instantiated only with atomic regions, amatomic parameters with nonatomic regions.
This strategy ensures that a particular memory region iay@wreated consistently (given barriers or not)

inside a transaction.

CLass-AtomICc {(t hi s,C<p>),atomic(p)} - F* {(t hi s,C<p>),atomic(p)} - M*

-class C<atom ¢ P>{F*M*}
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I'eT
TypPe class C<p>{ F*M*}eP I'+R T I nonatomic(R)

I'-C<R>

TypPe-ATOMIC class C<atomicp>{F*M*}ecP I'R I atomic(R)

I'-C<R>

The predicateatomic(R) andnonatomic(R) say whether a region is atomic:

I' - atomic(R) ‘

ATOMIC-NAME atomicregionreP  ATOMIC-PARAM atomic(p) € T’

I F atomic(r) I' - atomic(p)
I' = nonatomic(R) ‘
NoNATOMIC-NAME  regionr e P NONATOMIC-PARAM  atomic(p) € I’
I' - nonatomic(r) I' - nonatomic(p)

Typing Expressions: The new rules for the judgmefitt atomic(E) = E’ say that an atomic expression
“makes an effect atomic” only if the effect is on an atomicioeg Non-atomic regions never generate

atomic effects, even inside a transaction.

I' - atomic(E) = £’

ATOMIC-READS ATOoMIC-READS-1
I' - atomic(R) I" = nonatomic(R)
I' - atomic(r eads R) =atom ¢ reads R I' - atomic(r eads R) =reads R
ATOMIC-WRITES ATOMIC-WRITES-1
I' F atomic(R) T" - nonatomic(R)
'+ atomic(writes R)=atomc wites R 'k atomic(writes R)=wites R
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6.4.2 Dynamic Semantics

The dynamic semantics of this language variant is exactlgign in Section 6.3.2, with the following

changes:

1. Marking effects in rule PN-ATOMIC-MARK-EFFECTSNoOwW happens according to the definition of
() + atomic(E) = E’ given above, i.e., effects are marked atomic only if theyrafgeon atomic

regions.

2. We redefine the conflict relation on atomic expressionghabonly conflicts involving accesses to
atomic regions are synchronized by the implementations Tkiv conflict relation replaces Defini-

tion 6.3.3 and is stated below.

Definition 6.4.1 (Conflict relation omat om ¢ expressions) Fix a program execution historfdp, and let

I be the set of expression identifiers appearindip that label atomic expressions (i.e., expressions intro-
duced by ruleDyN-ATOMIC-EVAL). Theconflict relation on atomic expressions ikl is the transitive
closure of the following relation: the pait, j) is in the relation ifi, j € I, ¢ # j, and there are conflicting
memory accesses anda; (i.e., two accesses to the same location, with at least ongte)wuch that (a)

a; occurs in the reduction of an atomic expressign(b) a; occurs in the reduction of an atomic expression
ej; (c) botha; anda; access fieldd” f i n R whose declared regioR is an atomic region or an an atomic
region parameter; (d) the reductions @fande; occur in parallel undecobegi n_nd; and (e)a; precedes

a; in Hp.

Notice that we state the conflict relation in terms of gtatic class declaration. For example, given a
class declaration
class C<atomic P> {

int x in P

}

any effect generated by access toi s. x would be included in the relation. However,Rfwere not
declaredat oni c, then the access would not be included. We do this to modetgiber implementation
that would insert barriers, or not, according to the infdiioraavailable in the program text at the point of
the access. The actual region bound to a region parametet éavailable to the compiler code generator at

that point.
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6.4.3 Soundness

Theorem 6.4.2. Theorems 6.3.5-6.3.7 hold for the language defined in $e8tio

Proof. The only new thing to show is that atomic effects are still agad consistently. But this is clear

from the fact that the static and dynamic semantics use the sales for marking atomic effects. O

Theorem 6.4.3(Synchronization of conflicting memory operation§g§uppose- P, and fix a program
execution historfHH». Then for any two conflicting memory accessgandas occurring inHp, either (1)
a1 andas do not occur in parallel; or (2)2; andas are ordered by the conflict relation given in Definition

3.1.

Proof. By the same argument as for proving Theorem 6.3.8: any othielop conflicting accesses cannot
generate atomic effects, and so aren't allowed to intetigrine static type system. The only wrinkle is that
the conflict relation is based on static region parameterd,tlae runtime effects are based on the regions
bound to the parameters. However, the rules ensure thahiputing the actual effect of a field access, the

region in the dynamic effect is atomic if and only if the paeder in the field definition is atomic. O
Theorem 6.4.4(Strong isolation) Theorem 6.3.12 holds for the language defined in Section 6.4.

Proof. The argument is the same as in proving Theorem 6.3.12, et caseat oni ¢ e. In that case
we modify the argument to observe that by the static senmnties, any pair of interfering accesses, one
in the reduction ok; and one in the reduction ef, must both be in atomic expressions, and must both be

accesses that are statically called out as operating oriategions. O

Theorem 6.4.5(Semantic equivalence a@fobegi n andat om ¢ seq). Theorem 6.3.13 holds for the

language defined in Section 3.
Proof. Same argument as Theorem 6.3.13, using Theorem 6.4.4. O
Theorem 6.4.6(Determinism by default) Theorem 6.3.14 holds for the language defined in Section 3.

Proof. The same argument given in Theorem 6.3.14 goes through. O
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Chapter 7

Specifying and Checking Effects for Framework APIs

This chapter extends DPJ as described in the previous echagteit can check that the uses of object-
oriented parallel frameworks conform to their effect sfieations. Section 7.1 discusses some limitations
of effect systems, including DPJ, that we must overcome ppaed frameworks. Section 7.2 presents
new programming techniques and effect system featuregémifying and checking effects generated by
the uses of frameworks. Section 7.3 discusses an evaluatitime techniques described, in which we
wrote three separate frameworks and used each one to imglemealistic parallel algorithm. Section 7.4

discusses related work.

7.1 Limitations of Region-Based Systems

As the previous chapters illustrate, DPJ's effect systenuite expressive, and it is a natural choice for
checking the effects of framework uses. However, all regiased effect systems, including DPJ, impose
some limitations that we must address in our framework desis we will see, by shifting some of the

burden of guaranteeing noninterference from the type systethe framework, we can overcome some of

these limitations.

public class Node<regi on R> {
int data in R
Node<*> next in R
public Node(int data, Node<R> next) pure {
this.data dat a;
t hi s. next next ;

Figure 7.1:Node class

To illustrate the limitations, consider the code in Figures and 7.2. Figure 7.1 defines a simple list
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cl ass NodePair {
regi on First, Second;
Node<First> first in First;
Node<Second> second i n Second;
NodePai r (Node<First> first, Node<Second> second) pure {
this.first = first;
this.second = second;
}
voi d updat eNodes(int firstData, int secondData) {
cobegin {
/* wites First =/
first.data = firstData
/* wites Second */
second. data = secondDat a;

—

Figure 7.2: Using region parameters to distinguish objestiinces

node class that we will also use in subsequent sections. [Bks lsas one region paramekerThe fields
dat a andnext in lines 2-3 are both located in regiéh Figure 7.2 shows a simple container class,
NodePai r, that stores a pair of list nodes.

One limitation is that to guarantee soundness we have talprelwapping off i r st andsecond in
the example:

voi d swap() {
Node<First> tnmp = first;

/+ illegal, can't assign Node<Second> to Node<First> */
first = second;
/+ illegal, can't assign Node<First> to Node<Second> */

second = tnp;

If we could do such an assignment, then we could have multgferences with conflicting types pointing
to the same data, and we would no longer be able to draw sounuibistons about effects.

For this reason, DPJ and other region-based systems [8@jilgeard types that allow freer assignment.
In DPJ, the wildcard type is a partially specified RPL (i.e.RPL containing: ), as described in Chapters 3
and 4. For example, in lines 3—4 of Figure 7.2, we could haveemrboth typesNode<* >, wherex stands

in for any region. Now the swapping shown above is fine, bexthestypes of the variables don’t constrain

what regions can appear in the dynamic types of the refesemsgigned to them. However, we have lost

the ability to distinguish writes tbi r st . dat a andsecond. dat a using the type system, because now

146



all we know is that the writes in lines 12 and 14 are torhis is true even though by inspecting Figure 7.2,
we (as opposed to the type system) can see that (1) regianst andSecond are distinct coming into
the constructor (line 5); and (2) tleavap operation preserves the distinctness-of st andSecond in
the dynamic types dfi r st andsecond. So the state of the art in region-based type systems foscts u
choose: either we can prove that two references don't alrase can swap the two references, but not both.
In fact, the situation is worse than this. As shown in FiguBs @NodePai r holding list nodes can have
cross links. The effect system must ensure that (1) the @bgssociated with fieldsi r st andsecond
are distinct; and (2) when following the references to astles objects in parallel, the cross links are never
followed to update the same object. Further, we probablytdeemt to encode the write tdat a into the
framework implementation, as shown in lines 12 and 14. &uktas discussed in the introduction, we would
like to express the operation abstractly, and let the uggplguhe specific operation. We therefore must
constrain the effects of the user-supplied method so thatameargue that for any user-supplied method,
this kind of interference cannot happen. Finally, we doedlly want aNodePai r class; instead, we want

aPai r <T>, whereT is a generic type.

Figure 7.3: A potential race caused by cross links. The eefggs stored in tidodePai r are distinct; but
a race can still occur if the task operating on the left-hafdrence follows the cross link represented by
the dashed arrow and performs an update.

7.2 Safe, Reusable Parallel Frameworks

We now show how to address the challenges discussed abowéteécsafe, reusable parallel frameworks.
First we define an abstract disjoint container, which presid sample framework API to illustrate our ideas.
Second, we show how to write the API so that the frameworkewdan reason soundly about effects for a

container specialized to list nodes. Third, we show how terek the type system to make the API generic.
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Finally, we address the problem of writing a correct framdwmplementation.

Although most of this section focuses on the disjoint cord@aias an example, the work is not specific
to container frameworks. Section 7.3 shows how to use thee saohniques to write a framework for
expressing pipeline parallelism, which is a parallel coinitiom not available in basic DPJ. Moreover, the
next section formalizes these techniques and their sossgmeperties in general terms, without specifically

considering disjoint containers.

7.2.1 Abstract Disjoint Containers

We define an abstract data type calledadastract disjoint containerto use as an extended example. This
type generalizes the trividlodePai r container introduced in the previous section. An abstragjoidt

container is an abstract data type with the following propsr

1. Stored referenceslt contains references to other objects. The number of dtoeterences can be

fixed up front (as with an array) or changed dynamically (af @&iresizable array or set).

2. Slots. The elements are conceptually stored in slots. An iteraiiar the elements in the container
iterates over the slots. For example, for an array, the aletshe array cells; for a set the slots are the

set elements; and for a tree the slots are the tree nodes.

3. Disjointness of slot regionsAt runtime, every slots; either isnul | or points to an object with a
regionR; in its type. For any # j, if s; ands; are both nomul | , thenR; and R; aredisjoint (i.e.,

R; and R; refer to nonintersecting sets of regions).

Property 1 is standard for a container ADT, e.g., any of thetaioers inj ava. util. We introduce
property 2 just so we have a way to talk about the iteratiorcesjod a container that is independent of the
internal storage pattern (array, tree, etc.). Propertytl3dkey to ensuring soundness when the user calls an
API method to iterate over the container and update its otsia parallel. As discussed more fully below,
the API can constrain a user-supplied method to have efieict es R;; that is, it may operate only on the
region Rz; of slot s;, and not on anyz; of a different slot or any other region (such as a region cointg a
global variable).

In the interest of concision, we refer to the slots of the amr, or the container itself, as “disjoint,”

when in fact we mean that the associated regions of the sletsligjoint. Note that both versions of
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NodePai r from Section 7.1 are instances of the abstract disjointasoet type, where the slots are the
fieldsf i r st andsecond, and the associated regions &ier st andSecond. Fi r st andSecond are

disjoint, because they are distinct names.

7.2.2 A List Node Container

We now show how to use the DPJ type system as described iropseehapters (i.e., without extending
the effect system yet) to write an abstract disjoint coraiaP| that storesNode objects and allows safe
parallel updates to the stored objects. The disjoint coatamplementationis not specified; it could be
any container (set, list, tree, etc.). The point is that witlvéi able to write a container API that (1) stores
as elements list nodes, which may have cross links betwesn, tas shown in Figure 7.3; and (2) allows
update operations on the elements to be deeffely in paralle] despite the presence of the cross links.
While the list node container is somewhat artificial, we wiktend the example to a more generic (and more
useful) container in later sections.

Writing the list node container API presents two problemsintaining disjointness, and reasoning
about effects. Our key insight is that through careful APdige, together with judicious use of method
region parameters, we can enforce restrictions like “afganethod must return a new object” or “an apply
method must write only to the region of the object it is giVeRurther, we can impose these restrictions
without exposing region names (suchFas st andSecond in Figure 7.2), that would otherwise prevent
swapping and other disjointness-preserving operatiaiderthe framework.

Maintaining Disjointness: To maintain disjointness, we use the following strategy) \lery container

starts empty and so is trivially disjoint; and (2) every @iiem provided by the disjoint container API is
disjointness-preserving (takes a disjoint container totlar disjoint container). By a simple induction,
we can then conclude that the container is disjoint througlis lifetime. The hard part is guaranteeing
property (2). There are two types of operations to consi@groperations that are totally under the control
of the container implementation and (b) operations thattimosperate with (possibly unknown) user code.

An example of (a) is a tree rebalancing or array shuffling trates only on the internal structure
of the container. Here the problem is entirely reduced tdingia correct framework implementation
(Section 7.2.4). In the case of (b), however, the framewoulstmestrict what the user can do so that the

framework author can reason soundly about uses of the centaiithout knowing exactly what that use
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will look like. A core example is putting things into a comiar. For the container to be useful, the user has
to retain control over what is inserted in the container, lama and where those inserted things are created.
The trick is to allow some control while still being able tas®n about disjointness. We have explored the
following two strategies: building one disjoint contairiesm another, and controlled creation of contained
objects.

Figure 7.4 shows the simple list node container API that veetasllustrate these strategies. There are
two region parameter&N andRC, because we want to refer separately to the nodes stored aotitainer,
and the container itself. In line 1, we useegion parameter constraifdescribed in Chapter 3) to require
that for any instantiation dfodeCont ai ner that bindsR; to RNandR; to RC, R;: * andRs are disjoint.
This ensures that reading the container to traverse the dt@ts not interfere with updating the contained
objects.

Building one disjoint container from anothelf. we start with a disjoint containef’;, and we create a new
disjoint containerCs, we can populat&€’s by copying the reference elements from the slot€'ofto the

slots ofC'y, andCs will also be disjoint. An example is creating a tree out of #hements of an array or set.

public interface NodeContainer<region RN,RC | RN:* # RC {
/+ One |linear container fromanother =/
publ i ¢ NodeCont ai ner ( NodeCont ai ner<RN, RC> ¢) wites RC
/+* Controlled creation of contents =*/
publ i ¢ NodeCont ai ner (NodeFactory fact, int size) wites RC
public interface NodeFactory {
public <regi on R>Node<R> create(int i) pure;
}
/= Data parallel operation on all elenents =/
public void perfornnAll (Operati on<RN> op) reads RC writes RN: *;
public interface Qperation {
public <region R>void operateOn(Node<R> elt) wites R
}
}

Figure 7.4: Framework API for an abstract disjoint list nadatainer

Line 4 of Figure 7.4 illustrates how we might implement thisategy in DPJ. It says that given one
object of typeNodeCont ai ner <RN, RC> we can create another one. An important special case in DPJ

is creating a disjoint container from @amdex-parameterized arrayAs described in Chapter 3, the index-
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parameterized array type is an arvaguch that cel[ /] has atype likd.i st Node<] 7] >that is parame-
terized by the integer value This guarantees disjointness for the array, becausedimnie:] is distinct in
the type of each array cell. However, because the paramedepes are exposed to the rest of the program,
it also means that we cannot shuffle the array elements wittmupromising soundness. (This is exactly
the same problem discussed in Section 7.1, just with arriés/regher than fields.) If we construct a disjoint
container by copying in elements from the cells of an indarameterized array, then we obtain a container
that is disjoint, but on which we can also perform disjoiissypreserving operations, such as shuffling, that
were prohibited for the original array by doing thémternally within the framework.
Controlled creation of contained objectsines 7—10 of Figure 7.4 illustrate this strategy, for arifdce to
NodeCont ai ner that could be implemented in different ways (array, treg). éthe container implemen-
tation does the actual object creation, but the user spe¢ifeenumber of objects to create and provides a
factory method specifying how to create tile object. For example, a use could look like this, assuming a
classNodeAr r ay that implementdNodeCont ai ner:

[+ I nplenent concrete create nethod */

public class MyFactory inplenents NodeContai ner. NodeFactory {

public <regi on R>Node<R> create(int i) {
return new Node<R>(i, null);
}

}

/= Declare new regi on nanes NodeRegi on and Cont ai ner Regi on */

regi on NodeRegi on, Cont ai ner Regi on;

/+* Bind the declared nanes to the paraneters in the type =/

NodeCont ai ner <NodeRegi on, Cont ai ner Regi on> ¢ =

new NodeArr ay<NodeRegi on, Cont ai ner Regi on>( new MyFactory(), 10);

This code creates a neModeAr r ay with 10 list nodes, such that théh one has itglat a field set to:.
NodeRegi on andCont ai ner Regi on are region names declared by the user and bound to the region
arguments in the instantiated types.

The important thing here is that the “factory method” musilyebe a factory method and not, for ex-
ample, just fetch some object reference from the heap anel tsite same one into each slot of the container.
The framework author can enforce this requirement by jodigiuse of anethod region parameteNotice
that in line 10, the return type of the factory method is wenttn terms of a paramet&that is in scope only

in that method. Further, no reference assignable to Ngue<R> enters the method. Therefore, the only

way aNode<R> can escape the method is if it is created inside the methodexia
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This strategy gives the framework control over disjoingnbg hiding the actual regions in the types of
the created objects; the user only ever deals with them gfhrdlue method region parameter in the factory
method. For example, an array framework instantiated ®with= N could give theNode object stored
in slot i the typeNode<N: [ i] >, whereN: [ 7] is the index-parameterized RPL discussed above. Unlike
the case of the index-parameterized array, however, thatwould never be seen by the user, unless the
framework allowed it. The framework might simply not progiény way to ask for a reference to the
element in slot. Or, it might give out such a reference with tydede<N: * >, saying that the exact region
in the type is statically unknown. This is sufficient becauremost cases, the user code does not need to
distinguish these types since the parallelism is encajggliaside the framework. The framework could
give out a reference with ty@dode<N: [ 7] > if it could soundly match references to their original iretic
e.g., if no shuffling of references happened inside the fraorie
Reasoning about EffectsiLines 17-22 of Figure 7.4 show the part of the API that alldwesuser to define
a method and then pass that method into the container to tiecgppparallel to all contained objects. For
example, given referenaeof type NodeCont ai ner <N, C>, the user could do this:

public class MyOperation inplenments NodeContai ner. Qperation {

public <regi on R>voi d operateOn(Li st Node<R> elt) wites R {
++el t. dat a;
}
}

c. performOnAll (new MyOperation());

This code increments treat a field of each of the objects storedanin parallel.

Effect ofoper at eOn: In the definition of the abstractper at eOn method in theDper at i on interface
(lines 20-21 of Figure 7.4), we again use a method regiompeterR. We write the type of the formal
parameteel t asNode<R>, and we specify the effect ag i t es R. This causes two things to happen.
First, the DPJ type system requires that any user-suppliettiad implementingpper at eOn must have

a declared effect that is subeffectof wi t es R For exampleyr eads R is allowed, but reading or
writing some other region is not. (The relevant rules foreftdrts are given formally in the next chapter;
see also Chapter 4.) Second, because the regions in thésobifghe slots are disjoint, the actual regions
bound toR at runtime will be disjoint as the framework traverses ttesshnd applies the user-supplied
method. Together, these two facts guarantee that the £fiéthe iterations in the parallel traversal will be

noninterfering.
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As an example, consider the user code shown above for ugdahiode. That code is legal, because
dat a is declared n RinsideNode, which become$ n R (because of the type @l t ) in the scope of
oper at eOn. However, following thenext field to updatedat a of a different object isiotlegal: because
thenext field has typd.i st Node<* >, the effect of that update isri t es *, which is not a subeffect
ofwites Rand so is not allowed. So the API prevents the problem not&ibure 7.3 of causing a race
by following cross links. The cross links themselves arevedid, but problematic traversals of them are not.

Effect ofper f or nOnAl | : In Figure 7.4, we have written the effectpér f or mOnAl | as

reads RC wites RN *.

This is correct if, for a particular implementation of thearface, (1) the slots have typdde<RN: * >;
and (2) the implementation gfer f or nOnAl | reads the container and applies the usepgr at eOn
method to the references in the slots. The framework writeesponsible for ensuring that both facts are
true. In fact, if the framework itself is written in DPJ, thbath facts are checked by the DPJ compiler. We
will have more to say in Section 7.2.4 about implementingftamework. For now, note that the effect of
oper at eOn is theonly effect on the regions of the nodes themselves; and becaaseftbct is partially

specified RN: *), the framework has freedom to implement the slot regiortiffarent ways.

7.2.3 Getting More Flexibility

As noted above, the list node container is a somewhat aatifisiample; it is too specialized to be really
useful. We now show how to extend the example to make it moneriz Doing this will require some
extensions to the DPJ effect system, as discussed below.
Making the Effects Generic: The first thing that is too restrictive is the bound on the &ffeof the user-
definedoper at eOn. For instance, what if the user wants to specifyogrer at eOn method that reads
some other region that is disjoint frof: =, where R is the region bound t&N in the instantiation of
the framework interface? That is safe and should be allolwedause it cannot interfere with the effect
writes RN * of perfornOnAll. Yetitis disallowed by the effect specificatiami t es Rin the
API.

To address this problem, we use effect polymorphism [82] giMe theOper at i on interface an effect

parameteE (similar to a region parameter, but it specifies an effe@) becomes bound to an actual effect
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when the interface is instantiated into a type. To make tinggegyy work, we need to solve two problems:
(1) constraining the effect arguments so that the effeciavaking the user-supplied method on different
objects are noninterfering; and (2) ensuring soundnesshayging when we add effect parameters.

public interface Qperation<effect E> {
public <regi on R>voi d operateOn(ListNode<R> elt) wites R effect E;
}

public <effect E| effect E # reads Cont wites RN.» effect E>
voi d perfornOnAll (Operation<effect E> op)
reads RC writes RN:» effect E;

Figure 7.5: Making the effects of ti@er at i on interface generic

Constraining the effect argument@bviously the framework cannot let the effect variaBlbecome bound
to an arbitrary effect in the user’s code, because then wddihmiback to the problem of a user-supplied
method with unregulated effects. Instead, we introduceféett constrainthat restricts the effect of the
user-supplied method.

Figure 7.5 shows how to write the effect variables and caing. We define th€per at i on interface
(line 1) with an effect variabld&e. We also give theger f or nOnAl I method (lines 6-8) &onstrained
method effect parametét. After the parameter declaration is a constraint spedifyirat the effect bound
to E must be noninterfering witheads RC writes RN * effect E. This constraint ensures that
the supplied effect will not interfere with (1) the effecéads RC of reading fields of the container; (2)
the effectwr i t es RN: * of updating the nodes; and (3) itself. The latter means Ehatust either be
a read-only effect, or it must be an effect such as a set itisatrtis declared to commute with itself (see
Chapter 3).

As an example, here is a user-supplied method that putsedlidbe objects in regioNodeRegi on
and reads regiod obal Regi on to initialize all the objects with the same global value:

public class MyOperation inplements
NodeCont ai ner. Oper ati on<r eads d obal Regi on> {
public <regi on R>voi d operateOn(Node<R> elt)
reads G obal Region wites R {

/* Assune global is in region d obal Regi on */
elt.data = gl obal;

}
}
c. <reads d obal Regi on>perforntnAl | (new MyQperation());
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Notice that the constraints are satisfied. Fi@tpbal Regi on andNodeRegi on are different regions,
sor eads G obal Regi ondoes not interfere with the effeatr i t es NodeRegi on: * of updating the
nodes. Second,eads d obal Regi onis a read-only effect, so it is noninterfering with itself.

As a matter of notation, notice that in lines 6—8 of Figure, Tt effect appearing in the constraint
on the method effect parametér(line 6) is identical to the effect of the method for which therameter
is declared (line 8). This is a common case. In this case, &®rhand, we allow the user to omit the
constraint and just declare the paramé&#r Using this shorthand, lines 6—8 of Figure 7.5 would loole lik
this:

public <effect E#>void perfornOnAll (Operation<effect E> op)
reads RC writes RN:» effect E;
Soundness of subtyping@®nce we add class types like< £>, where F is an effect argument, we need a
rule for deciding ifC<E;> is a subtype of2<E>>. We could require thak’; and E5 be identical effects,
but this would be unnecessarily restrictive. Instead, wéslebe asubeffecof E£5. With this approach, the
key to showing the soundness of effect is to stigpe preservationi.e., that the dynamic types of object
references always agree with the static types of variahkgshiold them.

However, enforcing type preservation in the presence eteffariables is tricky. For example, consider
the following shippet:

class C<effect E> { C<effect E>f; }

C<writes r> x = new C<pure>();
By the subtyping rule stated above, this code is legal. Baer tlihat is the static type of. f ? The obvious
answer isC<wr i t es r > (substitutingwr i t es r from the type ofx for E in the declaration of ), but
this is incorrect. For in that case, a reference of tggew i t es r > could be legally assigned to. f .
But the dynamic type ok. f is C<pur e>, andwr it es r is not a subeffect opur e, so the assignment
violates type preservation.

As noted in Chapters 3 and 4, a similar problem occurs witla @@neric wildcards and in basic DPJ
with partially specified RPLs. The solution is to make thdistype ofx. f C<ef f ect E’>, whereFE'is
a fresh effect parameter (called¢apture parametgr The tricky thing here is thatll nonempty effects must

be captured when substituted for an effect parameter in a. tfjhis is because all nonempty effects are
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essentially wildcards: the runtime effect could be equd#héostatic effect, or it could be empty (or possibly
something else, e.g.eads Rinstead ofawr i t es R, orr eads R; instead ofr eads Ry, R»).
Making the Type Generic: The second thing that is too restrictive is that we made thgscépecialized to

list nodes. Instead, we would like to write a generic class

Di sj oi nt Cont ai ner<type T, region Cont>.

Notice, however, that there are two places where we usecetiierr argument to thBlode type to write
the API. First, in writing theNodeFact or y interface (line 10 of Figure 7.4), we used a method-local
parameteRin the return type ofr eat e. Second, in writing the effect gfer f or MOnAl | (lines 6-8 of
Figure 7.5), we used the regi@Nto write both the effect constraint and the effect of updathre contained
objects. If we just replaced these types with an ordinarg tsgriableT, then we would not be able to write
the node factory pattern at all, we would not be able to cairstthe effecte properly, and we would be
forced to use a more conservative effect (suchwast es *) for the effect ofoper at eOn.

To solve this problem, we can use a type constructor [92, 12 takes a region argument. In our

language, type constructors work as follows:

1. A type variableT can be declaretdype T<regi on R>, whereR declares a fresh parameter. We
call R atype region parameterby analogy with a class region parameter, which declaresgiam
parameter in a class definition. When a typdecomes bound td, 7' must have at least one region
argument, andR represents the first region argument. For instancg, # C'<r>, thenR represents

the regionr.

2. We write uses of the variableasT<r>, wherer is a valid region in scopeRitself is valid because
it was declared in the type variabl&<R> represents the unmodified type provided as an argument
to the variable, whileT<r> represents the same type with the region in its first argurpesition

replaced byr.

For convenience, a bare use Dfis allowed within the class body, and this is equivalenfTtR> (in
other words, the type constructdralso functions as a type, with implicit argumd®t We can also write
n parametersT<r egi on Ry, ..., R,>) and argumentsT<ry, ..., r,>), for n > 1. In this case the

argument must have at leasiparameters, and the firatregion arguments are captured, starting from the
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public interface D sjointContainer<type T<region Elt>,

region Cont | Elt:+ # Cont> {

publ i ¢ Di sj oi nt Cont ai ner (Di sj oi nt Cont ai ner <T, Cont> cont) wites Cont;

public <effect E#>Di sjointContainer(Factory<T, effect E> fact, int size)
wites Cont effect E;

public interface Factory<type T<region Elt>, effect E> {
public <region R>T<R> create(int i) effect E

}

public <effect E#>void perfornOnAll (Operation<T,effect E> op)
reads Cont wites Elt:* effect E

public interface Qperation<type T<region Elt>, effect E> {
public <region R>void operateOn(T<R> elt) wites R effect E

}

}

Figure 7.6: API for an abstract disjoint container with gangypes and effects

Final Container API: Figure 7.6 shows the final disjoint container API. Line 1 deet an interface
Di sj oi nt Cont ai ner with one type parametéer and one region paramet@ont . The type parame-
ter has one region parametért that names the first region argument of the type bourid ta line 11, we

write T<R> to require that the return type of eat e have the method region parameReas its first region
argument. In line 16, the regide t is available to write the effects g@fer f or mOnAl | . We do the same
thing for the type parameter of tlf@er at i on interface, in line 17.

Here is an example implementationaiier at eOn, wherec has type

Di sj oi nt Cont ai ner <Node<N>, C.

public class MyOperation inplenments
Di sj oi nt Cont ai ner. Oper at i on<Node<NodeRegi on>, pure> {
public <regi on R>void operateOn(Node<R> elt) wites R {
++el t . dat a;

}
}
c.performOnAll (new MyQperation());

This code is identical to the example given in Section 4.2X&ept that it instantiates the generic con-

tainer instead of the specialized one. The effect argunseptii e, because no effect is needed for this
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implementation obper at eOn, except fomr i t es R, which is already given by the interface (line 19 of

Figure 7.6). The effect of the call wer f or TOnNAI'l isreads C wites N: *.

7.2.4 Writing the Framework Implementation

Having studied the framework API, we now focus on the probtd@nwriting a correct framework imple-
mentation. The framework writer must ensure three proggrtiype preservation, effect preservation, and
noninterference of effect. The key point is tilaé API design discussed in the previous sections provides
all the information needed to reason soundly about thessetproperties, even in the presence of unknown
user-supplied methoddg-urther, the framework author can write the framework inJDiRereby using the
DPJ type and effect system to check some or all of these preperHowever, so long as the properties
hold for all user-visible types and effects, the framewaukhar is free to usénternal operations, such as
swapping references with disjoint regions, that the effgstem cannot prove correct.

Type preservation: The soundness results presented in Chapter 8 show that tgperyation holds for
DPJ as extended in this chapter. Therefore, if the framevwgowkritten in DPJ, then this property will be
checked “for free,” unless the framework does an assignifuming a cast) that violates the typing rules.
The DPJ subtyping rules are quite flexible, so we anticigadéunsound assignments will rarely be needed
in practice to work around expressivity constraints of DPJ.

A more likely case is that casts are used to interface witle ¢bdt is not implemented in DPJ, such as
an off-the-shelf Java container implementation. In thisecéhe framework author must reason about type
preservation using the specification of the non-DPJ code.ekample, pre-Java 5 code implementing a
container might represent the container slots as refesetodebj ect . If references to be stored into the
slots always have type<R>, then it would be sound to cast these referenc&bjoect when putting them
in the container, and back Ib<R> when taking them out. For Java code written with genericsh sasts
should be rare.

Effect preservation: Effect preservation means that the static effect of evaiesient is a supereffect of
the actual runtime effect of every execution of that stammagain, the extended language guarantees this
property, so long as (1) type preservation holds; and (2)yevethod summary covers the effects of the
method body. In DPJ, one can always write a correct methodarsugn(in the extreme cas i t es * is

always correct). So property (2) will hold if property (1)ef0 Here, if the framework calls into non-DPJ
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code, then the framework writer will have to reason abowgat$f manually (i.e., the reasoning cannot be
checked by DPJ).

Noninterference of effect: Noninterference of effect means that parallel tasks hawsondicting memory
accesses. While DPJ can establish noninterference in neas®gcin some cases it may not be able to. For
example, even if a pair of references of ty@er > always points to objects with distinct regions at runtime,

the type system can’t prove that, as discussed in Section 7.1

public class DisjointArray<type T<region Elt> region Cont |
Elt:+= # Cont> inplenments DisjointContainer<T, Cont> {
[+ Internal array representation */
private DPJArrayLi st<T<Elt:*> Cont> elts in Cont;
[+ Implenentation of performOnAll x/
public <effect E#>void perfornOnAll (Operation<T, effect E> op)
reads Cont wites Elt:* effect E {
foreach (int i in 0, elts.size()) {
op.operateOn(elts.get(i));
}
}
[+ Swap el enents at idxl and idx2 */
public void swap(int idxl, int idx2) wites Cont {
T<Elt:*> tnmp = elts.get(idxl);
elts.add(idxl, elts.get(idx2));
elts.add(idx2, tmp);
}
}

Figure 7.7. Array implementation of a disjoint containearfl). DPJArr ayLi st (line 5) is an or-
dinary JavaAr r ayLi st, annotated with region information. The effectalft s. get (i) (line 11) is
reads Cont.

In such cases, the framework author has the freedom to “gud&litthe type system, and use a different
technique to make the noninterference argument. Figurehtws an example. This an array implementa-
tion of Di sj oi nt Cont ai ner. We have chosen to represent the array internally @BBJ&Ar r ayLi st
as shown in line 5. The type argument@DBJAr r ayLi st isEl t : =, reflecting the fact that the dynamic
type of elemenyj isEl t : [ j], as discussed in Section 7.2.1. Tper f or MOnAl | method uses the DPJ
f or each construct (line 10) to iterate in parallel over the slotsh#DPJAr r ayLi st and apply the user-

supplied operation to each of its elements. We also aglgegp method, similar to the method discussed in

Section 7.1, for swapping two elements of the array.
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To show noninterference, it suffices to establish two thinlg for distinct valuesi, the region in
the dynamic type okl t s. get (¢) at line 11 is distinct; and (2) attains distinct values on distinct
iterations of thef or each in line 10. The first statement follows from the inductive argent we made
in Section 7.2.1 about maintaining disjointness: to chahgeshape of the array, we either have to use an
inherited creation method, which preserves disjointnesdistussed in Section 7.2.2, or do a swap, which
also preserves disjointness, as can be seen from the immuiigioa in lines 17-19. The second statement
follows from the semantics dfor each in DPJ (Chapter 3). More generally, one would follow the same
two-pronged strategy to show noninterference for an a tsaV@ver an arbitrary disjoint container: first
show disjointness of slot regiori$;, and then argue that the traversal operates in paralleleoslois.

Notice that once the framework implementer checks norfertence in this way, the user never has
to see or even know about how the checking occurred. From gbhesupoint of view, if the program
type checks, then the noninterference property holds.hEyrthe framework writer is free to use static or
dynamic verification techniques such as program logic, ihchkecking, or testing to check the framework
implementation. We can thus think of the techniques presehere as making DPJ into axtensible
language By writing a suitable API, and doing appropriate checkg fitamework writer can add new
capabilities for parallel operations that provide the sgurantees as if those capabilities had been built in
as first-class parts of the language. A good example of tieeibility is the pipeline framework described
in Section 7.3, which supports a parallel control structhia cannot be expressed in the DPJ language at
all. This extensibility makes DPJ much more powerful thatié only checking mechanism were the type

system itself.

7.3 Evaluation

We have evaluated the techniques discussed above with @&® igamind:

1. Can we use the techniques to write realistic frameworkisuger programs? Do any additional issues

arise in real frameworks or user code?

2. What is the user experience of using such an API? How baaiee is it to write the type and effect

annotations, and how difficult is it to get the annotationgext?
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To perform our evaluation, we first extended the DPJ complsupport effect variables, effect constraints,
and type region parameters as discussed in Section 7.2.Glzaquter 8. Then we studied how to (1) use
our techniques to write generic array, tree, and pipelinenéworks; and (2) use the frameworks to write
three parallel codes: a Monte Carlo simulation algorithBaanes-Hut n-body computation using a spatial
octtree, and RadixSort expressed as a pipeline. We chose theee algorithms because they exemplify
different styles of parallelism: Monte Carlo uses direcidestyle parallelism over arrays; Barnes-Hut uses
recursive, divide-and-conquer parallelism over treed;RadixSort uses concurrent pipelined computations

over a stream of inputs.

7.3.1 DPJ Frameworks

We focused on the framework operations needed for the twohpearks but ensured that the operations
themselves wergeneral i.e., were not specifically tied to the needs of the benchmas discussed below.
Adding more operations is not difficult.

Parallel array framework: We implemented a framework called DPJDisjointAray withaterface similar

to a subset of the ParallelArray API for Java [1]. The API suppthe following operations:

1. Acreat e method that creates an array with a user-supplied factothaode as discussed in Sec-

tion 7.2.1.

2. Awi t hMappi ng method that maps one array to another, element by elemeahtawiser-supplied
mapping function. Like ParallelArray, we provide two forimfisthe mapping: the first takes an index
variable, and the second does not. As in the factory methiberpawe use a method region parameter
Rto ensure that the mapping function creates a new outputtofgjieeach element, and the mapping

function is allowed to writdR.

3. Areduce method that reduces the array to an object, given a startimgemt and a user-specified
Reducer that combines two elements into one. Following the pattésoudsed in Section 7.2, the
two elements coming into tHReducer method are parameterized by method region paramifers
and R2, and the user-supplied method is allowed to write the regioound to these parameters.
Using distinct parameters ensures thatReelucer cannot violate disjointness, e.g., by storing one

object into a field of the other.
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The framework implementation is a thin wrapper that usesrallebArray instance internally to provide all

the operations.

Parallel tree framework: We wrote a framework that provides a tree of user-specifigyg @e., each inner

node has at mositr i t y children) with data of generic typE stored in every node. The API supports the

following operations:
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1. A bui | dTr ee method that takes BPJDi sj oi nt Cont ai ner el t s of objects of typeT and

a positivear i t y and inserts the bodies into the leaves of the tree. The useidgs ani ndex
function that takes & to insert, aT at the current (inner or leaf) node, and at the parent node
of the current node, and computes which of the children ofctireent node to follow next when
inserting the object in the subtree rooted at the curreneéndtie framework creates the inner nodes
as necessary and populates each one with a fresh objectef fypsing a user-specified factory

method.

. Avi si t POmethod that recursively does a parallel postorder treetsal. As shown in Figure 7.8,

this method takes a user-suppliedsi t method that, given & object at the current node and an
ArrayList of V (result) objects produced from visiting the children far | if the current node is a
leaf), produces & object for this node. Again we use two region parametetsandR2, to ensure

that disjointness of th& objects is preserved by the traversal.

public class DisjointTree<type T<region Elt> region Cont>
i mpl enents Di sj oi nt Cont ai ner <T, Cont > {

public <effect E#>double visitPO POVisitor<T, effect E> visitor)
reads Cont writes Elt:+ effect E{ ... }

public interface POVisitor<type T<region Elt>,
type V<region VR>, effect B> {
public <region Rl, R2> V<R2>
visit(T<Rl> data, Arraylist<V<R2>, Cont> chil dResults)
reads Cont wites Rl, R2 effect E

Figure 7.8: The postorder visitor from the region-basediapiaee.

Parallel pipeline framework: We implemented a framework called DPJPipeline that sup@mplications

structured as data flowing through a series of pipeline staggeh of which operates on the data. Following
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Intel's Threading Building Blocks (TBB) [101] and the Strekt language [118], we call the operation
applied by each stagefiter. Each data element flows sequentially through the stagéslifferent stages
can apply their filters to different elements at the same tioneating pipeline parallelism. This parallel
control structure cannot be expressed directly in DPJ agitdes in Chapters 3 through 6.

The DPJPipeline API is parameterized by a tyipelR> for the type of an element, a regi®R for
the pipeline internals, and an effdétthat bounds the user-specified effects of the filters. ThectH is
constrained not to interfere with writing und€R or PR, or with itself, ensuring that filters may safely
update the data elements and the pipeline state. The APbesotwo interfaces for the user to implement:
a filter and a factory method for creating a filter. The API gisovides the following methods for the user

to invoke directly:

1. A methodappendSt ageW t hFi | t er that accepts a user-defined filter factory, uses it to create a

fresh filter, and inserts a stage with that filter at the tathef pipeline.

2. A method aunch that launches one task for each pipeline stage.

Internally, each stage is represented by an object of $g@ge (a private class, not visible to the user) that
stores the user-specifiéd | t er for that stage and maintains an output buffer for the datastproduced
by that stage. The output buffer of a stage is the input biifiethe next stage. Extending our framework to
a recursive fork-join graph, as supported in Streamlt, ogrzegal DAG would not be difficult.

Effect management for this framework works as follows. Methegion parameters on the user-defined
factory methods as discussed previously ensure that etateiild each element is a freshly-created object,

each in its own region. Thii | t er interface looks like this:

public interface Filter<type T<region TR> region FR, effect E> {
public <region R-T<R> op(T<R> iten) wites R, FR effect E;
}

As in the previous examples, this method is invoked only leyftamework, in the stage implementation.
At a particular invocation obp, Ris bound to the region of the data element being operated lbichvis
under the region bound fBR in the DPJPi pel i ne class, and-R is bound to the region associated with
the current stage, which is under the region boun®Ran the DPJPi pel i ne class. The actual effect
bound toE is supplied in the instantiation of the framework and is ¢@ised as discussed above. Thus

the user-defined filter operation is limited to updating tbgians of the data object and the filter state, and
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doing any other noninterfering effects. In particular,ahoot update a data element being operated on by a
concurrent filter, or a different filter.

The framework implementation passes the object returnatidfilter operation from one stage to the
next. The returned object need not be the same as the obgs#ga. However, the region parameger
ensures that the object returned has the same region bolsdype as the input object. In particular, the
return object cannot be a data element processed condyrbgrd different stage, or even a data element

reachable from such a data element, except through a pagfcified RPL.

7.3.2 Application Code

Monte Carlo simulation: We studied the Monte Carlo simulation benchmark from tha &&ande suite [110].
The computation contains three parallelizable loops: tis¢ dne create$ask objects; the second one it-
erates over the objects to compute a return rate for eachaodethe third one reduces the return rates into
a cumulative average.

We parallelized all three loops usidPJDi sj oi nt Array. For the first loop, we used the indexed
form of wi t hMappi ng. Apart from writing to theTask object itself (which does not have to be reported),
the effect of theTask constructor is read-only, so it can validly be used for aggte array creation, as
shown in line 8 of Figure 7.6.

For the second loop, we used the unindexed hMappi ng. We wrote a mapping function that takes
aTask<Tasks> object to aResul t <R> object, whereTasks is a declared region name, aRds the
method parameter provided by the framework. The computatioghe mapping function writes .

For the third loop, we wrote Reducer that takes two objects of tygResul t <R>, reads the accumu-
lated sum from both, adds them, stores the result in the fisst@nd returns it. The write effect is bounded
bywrites R, as required in the APIl. We could also have avoided the wfiezieentirely by creating a
new object and returning it, but that would be less efficient.

Barnes-Hut center of mass computationNext we studied the Barnes-Hut n-body simulation [109],akhi

uses an octree (eight-ary tree) to represent three-dimaadsspace hierarchically, storing the bodies in the
leaves. We focused on the center-of-mass computationhvitdgerses the tree recursively in parallel and
computes, for each node, the center of mass of the subtreedrabthat node. The computation writes into

each node as it traverses it, so the noninterference arguawgnres that the traversal is over a tree. Because
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of this fact, the center of mass computation is hard to doieffity in baseline DPJ; we discuss this point
further in Section 7.3.3 below. It would be straightforwaodparallelize the force computation using the
same array-based techniques that we used for Monte Carlo.

We wrote a program that builds a tree and performs a centerass momputation for a binary tree
computation in one-dimensional (1-D) space. 1-D spacelgiegpthe computation, without changing the
essential patterns of parallelism. We instantiaBfJ Di sj oi nt Tr ee with a Node class that has sub-
classe<Cel | for the inner node data arigbdy for the leaf data, similarly to both the original and Spl&sh-
versions of Barnes-Hut [109]. To build the tree, we wrotd alex method that puts each inserted node
in the left or right subtree based on its position, and a fgctoethod that constructs fre€lel | objects
for each inner node in the tree. To compute the center of massyrote apost Or der Vi si t or that
computes the average position and total mass for the batlit® isubtree rooted at each inner node and
stores them at the node. This visitor returns a padaidbl e values (for typeV in the API) for the average
position and total mass at the current node.

Pipelined radix sort: We used the DPJPipeline framework to write a pipelined wersif radix sort. This
application is directly modeled after the Streamlt Radix®@nchmark [118]. The first stage produces a
stream of arrays to sort, and the successive stages eadheartrays on a different radix, with the radix
recorded in thd=i | t er object ad i nal variable (so reading it produces no effect). Each sort shigye
stores two temporary arrays as persistent mutable dateeifiltér of the region (such that accessing the
arrays produces an effect on the filter region).

When an array enters a sort stage, the filter for that stageestth array element to one of the temporary
arrays, depending on whether the element has a 0 or 1 at thediiiton corresponding to the radix for that
filter. The filter then copies all the 0 elements followed biytlaé 1 elements back into the original array,

and passes it along to the next stage.

7.3.3 Discussion of Evaluation Results

Support for realistic frameworks: Our experience shows that the framework techniques in tbik wan
be used to write realistic parallel algorithms. For thesdesp we did not find any significant challenges
over and above the framework APl we discussed in Sectionl@ the future, we could also easily support

other operations, such as ParallelArray’s filter and apply.
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Classes Methods
SLOC | Defs Params Constraints Args | Defs Summaries Params Constraints Args

Array 41/97 12 21 0 10/88 | 20 11 7 4 1/21
Tree 61/169 | 11 19 0 32/100| 18 16 6 2 4/42
Pipeline | 35/112 8 9 1 14/44 19 18 2 0 2/28

Table 7.1: Annotation counts for the framework code

Getting the region and effect annotations correct for thengwork APIs, and using the API design to
check noninterference, did require some careful thougbweéver, all the APIs have a similar pattern; once
we mastered that pattern, writing the APIs as discussedatidpe’.2 was straightforward.

Table 7.1 summarizes the effect annotation counts for tmadwork code. The leftmost data column
shows the annotated over the total source lines of code ($L&@nted withs| occount. From the
left, the other columns show the number of class (includimgrface) definitions, class region and effect
parameters, class region and effect constraints, regidretiact arguments to types, method definitions,
method effect summaries, method region and effect parasyeteethod region and effect constraints, and
region and effect arguments to methods. For arguments ¢8 tfaes, the denominator is the total number
of types appearing in the program; and for arguments to mdsthihe denominator is the total number of
method invocations.

As expected, the annotations are nontrivial; this is sinaptpst of the safety guarantee we provide. We
believe the numbers are higher than they would be for promluétameworks, because effect annotations
appear on the API, and production frameworks would have lehnigatio of internal to API code than our
simple frameworks do. Thus, production frameworks showtielb amortize the overhead of writing the
annotations.

Framework client experience: Table 7.2 shows the annotation counts for the client codth thie same
layout as Table 7.1. As expected, the relative annotatiotdouis less than for the framework code. As with
the deterministic effect system discussed in Chapter 3t ofdke annotations are method effect summaries
and region arguments to types. In the client codes, the agtano effect variables were simple: either
pur e or one or two read effects. As expected there were no effestints in the client code, only in the
framework code.

It is also instructive to compare the client experience far Monte Carlo and Barnes Hut algorithms
written using frameworks to the corresponding ones usirsglbge DPJ, as presented in Section 3.5. For

Monte Carlo, we had used an index-parameterized array t@gige disjointness in the first two loops, by
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Classes Methods
SLOC Defs Params Constraints Args | Defs Summaries Params Constraints  Args

Monte Carlo | 236/1389 | 21 10 0 90/492| 195 136 8 0 3/350
Spatial Tree | 55/172 6 5 0 42/90 10 7 4 0 3/45
Radix Sort 31/102 6 3 0 36/46 11 6 4 0 0/13

Table 7.2: Annotation counts for the client code

making theTask andResul t types parameterized by the index For the third loop, we encapsulated
the reduction sum in a method implemented with locks andadedlthat method ommut at i ve. This

is not attractive because it puts the burden of writing lewel, error-prone synchronization code on the
application developer.

Similarly, we could use baseline DPJ to parallelize the eenf mass computation in Barnes-Hut.
However, we would have to give each tree node a distinct typlerecopy the bodies on insertion into the
tree, because we cannot soundly change the type of a referencBJdnd3 discussed in Section 7.1. We
could support such “ownership transfer” with runtime refere counting [13], but this would add its own
overhead.

The pipeline framework illustrates a different benefit astvork. Pipelining is a new parallel control
idiom that is not provided by DPJ and, even if it were, no uggifaelined parallelism would be expressible in
the DPJ type system as explained earlier. Implementingatfemmework elegantly extends the capabilities
of the language, while preserving the ability to enforce &) safety properties for pipelined application
code. Itis an example of a higher level “coordination” metkm [76] that is used to connect and manage
multiple deterministic components, potentially opergtconcurrently with each other while exchanging
data.

Overall, the advantages of the framework approach are fiplgying the DPJ types exposed to the
client, by avoiding index parameterized arrays or receripes; (2) eliminating low-level code for common
patterns such as reductions; (3) avoiding copies wheredbkeline type system might require them, as in
Barnes-Hut; and (4) extending the language with more flexirallel control idioms. On the other hand,
the baseline DPJ code is closer to the original sequentde,doecause it uses parallel control constructs
directly, rather than factoring the code into helper fumasi and framework API calls. This last point is not

specific to our work, but is a general issue with using fram&ea.o
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7.4 Related Work

Effect systems:Sections 3.6 and 5.6 discuss the related work on effectragstione of this work teaches
how to write a framework API for safe parallelism using disjodata structures. Nor does it support
mechanisms such as effect constraints and type region pteesithat are necessary for generic framewaorks.
Linear type systems: Wadler [125] introduced linear types as a way to allow ineplapdates while pre-
serving the semantic guarantees of pure functional progiam A linear type system can enforce strong
guarantees of program correctness [41]. However, lingaestyprohibit reference aliasing, which makes
many common patterns of imperative programming awkwardngoissible.

Several researchers have looked at ways to make linear lgpesestrictive while maintaining mean-
ingful guarantees. Fahndrich and DeLine [47] introdueedption and focuso create aliases of a linear
reference with a limited lifetime. Clarke and Wrigstad [3fjve observed thaxternal uniqueness- the
property that every object has at most one reference toatéocoutside its containing data structure — can
express important patterns, such as a unique referenceotabdyelinked list. Boyland and others [26, 117]
have usedractional permissionso enforce linearity of write references, while allowingasing of read-only
references. Finally, several researchers have shown hoambine unique references with effect systems
in interesting ways [59, 25].

Our idea ofdisjoint data structuress related to these mechanisms, but also different fromfahem.
Our insight is that for parallel traversals over the slotg afata structure, all we care about is whether the
slots have different regions in their types. This implieatttihe slots point to distinct objects, but it does
not preclude aliasing with other references in the progf2afJ’s indexed parameterized arrays (Chapter 3)
provide disjoint regions, but they do so by making the regierplicit in user code, thereby preventing
reference swapping as discussed in Section 7.1.

Enforcing API contracts. The Eiffel language [119] introduced the ideaddsign by contragtwhich
uses preconditions and postconditions to specify intemadietween classes. The Java Modeling Lan-
guage (JML) [75] provides a powerful way to write designdmntract specifications for Java, which can be
checked with a combination of static verification and onkhecking.

Design by contract ideas have been applied to concurregraroning. Meyer’s Systematic Concur-
rent Object-Oriented Programming (SCOOP) concurrentraragiing model [89] is based on Eiffel. The

Fortress programming language [116] provides a way to \asgertions at interface boundaries that can be
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checked at runtime. X10 [35] has a sophisticated depengeaistystem that can specify and check interface
assertions, also supported with runtime checking. Nonaisfwork addresses parallel noninterference or
safe frameworks for shared memory parallelism.

Our annotated generic framework APIs also provide a kindesigh by contract, because the framework
writer bounds the effects of user-supplied methods. Asdaveknow, we are the first to study the problem
of guaranteeing parallel noninterference for a framewqr&rating on disjoint data structures in a shared
memory context. We are also the first to show how to usga and effect systefor design by contract in a
parallel framework APIl. Compared to more general specifinanethods (such as JML), an effect system
has the advantage that the annotations are easier for tgeaprmer to write and the compiler to check
without runtime checks or heavyweight constraint solvingh@orem proving.

Type constructors: Type constructors are well known in functional languagks Haskell. Recently type
constructors (also callekinded typeshave been applied to object-oriented languages [92, 1Hinded
type is like a “type type parameter,” i.e., a type parametiéh & type parameter, whereas our type region
parameter is a type parameter with a region parameter. Aseork on kinded types, there is no notion of
effects or the sound interaction of type parameters withceflidgments.

Another related concept is the C++ mechanism caibedplate template parameteB23]. If we fol-
lowed that approach, we would have the user provide a ¢lagad a regionk as separate arguments to
the framework, and the framework would put them togetheratostruct the type’<R>. We chose not
adopt this approach because it obscures the relationshigebe the type and its region argument in the

framework API.
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Chapter 8

Formal Language for Framework APl Checking

This chapter formalizes the ideas discussed in the prewbapter, using a formal language similar to the

languages presented in Chapters 4 and 6. The language Haldweng salient features:

e Like Core DPJ (Chapter 4), this language focuses on the mexsha for expressing effects and
noninterference. We do not model parallel constructs, wowe include the features for supporting

nondeterminism discussed in Chapters 5 and 6.
e Compared to Core DPJ, the language has simplified RPLsehoexpressions, and no arrays.

e The language incorporates interfaces, classes that ineplemterfaces, and method parameters, in

order to support the style of writing object-oriented fravoeks discussed in the previous chapter.

e The language incorporates the effect system featuresduntea in the previous chapter, i.e., con-

strained effect variables and type region parameters.

As usual, we give a syntax, a static semantics, a dynamicrg@saand soundness results with proofs.

8.1 Syntax

Figure 8.1 shows the syntax for the formal language illtisigathe framework support. A prograf
consists of region name declarations, interface defirstictass definitions, and an expression to evaluate.
An interfaceZ consists of an interface nanigethe interface parameters, and zero or more method sigsatur
There is one type parametey one region parameter, and one constrained effect parameje¥ /. The
type parameter has a region parameterthat captures the region argument of the type bound to it. A
method signatures' specifies a region parameter, a constrained effect pargnaeteturn type, a method

namem, a typed formal parametet, and an effect.
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Programs P == R*I*C*e
RegionNames R == regionr
Interfaces Z == interface I<r<p>pn#E>{S*}
Classes C == class C<r<p>p>inplenents I<T,R,E>{F*M*}
Method Signatures S = <pn#E>Tm(Tz) E
Fields F = TfinR
Methods M == S{e}
RPLs R = r|p|Rir|R:*
Types T == I<T,R,E>|C<T,R>|7<R>|Null
Effects F == (|readsR|witesR|n|EUEFE
Expressions e = this. f|this. f=e|e. <R, E>m(e) |v|newT | nul |
Variables v == this|z

Figure 8.1: Syntax of the formal language supporting fraorea: r, I, 7, p, n, C, f, m, andz are
identifiers.

A classC consists of a class nangg, the class parameters, the interface type being implemgeate
the fields and methods of the class. There is one type paraarateone region parameter. For simplicity,
classes do not take effect parameters; the interface gffeatmeters suffice to write the patterns discussed in
the previous chapter. A fiell specifies a type, a field nanfe and an RPL. A method specifies a signature
and an expression to evaluate.

A region path list (RPL)R is a named region, a region parameter, or an RPL qualified by appending
. r or: x, wherex stands in for any chain of names. A typeinstantiates a named interface with a type,
region, and effect; or it instantiates a named class wittpa gnd region; or it instantiates a type parameter
with a region; or it isNul | . Nul | is the type of a null reference. It also functions as a base-tge for
type parameter arguments (every other type has its own angiymAn effectZ is a possibly empty union
of read effects, write effects, and effect parameters.

An expressiore is a field access, field assignment, method invocation, blasiabject creation, or null

reference. A variable ist hi s or a method formal parameter

8.2 Static Semantics

8.2.1 Typing Environment

The static typing judgments are defined with respect to ait@mwentI:

Du=0|(zT)|7|p|n|n#E|TUT
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(z,T) € T means that variable has typeT'. 7 € T means that type parametetis in scope inl. p € T’
means that region parametetlis in scope inl. n € I' means that effect parameteris in scope inr.

n# E € I' means that effect parameters constrained to be disjoint from effe&t

8.2.2 Programs

Valid programs: The judgment- P means that prograr® is valid. The judgment holds if the interfaces
and classes d@P are valid, and the main expression/@is well typed with typel” and effectF in the empty

environment.
PROGRAM

VI.-TI) VC.(FC) OFe:T,E
FR*T*C* e

Valid interfaces: The judgment- Z means that interface definitighis valid. The judgment holds if the
effect constraint of is a valid effect, and all the method signatureg @fre valid. We check these facts in

the environment® consisting of the declared parameters and effect constriifl

INTERFACE

P=7Up.UpUnUn#E THE VS(TFS)
Finterface I<r<p,> p,n# E>{S*}

Valid classes:The judgment C means that class definitighis valid. The judgment holds & implements

a valid interface type; its fields are valid; and its methadsvalid. We check these facts in the environment

consisting of the declared parameter<ofFor checking methods, we also record the base type to the lef
of i, so that the method-checking rule @vHOD, below) can check the method against its specification in

the interface, if any.

CLASS

F=7Up,UpU(this,C<r<p,> p>) T+ I<T,R,E>

VE(I'F F) VYM.(T,I<T,R,E>F M)

Fclass C<r<p,> p>inplements I<T, R, E>{ F* M* }

Valid method signatures: The judgment” - S means that signaturg is valid in environment’. The

judgment holds if the formal parameter type, return typéatfconstraint, and effect summary Sfare
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valid. We check these facts in the environm&hformed by adding the method parameters and constraint

tol'.
SIGNATURE

IFS| I'=TUpUnUn#E I'FT T'FT' T'FE T'FE

'E<p,n# E>Tm(T' z) E’

Valid fields: The judgment’ - F' means that field” is valid in environment’. The judgment holds if the

type and region of" are valid inI".

FIELD
I'FT TFR
'Tfink

Valid methods: The judgment’, 7' = M means that methodl/ is valid in environment’, whereT is the
interface type implemented by the enclosing class. Themuag holds if the method signature is valid; the
method bodye is well typed with typel,. and effectt,; T, is a subtype of the declared return type; dnd
is a subeffect of the declared effect; and if a signature weimappears in the implemented interface type,

then the method conforms to the signature given in the imtetf

METHOD
S=<pg#E>STm(T' z) E TFS
I'=TUpUnUn#EU@T) rFe:T,E, FT,<T T'FECE
m € Dom(S(I)) = I, I<T”, R, E>+ S < S(I)(m)

T I<T",R,E">+ S{e}

We check the type and effect of the method body in the envieenf’ formed by adding the method
parameters té'. We write S(I)(m) to mean the signatur® with namem defined in interfacd. If no
signature namegh appears in the definition df, then we sayn ¢ Dom(S(1)).

Valid method implementations: The judgment’, 7' - S < S’ means that signaturgin a class definition
conforms to the signatur®’ in the interface typ& implemented by the class. The judgment holds if the im-
plementing return type is a subtype of the implemented meigpe; the implemented formal parameter type
is a subtype of the implementing formal parameter type; ii@emented effect constraint is a subeffect of
the implementing effect constraint; and the implementifigot summary is a subeffect of the implemented

effect summary.
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IMPLEMENT

o =[p2 — pillne —m] TFo(or(Es)) C E

T 20(or(Tz)) T'Fo(r(T3) 2T T'FEp Co(or(E))

DT F <prym # Ex>T m( T 2) By 2 <p2,m2# Ex>T> m( T3 2') Ej
Notice that we have to instantiate the types and effectsaapyugin the implemented interface definitions,
using the implemented interface typebefore we can compare them to the implementing types aadteff
To do this we use the translation mappipg, defined in in Section 8.2.8. We also need to substitute for th

method region and effect parameters, as shown in the rule.

8.2.3 Regions

Valid regions: The judgment” - R means that regiof® is valid in environment’. The judgment holds

if R is a declared region name or a region parameter in scope, or a valid region with a valid or *

appended.
RGN-NAME RGN-PARAM RGN-RPL RGN-STAR
regionrepP pel 'R T'kr I'FR
T'kFr I'kp I'FR:r I'FR: =

Inclusion of regions: The judgment’ - R C R’ means that the set of dynamic regions represented isy
included in the set of dynamic regions representedbys before, the judgment is reflexive and transitive.
Otherwise, the relation is given by the nesting of RPLs. Heeesay that the judgment holds i ends

in * and everything before theis a prefix of R. These rules are sufficient for our purpose. In Chapter 4,
we gave further rules that allow more expressivity with RPtugt are not necessary to illustrate the ideas

discussed in Chapter 7 and so are omitted here.

INCLUDE-REFLEXIVE INLCUDE-TRANSITIVE
I'FRCK IFRCR TFRCR
I'RCR I'RCR"
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INCLUDE-RECURSIVE INCLUDE-PREFIX

I'FRCR:*

I'FR:rCR:* I'FRCR:*
Disjointness of regions:The judgment’ - R # R’ means that the sets of dynamic regions represented by
R and R’ have empty intersection. The judgment hold®iénd R’ are distinct names with appended, or
if R andR’ are included in disjoint RPLs. Again these rules are sufitdier our purposes; further rules can
be found in Chapter 4. Notice that the disjointness ahd+’ (if » # ') follows from DISIOINF-NAMES
and INCLUDE-PREFIX. Notice also that in these simplified rules, we model onlyiisions from the left
(Section 3.2) and omit distinctions from the right. For exdenthese rules cannot distinguish r; from

r: ro. Again, that is to keep things as simple as possible and focwghat is important here.

DISJOIN-NAMES DISJOINT-INCLUDE
I'+R#R ! 'FRCR THR'CR"” TFR#R"
Dhorox o I'R#R"

8.2.4 Types

Valid types: The judgmenfl’ - T means thafl is valid in environmenf’. The judgment holds if" is a

valid instantiation of an interface, class, or type parameir it isNul | .

TYPE-INTERFACE

defined(I) THT T+HR THE T E#¢<rnp>EI))

I'+I<T,R,E>
TyPE-CLASS TYPE-PARAM TYPE-NULL
defined(C) T'FT T'FR Tell TFR
I'+C<T, R> T 7r<R> '+ Nul

defined(I) anddefined(C') mean that a definition of interfadeor classC' appears in the program. Notice
that rule TrPE-INTERFACE checks that the instantiating effect complies with theaf@®nstraint specified
in the interface. £(I) represents the effedd appearing in the parameter constraint of interfdceThe
translation mappingr is defined in Section 8.2.8.

Subtypes: The judgmenfl’ - T' < T’ means thafl" is a subtype off”. The judgment is reflexive and
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transitive:

I'T <T'| SUBTYPE-REFLEXIVE SUBTYPE-TRANSITIVE T'FT <T" T'FT'<T"

'-7<T r=7=<1"

Otherwise, the judgment holdsif is a class type and@” is the interface type that it implements; Bris

Nul I (and7” is any type); ofl’ andT” are related by inclusion.

SUBTYPE-INTERFACE-CLASS

LT <T"| class C<r>{p}pI<T,R,E>F* M* € P

' C<T',R'> < ¢po<r p>(I<T, R, E>)

SUBTYPE-NULL SUBTYPE-INCLUDE
r=TcT
T'ENull =T r=T=<T1'

Note that the inclusion relatiot implies subtyping (rule 88TYPE-INCLUDE), but not vice versa.
Inclusion of types: The judgment” - 7' C 7" means thaf’ and7” are the same type, except for bindings

to region and effect arguments, which are related by inatusi

T CT'| INCLUDE-REFLEXIVE

r-1T7CT

INCLUDE-TRANSITIVE INCLUDE-INTERFACE
r=TCc1T TFT CT” '-TCT THRCR THECFE
rrcT” L+ I<T,R,E>C I<T',R' E'>
INCLUDE-CLASS INCLUDE-PARAM
'TCT THRCR r-RCR
'k C<T,R>C C<T',R'> 'k 7<R>C 7<R'>

Note that it would not be sound to pLt- 7" < 7" in the condition of NCLUDE-INTERFACE Or INCLUDE-
CLAss, for the same reason that it is not sound to t@atC’> as a subtype of'<Chj ect > in ordinary
Java [57]. Itis sound, however, to make inclusion a conditibsubtyping, because we capture regions and

effects as discussed in Section 8.2.7.
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8.2.5 Effects

Valid effects: The judgment” - £ means that effeck is valid in environment’. An effect is valid if it is

the empty effect, a valid read or write effect, a valid metpadameter, or a union of valid effects.

EFFECTFEMPTY EFFECTREADS EFFECTFWRITES
I'-FE 'R 'R
FT@ I'reads R 'FwitesR
EFFECTPARAM EFFECTFUNION
nel 'E THE
1:7 '-EUEFE

Subeffects: The judgmenf” - £ C E’ means thaf is a subeffect oft’. As in Chapter 4, the subeffect
relation allows us to approximate an effécby a “larger” effectE’, while retaining soundness. The relation
is based on three criteria: (1) literal inclusion of compuneffects; (2) covering of an effect o by the
same effect oi?’, if R’ includesR (Section 8.2.3); and (3) covering of reads by writes. Theser@a ensure

that if £ is a subeffect of2’, and some other effed” is noninterfering withE’, thenE” is noninterfering

with £ as well.
I'ECE'| SE-REFLEXIVE SE-TRANSITIVE 'FECE' T'FE CRE”
I'FECE T'-ECE
SE-BvPTY SE-READS SE-WRITES
I'RCR I'-RCR

I'~0CFE I' -reads R Creads R’ I'FwitesRCwites R/

SE-READS-WRITES SE-UNION-1 SE-UNION-2
I'-RCR I'-ECE I'+-E'CFE THE'CE

I'Freads RCwites R I'-ECE UE" I'~EUE"CE

Noninterfering effects: The judgmenfl’ - E # E’ means that effect& and £’ are noninterfering. The
noninterference relation is symmetric (obvious rule oedi}t Noninterference is based on four criteria:

reads are always noninterfering; disjoint writes are ntmfaring; an effect parameter is noninterfering
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with the effect in its noninterference constraint; and tifeets are noninterfering if they are included in
noninterfering effects. These criteria ensure that aimatany pair of effects covered by two noninterfering

effects cannot perform a conflicting access to the same melo@ation.

NI-EMPTY NI-READS NI-WRITES
0 RaR
T'FO#E I' -reads R#reads R’ 'Fwites R#wites R
NI-PARAM NI-INCLUDE NI-UNION
n#EeTl 'WE#E TFHE'CE THE"CE THFE#E" TFE#E"
CHn#FE L+ E"#E" THFEUE #E"

8.2.6 Expressions

As in the Core DPJ (Chapter 4), every valid expression hapeaand an effect. The judgmeiit-¢: 7T, F
means that expressiens well typed with typ€el’ and effectt in environment".

Field access:To type a field access expressibhi s. f, we look in the environment to get the claSs
bound tot hi s, then we look in the definition of’ to get the type and region ¢f. F(C)(f) means the

field with namef declared in clas€’. The effect is a read of the region ¢f

ACCESS

Fke:T,E| (this,C<r<p,>p>) el FO)Nf)=TfinR

I'kthis. f:T,reads R

Field assignment: To type a field assignmenthi s. f=e, we get the type and region ¢fas discussed for
field access. We also typeand check that its type is a subtype of the typef ofThe overall effect is the

union of the effect of e and the write to the region of.

ASSIGN

F'te:T,E| (this,C<r<p,>p>) el T'Fe:T,E FO)f)=T finR THT T

I'kFthis. f=e: T, FUwites R

Variable access:To type a variable accesswe just get the type out of the environment. There is no gffec
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because effects only track heap accesses.

VARIABLE
I'kFe:T\FE (v,T)el
Tro:T,0

Method invocation: To type a method invocatioe,. <R, E>m( e3) , we do the following. (1) Compute
the type and effect of; andes. (2) Use the type oé; to find the signature of the method being invoked.
S(T)(m) denotes the signature of the method nameih the class or interface correspondingltpwhich
must be a class or interface type. (3) Check the method effgatnent for compliance with the disjointness
constraint in the signature, after translating the comsttay the type ofe; (Section 8.2.8) and substituting
for the method region and effect arguments. (4) Captureyihe dfe; (Section 8.2.7). (5) Check that the
type ofes is a subtype of the formal parameter type in the signatuter &binslating the formal parameter

type by the captured type ef and substituting for the method region and effect arguments

INVOKE
The T, By They:Ty, By
S(T1)(m) = <p,n# Es>Ts m(Tya) Ex o= |p— Rlln — Es)
L'k Es#o0(ér (Es)) T'kcapt(Ty) = (Te,I'e) et To 2 0(or.(T4))
Tk er. <R, Es>m( ea) : o(ér, (T3)), By U Es Uo(or, (Ey))

The type of the invocation expression is the return type éndilgnature, after translation. The effect is the
union of the effects of; andes, and the declared effect in the signature, after transiatio
Object creation: To type an object creation expressioaw C'<T’, R>, we check that the typ€'<T, R> is

valid. There is no effect.

NEwW

I'kte: T FE '+ C<T, R>

I'-newC<T,R>: C<T,R>,0
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Null references: A null reference is always valid with tydeul | and empty effect.

NuULL

TFnull :Null,

8.2.7 Capturing Types, Regions, and Effects

The capture of a type is an essential concept in standardJayas well as in Core DPJ (Chapter 4) and
this language. As discussed in Chapter 7, capturing typaeepts errors such as the following:
class A<effect B> {

B<E> f;
}

A<writes r> x = new A<pure>()

x.f = new B<writes r>(); // This should not be all owed!
The last assignment violates type preservation, becaaslyttamic type ok. f isB<pure>,andwites r
is not a subtype gpur e. So that last assignment should not be allowed. Howeveatbgnmentvould
be allowed if the static type of. f wereB<writes r>. And that is the type you would get by just
substituting the effect argument i t es r in the static type ok for E in the definition off in classA. So
that naive method of computing the typexoff is incorrect.

Instead, we firstapturethe typeA<wr i t es r > of x to generate the typA<E>, whereF is a fresh
effect parameter (called @apture parametgr Then we substitute the region and effect argumente
captured typen computing the type of. f . So the type ok. f is B<E>, whereFE is the capture parameter.
The capture parameter represents the unknown effect argumtne dynamic type of the object reference
stored in the variablg. As in Core DPJ (Chapter 4), all partially specified RPLs ipetyegion arguments
must be captured, because the true runtime region is unknBunther, all nonempty effects in type effect
arguments must be captured, because (except for emptysgffbe precise effect is never known.

In the full language, the capture parameter carries ansiaiu(for regions) or subeffect (for effects)
bound. The bound is given by the type being captured. For pkartihe capture oi<wri t es r > may be
legally assigned té\< >, whereE is any supereffect ofw i t es r. For simplicity, we omit the bounds
in the formal language. The bounds are not needed for themgardiscussed in Chapter 7.

Capturing types: The judgment - capt(7") = (7”,T”) means that capturing tygg in environmentl’
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produces typd” and environment”’. To capture a non-null type, we capture its component ty@esons,

and effects.

CAPTURE-INTERFACETYPE

I'+capt(T) = (T",1')| Trcapt(T)=T'T" T'F capt(R) =R T" T’F capt(E)=E'T"

Tt capt(I<T,R,E>) = (I<T',R', E’>,T"")

CAPTURE-CLASS-TYPE CAPTURE-TYPE-PARAM
I'Fcapt(T) = (T",T") T'F capt(R) = (R',T") I'F capt(R) = (R',T)
Ik capt(C<T, R>) = (C<T',R'’>,T") 'k capt(r<R>) = (r<R'>,T")

CAPTURE-NULL

I'Fcapt(Nul I')=(NulI,T)

Capturing regions: The judgment” + capt(R) = (R/,I’) means that capturing regidRin environment
I produces regior?’ and environment”. If R does not contair, then the capture operation leaves the

original R andT" unchanged. Otherwis& is replaced with a fresh paramejgrandl” = T" U p.

CAPTURE-NAME CAPTURE-PARAM
'+ capt(R) = (R, 1)
It capt(r) = (r,T") '+ capt(p) = (p,T)
CAPTURE-RECURSIVE-FULL CAPTURE-RECURSIVE-PARTIAL CAPTURE-STAR
'k capt(R) = (R,T) I'Fcapt(R)=(p,T'Up) pgT pgTl
I+ capt(R: r) = (R: r,T) Tk capt(R: r) = (p, T Up) 'k capt(R:*) = (p,['Up)

Capturing effects: The judgment’ + capt(E) = (E’,T”) means that capturing effeétin environment’
produces effeckl” and environment’. For simplicity, we capture all effects with a fresh paraengthough

we could avoid capturing empty effects.

CAPTURE-EFFECT
'k capt(E) = (E',T) ngr

'+ capt(E) = (n,I"Un)
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8.2.8 The Translation Mapping ¢

The mappingpr translates a type, region, or effect defined in an interfameclassC' to its use as a member
of type T that instantiateg or C' (theinstantiating typg T must be a class or interface type.

Types: To translate an interface or class type, we translate itsnaggts:

¢T([<T/, R, E>) = [<¢T(T/), ¢T(R), ¢T(E)>

¢r(C<T",R>) = C<¢r(T"), ¢r(R)>

To translate the parameter type R>, we use the instantiating ty@e, but we replace its region argument

with the parameter’s region argumeRy after translating it:

pi<r,rE>(T<R>) = I<T,¢i<rprp>(R'), E>

po<r,r>(T<R'>) = C<T,¢1<rr>(R')>

Finally, p7(Nul 1 ) = Nul | .
Regions: Let p(7") and p,(7") be the region parameter and type region parameter of thdaiogeor class
that 7" instantiates.¢p is the identity on all regions except?’) andp, (7). For p(T), we use the region

argument of the instantiating type:

dr<r.rE>(p(I<T,R,E>)) = R

po<r.r>(p(C<T,R>)) = R

For p-(T), we use the region argument of the type argument of the itisteny type:

or<r,rE>(p-(I<T,R,E>)) = R(T)if T # Nul | , elseR

do<r,r>(pr(C<T,R>)) = R(T)if T'# Nul | , elseR

R(T) is the region argument of the type. If the type argumemus| , then we treap, as an alias fop.
This is an appropriate solution for our simplified formaldaage, in which every class and interface has a

parameter<p>. As noted in 7, in the full language, we support classes atedfates with no type region
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parameter (or no type parameter at all), and we disallowihgsdof types lacking a region argument to a
type parameter with a region parameter.
Effects: The following rules definer(E), wheren(I) is the declared effect parameter of interfdcend

¢r(E) = E in any case not defined below:

or(0) =0  ¢r(reads R) =reads ¢r(R) ¢r(writes R)=writes ¢r(R)

or<rrEe>(nI)) =E  ¢r(EUE') = ¢p(E) U ér(E)

8.3 Dynamic Semantics

8.3.1 Execution Environment

We give a large-step semantics for program execution, ubmépllowing transition relation:
(67E7H) - (07H/7E)'

e is a program expression. The dynamic environmemnaps variables to object references, region

parameter to regionsk, and effect parametersto effectsk:
£:=0](0,0) | (p,R)| (1, E) | SUE

The heapH is a partial function from object referenceso pairs(O, C<T, R>), whereO is an object, and

C<T, R>is the type 0fO:
H:=null |o— (O,C<T,R>)|HUH

nul | is a special reference that isdom(H ) but does not map to an object. Attempting to access a field

of nul | causes execution to fail. An obje€tis a mapping from field namesto object references:

O:=0|f—o|OUO
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The effectF collects the effect of the evaluation. A program evaluateeterence with heapH and effect
E if its main expression is and

(e,nul | ,0) — (o, H,E)

according to the transition rules given in the next section.

8.3.2 Transition Rules

Field accessTo evaluate hi s. f, we look in the environment to get the object referembeund tat hi s;
look in the heap to get the obje€t and typeC'<T, R> bound too; look in the definition ofC to get the
region of f; and read)( f) out of the heap. We record the read effect on the regiofy after applying the

dynamic translation function (Section 8.3.3).

DYN-ACCESS

(e,3,H) — (0,H,E)| (this,o)eX H(o)=(0,C<T,R>) F(C)(f)=T finR

(this. f,X H)— (O(f),H,reads ¢x g(R))

Field assignment: To evaluate hi s. f =¢, we evaluate, yielding an object referenceand an effeci.
Then we look up the object and type hi s as for field access, except that we writéo f instead of
reading it. To represent the heap update, we wjite— b] (whereg is a function) to denote the function
identical tog everywhere on its domain, except that it mage . We record the write effect on the region

of f, after applying the dynamic translation function.

(67 E? H) - (07 Hl? E)

DYN-ASSIGN

(e,,H) — (0,H',E) (this,o)eX H'(J)=(0,C<T,R>) F(C)m)=T"finR

(this. f=e,3,H) — (0, H'[0' — (O[f + o],C<T,R>)], EUW i tes ¢x g(R))
Method invocation: To evaluatee;. <R, E>m( e3) , we evaluates; andes. We look up the object cor-

responding tce; and look up the methoeh for that object. Then we evaluate the method body in the

environment formed by binding the value, region, and efegguments as given in the invocation expres-
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sion. We accumulate the effects from all the evaluations.

(67 E? H) - (07 Hl? E)

DYN-INVOKE
(e1,%, Hy) — (01, Ha, E2) (e2,%, Hy) — (02, H3, E3) Hs(o1) = (O,C<Ty, R'>)
M(C)(m) = <p,n# Es>To m( T3 z) E5{es}
¥ =(this,o1)U(z,02)U(p,ds,u(R)) U, ¢z u(Er)) (es, X', Hs) — (03, Ha, Eg)
(e1. <R, E1>m(es) , X, Hy) — (03, Hy, E5 U E5 U Eg)

Variable access: To evaluate a variable access, we look the variable up inrigomment. There is no

effect.
DYN-VARIABLE

(e,%,H) — (0o, H', E) (v,0) €%
(v,2,H) — (0o, H,0)

Object creation: To evaluate an object creation expressi@w C'<T', R>, we bind a fresh object reference
to a fresh object in the heap, and give it the typeT’, R>, after applying the dynamic translation function.

new(C) is the function taking each field of claésto nul | .

DYN-NEW

(,3,H) — (0,H,E)| o¢Dom(H) H' =HUow (new(C), ¢s u(C<T, R>))

(newC<T,R> X, H) — (o, H',0)

8.3.3 The Dynamic Translation Functiongs, i

The dynamic translation functiopy, z translates a static type, region, or effect to a dynamic, tyggion,

or effect using the current environmextand heapH. First we substitute for region parameters using the
bindings inX; then we substitute for effect parameterginthen we apply the translation functign- from
Section 8.2.8, wher#' is the type inH of the reference bound tchi s in X.

Formally, the definition ofys; ;7 applied to regions is as follows:
1. If ¥ = (p,R)UX, thengs u(R) = ¢sr m(R[p — R']).

2. Otherwise ifY = (1, E) UY/, thengs g (R) = ¢sv g (R[n — E)).
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3. Otherwise ifE = (t hi s,0) UY, then¢s, g(R) = ¢7r(R), whereH (o) = (O,T), and¢r is the

translation function defined in Section 8.2.8.
4. Otherwiseps, (1) =1T.

o=, n applies to types and effects in the same way.

8.4 Soundness

We prove soundness as follows. In Section 8.4.1, we define swtic environments. In Section 8.4.2, we
show that typing expressions in a valid static environméltlg valid types and effects. In Section 8.4.3, we
define valid execution state. In Section 8.4.4, we state anekepype and effect preservatipne., that the
dynamic types and effects agree with their static approtions. In Section 8.4.5, we proyeeservation of

noninterferencei.e., that the static noninterference judgment impliesimrference at runtime.

8.4.1 Static Environments

A static environment consists of bindingév, T'), type parameters, region parameters, effect parameters

7, and effect constraintg# E. A static environment is valid if its elements are valid widspect to itself:

ENvV ENV-EMPTY ENV-VAR ENV-TYPE-PARAM
rHT rET
T T o frwr)  TEe
ENV-RGN-PARAM ENV-EFFECTPARAM ENV-CONST ENV-UNION
I'-FE r-r rer”
ITp 1“—|—77 I-n#E r-rur”

8.4.2 \Validity of Static Typing

Our first soundness result is a claim about the static typithgsrfor expressions in Section 8.2.6. It says
that if we type a valid expression in a valid static environteve get a valid type and a valid effect. The
hard part of the proof is to show that composing the subgiitat (for the method parameters) ang (for

the class parameters) in ruleMoKE produces valid types and effects when applied to the retyoa and
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effect summary of the method signature, assuming a valithsige checked by rulel&NATURE. Proving
this result requires a fair amount of machinery in the fornsugfporting lemmas.

This section proceeds in four parts. In part 1, we show éhatp preserves validity, inclusion, and
disjointness of regions. We also show that applyinge ¢~ to a region is equivalent to applying,. (1)
to that region. In part two, we show the same results for &ffdn part 3, we show that o ¢ preserves
validity of types. In part 4, we use the results of parts 1-frtwve the final result about valid static typing.
The proof is easy, once the machinery in parts 1-3 is in place.

We use the following notation:

e ['; denotes the environment we use to type interfacerule INTERFACE (Section 8.2.2)I' - denotes
the environment we use to type claSsin rule CLASS (Section 8.2.2).I'r denotesl’; (if 7" is an

interface type that instantiates interfaeor I'¢ (if T is a class type that instantiates clags

e As in Section 8.2.8p(T") and p,(T') denote the region parameter and type region parameter of the

class or interface instantiated By Similarly for 7(7") (type parameter) ang{7") (effect parameter).

e Asin Section 8.2.8R(T") denotes the region argument®f Similarly for 7'(T") (type argument) and

E(T) (effect argument).

1. Translation of Regions

Valid regions: We show that o ¢ takes valid regions to valid regions. For simplicity, we bthe effect

parameters, arguments, and constraints, because theyedeeant to judgments about regions.
Lemma8.4.1.1fI'rUptk Rando = [p — R']andI' - T'andI' - R, thenl' - o (¢ (R)).

Proof. Use induction on the length ok (i.e., how many colon-separated elemeRtsontains, according
to the syntax in Section 8.1). In the base case, there isngthishow unles® is p(T") or p-(T") or p. In

the first casegpr(R) = R(T), which is valid by’ - 7" and rules ¥PE-INTERFACE and TYPE-CLASS.

In the second case, T(T") is Nul | , then the situation is identical to the first case. Other#i§é€) is an
interface, class, or type parameter instantiated withoreg’, and¢(R) = R/, which is valid byI" - T
and rules WPE-INTERFACE, TYPE-CLASS, and TYPE-PARAM. In the third case, the result holds because
we are replacing with R’, which is valid inT". The inductive case follows immediately from the induction

hypothesis, because the appended elemeaitsl+ are unaffected by . O
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Inclusion of regions: We show that o ¢ preserves inclusion of regions. Again we ignore effect ara

ters.

Lemma8.4.2.Letl’ =TrUpando =[p« R’|.IfT'F RandT'+ R'andT'+ R C R’ andI” + T and
I'+ R", thenI” + o (¢7p(R)) C o(¢r(R)).

Proof. It suffices to show that applying o ¢ to every term of a proof of - R C R’ yields a proof of
I'"'F o(¢r(R)) C o(¢r(R')). To show this, use induction on the length of the proof'of R C R’
In the base case there is one rule application, either reie>dr INCLUDE-PREFIX. In both cases the
result holds because we are substituting the same thingnéosame region parameters in batrand i’'.
In the inductive case, if the last rule application is refléyior INCLUDE-PREFIX, the result holds by the
argument just given. If the last rule application is tramgit or INCLUDE-RECURSIVE, then the result

follows from the induction hypothesis. O
Composition of g7 and ¢7: We show thatpr o ¢7 is equivalent tap,,. 7+, when applied to regions.
Lemma 8.4.3. LetT andT" be class or interface types. Thep,. (1) (R) = ¢r(é7(R)).

Proof. In the base case there is nothing to show unless p(7”) or p,(T”). In the first case, iff” is the

class typeC'<T”, R'>, then

Do (1) (R) = dc<py (), 6r(r)>(P(T")) = ¢7(R),

while

or(dr/(R)) = ¢7(R).

The argument iff” is an interface type is almost identical. In the second dage(7”) = Nul | , then we
are in the same situation as the first case. Other@Wi§€,) = I<T” R, E'>, orT(T") = C<T",R'>, or
T(T') = 7<R'>. In the first two cases},, (1) (R) = é7(R'), while ¢7(é7/(R)) = ¢r(R'). In the third

case, ifl" instantiates clas§' and7” instantiates class’, then
¢T(T/) = C/<C<T//7 ¢T(R/)>7 R//>7

andog,.r(p-(T")) = ¢7(R’). On the other handr (o7 (p-(T"))) = ¢r(R'). The argument iff” and/or
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T’ is an interface type is almost identical. The inductive das#vious. O
Disjoint regions: We show that o ¢ preserves disjointness of regions. Again we ignore effadmeters.

Lemma8.4.4.Letl’ =TrUpando =[p«— R"]. fT'F Randl' + R'andT"'+ R# R’ andI” + T and
I'+ R", thenl’ b o (é7(R)) # o (7 (R')).

Proof. By induction on the length oR. The result holds in the base casel¢DDINT-NAMES) because
parameter substitution has no effect on the applicatiohaifriule. The inductive case is obvious. O
2. Translation of Effects

Valid effects: We show thatr o ¢ takes valid effects to valid effects. We omit the effect d¢oaists, as

they are irrelevant to validity of effects.

Lemma 84.5.1fI'r UpUnt Eando = [p < R][n — E'l andT’" - T andT" - R andT" - F’, then
L'k o(ér(E)).

Proof. To computepr(E) we substitute for region and effect parameters. Lemma 8idtek the result for
the region parameters. For effect parameters, we are sitbstituting(T") for (T'), or we are substituting
E' for n. In the first caseE(T) is valid byT" - 7" and TYPE-INTERFACE. In the second casé;’ is valid

by hypothesis. O
Subeffects:We show that o ¢ preserves subeffects. Again we ignore the effect conssrain

Lemma8.4.6.Letl’ =T'rUpUnando =[p«— R][n<— E"].If '+ EandT'+ E' andT' + E C E’ and
I"F T andl’ - RandI’ - E”, thenl” F o(¢7(E)) C o(dr(E")).

Proof. Use the same technique as for the proof of Lemma 8.4.2. Thedass® is a proof using only SE-
EmMPTY, which obviously yields a correct proof under transforrmatby o o ¢r. In the inductive case, if
the last rule application is SEHADS, SE-WRITES, or SE-READS-WRITES, then the result follows from

Lemma 8.4.2. Otherwise, the result follows from the induetiypothesis. O
Composition of g7 and ¢7-: We show thatpr o ¢7 is equivalent tap,,. 7+, when applied to effects.

Lemma 8.4.7.LetT andT" be class or interface types. Thep, (r)(E) = ér(ér (E)).
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Proof. In view of Lemma 8.4.3, it suffices to shaw, .1+ (n(T")) = ér(é7(n(T"))). Pushing through the
rules shows that on both sides we hawe F(7")). O

Noninterfering effects: We show thatr o ¢ preserves noninterfering effects. Here we need the effect

constraints to establish disjointness.

Lemma 8.4.8.LetI’ = T'r UpUnUn#E,ando = [p — R]n — E"]. fI' - EandT  E’
andT' - E#E andI” - T andI' - R andI' + E”, andI' + E"#o(¢r(Ey)), thenT’

o(¢r(E)) # o(dr(E)).

Proof. We break the proof into two parts. In part 1, we shiow ¢ (E) # ¢ (E’), wherel” =TV U p U
nUn# ¢r(Ey). Inpart 2, we use part 1 to show the final result.

Part 1: In view of NI-UNION and NI-BuPTY, it suffices to assume thdt and £’ are each a single read
effect, write effect, or effect parameter. If neither effexa parameter, then either both are reads or the
regions are disjoint, so the result follows from Lemma 8.40therwise, we may assume without loss of
generality that? = n(7T') or E = 7. In either case, the only way to establish - F # E’ is via NI-PARAM

and NI-INCLUDE, using an effect constraint.

If E = n(T), then we must haver - E' C E,(T'), whereE, (T') denotes the effect in the parameter
constraint ofl" (also,T is an interface type, since class types don't have effeerpaters in this language).
By Lemma 8.4.6 (withR” = p andE’' = 7), (@I + ¢r(E') C ¢r(E,(T)). By assumptiol” + T,
which impliesT'” - T'. By that fact together with YPE-INTERFACE, (b) I = o7 (n(T)) # o1 (En(T)).

(a) and (b) together with NINCLUDE yield T’ + ¢ (n(T)) # ¢ (E").

If E = n, then we must havEr - E’ C E,. By Lemma 8.4.6 applied to that fact, @) - ¢ (E’) C
¢7(Ey,). Onthe other hand, becaugés not a parameter &f, we havepr(n) = 1. Therefore the definition
of I' gives (D)I'" F ¢ (n) # ¢r(E,). Again by NI-INCLUDE, (a) and (b) yield™ - ¢7(n) # ¢r(E').

Part 2: In view of part 1 and Lemma 8.4.4, it suffices to show (renamamgables) that it” = I'UnUn # E,,
andT' - E andT' - E' andl’ - E# E' andI” - E” andI” + E" # o(E,), thenl’ - o(E) # o(E'),
wheres = [ <« E"]. The result obviously holds unleds or E’ containsn; so assume without loss of
generality that? = 7. Then we are trying to shoW + E” # o(FE’). By NI-INCLUDE and the assumptions
it suffices to show” - o(E’) C o(E,). By the same argument as in the proof of Lemma 8.4.4, thisiés tr

if I' = E’ C E,. Butas in the proof of part 1, that fact follows from the asptionT" - n # E'. O
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3. Translation of Types

We show that o ¢ takes valid types to valid types.

Lemma8.4.9.Letl' =T'rUpUnUn# E,ando = [p — R|[n «— E]. fT' - T"andI” - T andI” - R
andI" - E andI” - E # o(ér(Ey)), thenl” = o (¢ (T7)).

Proof. Again we break the proof into two parts. In part 1, we sHdW- ¢ (T"), wherel” =T" U pUn U
n# ¢r(Ey). In part 2, we use part 1 to show the final result.
Part 1: Use induction on the number of applications@f to a type. The base cases &re = Nul |
andT’ = 7(T)<R>. The first case is obvious. In the second casd it a class type”<T”, R'>,
thenor(T') = C<T”,¢r(R)>, and all the requirements ofYPE-CLASS are implied byl + T except
I'" + ¢7(R), which is given by Lemma 8.4.1. If' is an interface type, the argument is nearly identical.
In the inductive case, if” is a class type’<1”, R'>, then¢r(T") = C<¢r(T"), ¢r(R')>, and all
the requirements of MPE-CLASS are implied by the induction hypothesis and Lemma 8.4.11"Ifs an
interface typel<T”, R', E'>, then¢p(T") = I<¢p(T"), ér(R'), 7 (E’)>, and all the requirements of

TYPE-INTERFACE are implied by the induction hypothesis and Lemmas 8.4.15aeecept

" & op(E") # by (Ey(T7)).

By Lemma 8.4.7, this is equivalent to

I+ ¢r(E) # or (7 (Ey(T7)))-

By I' - 7" and TYPE-INTERFACE, I' - E' # ¢+ (E,(T")). The result then follows from Lemma 8.4.8.
Part 2: In view of part 1, it suffices to show (renaming variables)ttfid® = I U p U n U n# E, and
o=[p— R][n— E]andl’ - T andI” + RandI” - E andl” - E # o(E,), thenl' - o(T). Giveo its
obvious recursive definition for types, regions, and effeahd use induction on the number of applications
of o to a type. The base cases dte= Nul | andT = 7<R’>. The first case is obvious, and the second
one follows from the argument used to prove Lemma 8.4.1.

In the inductive case, if" is a class typeC'<T’, R'>, theno(T) = C<o(T"),0(R')>, and all the

requirements of YPE-CLASS are implied by the induction hypothesis and the argumend ticerove
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Lemma 8.4.1. IfI" is an interface typd<T’, R', E'>, theno(T) = I<o(T"),o(R’),c(E’)>, and all the
requirements of YPE-INTERFACE are implied by the induction hypothesis, the argument usegrdve

Lemma 8.4.1, and the argument used to prove Lemma 5, except
I o(E') # bor) (Ey(T)).
By an argument similar to the proof of Lemma 8.4.7, this isiegjant to

I'F o (E') # o (¢r(Ey(T))).

By I' - T" and TYPE-INTERFACE, I' - E' # ¢ (E,(T')). So the result is obvious unlegg or ¢ (E,(T))
contains). Assume without loss of generality (as before) that= 7. Then we must have + ¢ (E,(T')) C

E,,. By hypothesis]" - o(E’) # o(E,). So the result follows from BIJOINT-INCLUDE if

I o(¢r(Ey(T))) € o(Ey).

But this is true by the argument given in the proof of Lemma@@.4 O

4. Validity of Expression Typing

Theorem 8.4.10(Validity of static expression typing)lf - P andt T"andT" - e : T, E, thenl" - T and
I'-E.

Proof. By induction on the structure ef

Base casesThe base cases are ruleg€@ess VARIABLE, and NEw. As to ACCESS in order for the
rule to apply, the expressianbeing typed must be in the body of a method of some dasRule FELD
guarantees thdio + 7" andl'c - R. Further, by MeTHOD, we havel'c C I', sol' - T"andI' - R. For
VARIABLE, the result follows from the definition ¢f I'. For NEw, the type is checked in applying the rule,
and the effect is empty.

Inductive cases: The inductive cases ares&IGN and INVOKE. For AssIGN the result follows from the
induction hypothesis applied to the subexpression, tegetlith the same argument used foc@essfor
the type and region of the fielfl For INVOKE, the result follows from the induction hypothesis applied t

E, andE,, Lemma 8.4.9 applied to(¢r, (13)), and Lemma 8.4.5 applied to( ¢, (Ey)). O
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8.4.3 Execution State

Heaps: To describe valid heaps, we need some rules for typing metese

TYPE-OBJECT TYPE-NULL
0w (0,T) e H
HEo:T HbEFnull :Null

Now we can describe the typing of heaps. A heap is valid iflésnents are valid:

HEAP-NULL HEAP-OBJECT HEAP-UNION
HF(0,T) FH - H
H+nul HFo— (0,7T) FHUH'

An object-type paifO,T') is valid if (1) 7" is a valid type in the empty environment; and (2) for everydfiel
fin F(C), O(f) is defined, and its type is a subtype of the static typ¢, affter translation via:

HF (0,T)

OBJECT

0+ C<T,R> Y(f € Dom(F(C).(FO)f) =T finRANHFO):T"ANDFT" < po<r.p>(T"))

HF (0,C<T,R>)

Notice that at runtime, we check types in the empty enviramnfle because all parameters have been
substituted away.

Dynamic environments: A dynamic environmenk is valid if its elements are valid with respect to a heap

H:
DYN-ENV-EMPTY DYN-ENV-VAR DYN-ENV-RGN-PARAM
HEY Hto:T D+ R
HE0 Ht+ (v,0) Ht (p,R)
DYN-ENV-EFFECTFPARAM DYN-ENV-UNION
-E HFY HEY
HtE (n,E) HFXUY
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Instantiation of environments: The judgmentd + X < I" says that: instantiatesa static environmeri.
That means the variables and parameters appearing in bdatbhranents match; the types of the variable
bindings in both environments match; and the effect bingling obey the disjointness constraints specified
by I'. Instantiation allows us to use the static typing of expoessto infer that the dynamic execution of
those expressions is well-behaved.

The basic rule for instantiation just records the originghamic environment to the left of the-.
This makes the original dynamic environment is availablevaslissect the environment to compare it to

the static environment element by element:

INSTANTIATE
HFYXT SHEYX T
HFEYX T

Next we have the element-by-element rules. First we givaugual rules for empty environments and

unions; these just say formally that we compare the two enuiients element by element:

INST-EMPTY INST-UNION
S,HEY T SSHEY <T S HFY <T
SHEQD=0 SHEYUY' <TUI’

The rule for variables says that the dynamic type of the egiego bound towv in 3 has to match the static

typeT of vin T
INST-VAR

HEYXZT| Hvro:T 0FT=¢su(T)

S, HF (v,0) < (v,T)

For region parameters, we need three rules. The first hantiéisod region parameters, whose bindings
appear explicitly in22. The second and third handle the class region parametessendindings are given

implicitly by the type of the reference boundttdi s in X:

INST-METHOD-RGN-PARAM

S, HE(p,R)=p
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INST-CLASS-RGN-PARAM INST-CLASS-TYPE-RGN-PARAM

(this,o)eX Hto:T (this,o)eX Hbto:T

S, HEQ=<p(T) S,HEQ=p(T)
For effect parameters, we just need to handle method efteeinpeters, because there are no class effect

parameters. We must ensure that the effect parameter hamliadhyi and that the effect constraints are

satisfied:
INST-EFFECTFPARAM INST-CONSTRAINT
H-Y T O+ oz u(n)# és.u(E)
S, HE(nE)=n S HEQ)=<n#E

The rule for type parameters is simple, since these donkapipX_:

INST-TYPE-PARAM

SHEO=T

Execution state: The judgment” - (e, X, H) : T, E means that execution state, >, H) is valid with
respect to static environmeht(the environment in whicl was typed in the static semantics) with type
and effectty. That meang’, X, andH are valid;X instantiated"; ande is well typed inI" with typeT" and

effectE.

STATE

TH(e,%,H):T,E| +T +H H-S HFES=T The:T,E

't(e,X,H): T,FE
8.4.4 Preservation of Type and Effect

The second soundness result states that the static types$factds computed according to Section 8.2.6 ap-
proximate the dynamic types and effects produced by exatatcording to Section 8.3.2. More precisely,
if we evaluater to o starting in a valid execution state, then the resulting heaglid; o is well typed, and
its type is a subtype of the static typeepfand the resulting effect is valid and a subeffect of thastdtect
of e. In the rest of this section, assumigis a valid heapy. is a valid dynamic environment; is a valid

static environment, and instantiated". In symbols, thatis H, H + X, - T',andH - X <T.
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Lemma8.4.11.1f I' - R, then( - ¢, g (R). The same result holds replacidgwith E or 7.

Proof. Regions: By induction on the number of applications ¢f; ;. The first base case is (4) in the
definition of ¢, i (Section 8.3.3). In this caséy, y(R) = R, so we must shoW - R. By H - ¥ < T,
there cannot be any parameters in scope,isince there are none k. So byI" - R, R is not a parameter,
and( - R. The second base case is (3) in the definitiop®f;. In that case, by7 - ¥ < I', T =T UT",
andl'r -+ R. Sincel) - T by OBJECT, the result follows from Lemma 8.4.1. The first inductivee&s(1) in
the definition of¢y, i, i.e.,(p, R') € ¥. Inthat case, byf - X < I',T" = pUT". FurtherI” - R[p — R'],
because the substitution eliminai@sThe result then follows from the induction hypothesis. Beeond
inductive case is (2) in the definition @f . But this case obviously holds, as regions have no effect
parameters.

Types and effects: The identical argument goes through using Lemma 8.4.5 fecisfand Lemma 8.4.9
for types, except that we treat cases (1) and (2) togetheusethem to establish the preconditions of the

lemmas. O

Lemma 8.4.12.1f ' - RandX + R’ andIl' - R C R, then - ¢x, g (R) C ¢x. u(R'). The same result
holds replacingk and R’ with £ and E’.

Proof. Same proof as for Lemma 8.4.11, except that the first baseicad®wious from the definition of

¢x.m, and the argument for the second base case uses Lemmas@l82 %. O

Lemma 8.4.13.1f ' - RandT - R' andI' - R# R/, thend + ¢x, i (R) # ¢x.u(R'). The same result
holds replacingR with R’ and E with E.

Proof. Same proof as for Lemma 8.4.12, using Lemmas 8.4.4 and 8<téaid of Lemmas 8.4.2 and 8.4.6.
O

Lemma 8.4.14.1f T T < T", thenX b ¢ 1 (T) < s 1 (T").

Proof. Consider each of the three possibilities for the last rulgiag in the proof ofl' = 7" < 7. In the
case of ¥BTYPE-NULL, the result is obvious. In the case o SrYPE-INTERFACE-CLASS, it suffices to
show

¢, (bo<r r>(I<T, R, E>)) = ¢y yc<r,r>)I<T, R, E>).
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But we can do this easily with an argument similar to the orezlus prove Lemmas 8.4.3 and 8.4.7. In the
case of &BTYPE-INCLUDE, the problem is reduced to proving tHat- 7' C 7" impliesX + ¢x 5 (T') C
s u(T").
To prove the last fact, use induction on the height of the pptoat > - 7" C T’. The base case is
reflexivity. Otherwise, the result is given by the inductlyypothesis, together with Lemmas 8.4.2 and 8.4.6.
U

Lemma8.4.15.1f ) - T3 and@ + Ty and() - Ty C Ty, thend - ¢, (R) C ¢, (R). The same result holds

replacing R with £ or 7.

Proof. Via a straightforward induction, using the fact that all greconditions in all the rules fdt. - 7' C

T’ (Section 8.2.4) are written in terms Gf O

Theorem 8.4.16(Preservation of type and effect)ff - P andT'  (e,X, H) : Ts, Es and (e, X, H) —
(o,H',E), then(@F H;(b) H' Fo:T;(C) 0+ T < ¢s g (Ts); (d) O+ E; and ()0 F E C ¢ v (Es).

Proof. By induction on the structure ef

Base casesDYN-ACCESS (a) holds because the heap is unchanged. (b) and (c) hotd By OBJECT,
and the definition off - o : T'. (d) holds by FELD and Lemma 10. (e) follows directly from the definitions
of Accessand DrN-ACCESS

DYN-VARIABLE: (@), (d), and (e) are trivial. (b) holds ki - 3. (c) holds by comparing ARIABLE
with DYN-VARIABLE, and byH - X <T.

DYN-NEw: For (b), it suffices to showd + ¢x g (C<T, R>) in DYN-NEW. But this follows from
NEw and Lemma 8.4.11. (a) follows from (b) andB@ECT. (c) is obvious from IN-NEw. (d) and (e) are
trivial.

Inductive cases: DYN-ASSIGN The induction hypothesis applied to the subexpressigivest H’, so

to establish (a) it suffices to show that the tyfieof o is legal to assign tg, according to rule ®JECT.

Let ¢ be the static type of according to rule AsiGN, andT; be the type of fieldf. By Theorem 8.4.10,
I'ET.,and by AssiIGN I' =T, X Ty. Lemma 8.4.14 yield& - ¢x i (1) = ¢x u (1), and the induction
hypothesis give& - T, < ¢x, #(Te). Together with the transitivity of subtyping, this estahks the resuilt.
(b) and (c) are given directly by the induction hypothesid). gnhd (e) hold for the same reasons given for

DYN-ACCESS
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DYN-INVOKE: The induction hypothesis yieldd; - ¥’ and+ Hy, and it is obvious thaff, - X', Let
'™ be the environment in which we typed the body of methodf classC using METHOD. We break the
proof into two parts. First, we shoW, - ¥/ < I'"". Second, we use that fact to show the final result.

Hy Y <T™: LetI'"™ =TcUpUnUn# EU(z,T,). By the definition of instantiation of a static en-
vironment (Section 8.4.3), it suffices to show (&} 7,,, < ¢s m,(T%) and (D)) = ¢sr m, (n) # o5 m, (E).

(a) First assume that the static typig of e, is a class type. ByNVOKE, 'UT*“ = T¢, < o(¢re (T,)),
whereTe, is the static type ot T;, is the capture off,,, andT™ represents the extra parameters added
by the capture operation. Use induction on the number ofnpeters appearing ih“. In the base case
(I'“ is empty, i.e., no capture parameters), we heve 7., < o(¢r, (1:)). By Lemma 8.4.14H, |
O i, (Tey) = ¢27H4(o(¢Tel (Tx))). The induction hypothesis yieldd, + T, < ¢x m,(Te,), SO by
transitivity of subtyping, we havél, + Tp,, < ¢x u, (o (¢r., (T%))). By an argument similar to the proof of
Lemmas 8.4.3 and 8.4.9, we can show that the right-hand sidegual to¢¢2’H4 (J(Tq))(Tx), which is the
same a®yy p,(T%). In the inductive case, suppose we have added a single eggitameter. Construct the
environmen® U (p, R) or X U (n, E') by adding that parameter 1, with its actual binding. This operation
preserves instantiation of environments, so the same angugoes through using that environment instead
of 3.

Now assume that, is an interface type. ThemVoke givesI'UT = T¢, < o (e (T7)), whereT7 is
the formal parameter type in the interface signature implaied by the methodh. By the same argument
as for the class type case, we obtdla ~ 7,, < ¢x u,(co(¢r., (T))). Now factor¢r, into ¢s o ¢1,
whereg is the translation from the interface definition to the inmpénting class definition (writtes o ¢
in rule IMPLEMENT), and ¢, is the translation from the class definition to the class .typben we have
Hy b T,, <X ¢s.m,(0(d2(61(7)))). By IMPLEMENT, I'™  ¢1(T)) < T,, and it is straightforward
to show thatHy + ¢x g, (0(P2(P1(T%)))) = ¢x.m,(0(p2(T%))). By transitivity of subtyping, this gives
Hy & ¢s m,(0(¢2(T%))). The rest of the proof of the class type case then goes through

(b) By INVOKE, I' b E5 # o (¢, (E3)). By Lemma 8.4.13) - ¢x. 1, (E5) # ¢x. 1, (0(é1, (E3))). By
DYN-INVOKE, the left-hand side equals z, (7). By an argument similar to (a), the right-hand side equals
b 1 (E).

Final result: Now that we have establishdd, - >’ < T', (a), (b), and (d) follow directly from the

induction hypothesis applied to the executionegfin DYN-INVOKE. As to (c), the induction hypothesis
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gives( - T, = ¢5 u,(T.,) and® - T, < ¢sv g, (T;), whereT, is the return type ofn. Factorgsy g,
into ¢r, °0 whereo substitutes for the method parametersZJf and7,, are both instantiations of the
same class, then by Lemma 14, we hBve 1o, < ¢4, ,, (1.,)(c(13)). An argument similar to the proof of
Lemma 8.4.7 then giveS - T,,, < ¢ér m,(¢r., (0(T3))), which establishes the result.7f, andT, are not
both instantiations of the same class, tlignmust be a class typey y,(T¢,) must be the interface type it
implements, and the same result goes through via the defirofirule SJBTYPE-INTERFACE-CLASS.

Asto (e), by SE-WION-2, it suffices to show the result for each of the three efféd@sform the union.
The first two effects are given directly by the induction hyyasis. For the third effect, we have to show
0+ E C ¢su(o(or, (Es))), whereE is the actual effect of executing the method. The argumethiteis

same as for (c). O

8.4.5 Soundness of Noninterference

The third soundness result states that the static norenégrée judgment for expressions is sound: if two
expressions have statically noninterfering effects, therexecution of the two expressions is noninterfering
at runtime. Again, we assume all environments and heapsaéicetiroughout.

First we defineR ¢(o, H), the region of fieldf of objecto € Dom(H). This definition formalizes the

idea that regiongz in the field declarationg” f i n R partition the heap:
Definition 8.4.17(Region of afield) If H - o : TandF(T)(f) =T" fin R, thenR (o, H) = ¢7(R).

Next we prove a property of the dynamic effects produced logmm execution: for a well-typed
program, if we evaluate ande’ in sequence, and if the two evaluations have noninterfexffegts, then the

individual read and write effects efande’ can be arbitrarily interleaved, with identical results.
Lemma8.4.18.1f o € HandH C H', thenRs(o, H) = Ry(o, H').

Proof. It suffices to show thaR (o, H) is unique and does not change during program execution.higut t
is true, becaus® ¢(o, H) is uniquely determined by (1) the tygeégiven too — (O, T') when the object
is added to the heap viay-NeEw and (2) the declaratioF (7')(f) = T” f i n R, and neither of these

changes during program execution. O

Lemma 8.4.19.1f ¢’ is a subexpression ef and (¢, %', H") — (o', E', H") appears in the proof tree for

(e,%,H) — (0, E,H'), then) - E' C E.
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Proof. Clear by the structure of the rules in Section 8.3.2, sineedynamic effects of every expression

include the union of effects of the subexpressions. O

Proposition 8.4.20.1f (e,X, H) — (o, H',E) and (¢, X, H') — (¢, H",E’) and()  E # F’, then then

there are no conflicting accesses to the same object fielceirthluations of ande’.

Proof. First, “conflicting accesses to the same object field” is wlefined, because objects— (O, T) are
added via N-NEw and never subtracted, $6 C H' C H”, and the domain off (o) never changes. So
all accesses occur to object fieldsi@f'. Now suppose there is a conflicting access. Accesses hajgpen v
DyN-Accessand DrN-AssIGN and each of those rules records the effecigrio, ), for an access to
field f of objecto. So by Lemmas 8.4.18 and 8.4.19, there must be two conflictingsses to the same
region R, one contained i’ and the other contained ifi’. But by the rules in Section 2.5, this means that

() = E# E’ does not hold. O

Finally, by extending this result to static effects, we daibtdhe main soundness property of the core

language.

Theorem 8.4.21(Noninterference) If = P andT' + (e, X, H) : Ts, Es andT + (¢/,3, H') : T, E. and
' Es#E.and(e,X,H) — (o,H',E) and (¢/,%,H') — (o, H", E'), then there are no conflicting

accesses to the same object field in the evaluatioasantle’.

Proof. Theorem 8.4.16 give§ - E C ¢s, g(E,) and - E' C ¢x v (EY). It is easy to see the first
statement implie - E C ¢y, g (Es). Lemma 8.4.13 givess, y (Es) # ¢s, ur(EL). NI-INCLUDE then

gives)) - E # E’, and Proposition 8.4.20 gives the result. O
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Chapter 9

Conclusion

This thesis has presented Deterministic Parallel Javayadeéerministic by defaultanguage that uses a
novel type and effect system to (1) enforce determinism migle time with no runtime checking overhead;
(2) provide strong compile-time safety guarantees andp®dnce optimizations for nondeterministic code
supported by weakly isolated transactional memory; anal{8gk that the uses of object-oriented parallel
frameworks conform to their effect specifications. We hasesented the new language and effect system
features both informally and formally, and we have proveansimess for the formally described features.
We have also described evaluations showing that the newésaare useful and effective.

As discussed in Chapter 2, several open questions remairtfaif thesis, and should be a fruitful source

of continuing research:

1. Inferring region and effect information can reduce thegpammer burden of an effect system like
DPJ’s. Work on this problem is ongoing by Vakilian and othensd has already produced an algo-

rithm for inferring method effect summaries [122].

2. Supplementing the DPJ effect system with runtime checkgroperties such as disjointness of ref-
erence can make the language more expressive and/or réuupsogrammer annotation burden, at
the cost of weakening the compile-time guarantees and@ingduntime overhead. Exploring the

tradeoffs of static versus runtime checks is an interesirgject for future research.

3. DPJ’s support for object-oriented frameworks leadsmadljuto further work on nevparallel abstrac-
tions implemented as frameworks or possibly even first-clasguage features. Abstractions make
programmers more productive by allowing them to think atghéar level, without worrying about
implementation details. This thesis has explored two kofgmrallel abstractions (data parallel oper-
ations on disjoint containers, and pipelined loops), butyrmaore abstractions remain to be explored,

including both general and domain-specific ones.
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4. There is work to be done arerifying the implementationsf frameworks and other parallel abstrac-
tions, for properties such as type preservation, effectgruation, and noninterference explored in
this thesis. Such verification can be done with a combinatiothe effect system techniques dis-
cussed here and other static and dynamic techniques, inglatbre general program logic, testing,

and model checking.

In sum, this thesis has contributed to the state of the artamallel programming languages and effect
systems by (1) articulating a coherent approach to the @nolof making parallel programming easier; (2)
introducing a practical new language supported by novértieal contributions in support of that approach;

and (3) identifying several important areas of ongoing ardre research.
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