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Abstract
While there has been extensive work on the design of software
transactional memory (STM) for cache coherent shared memory
systems, there has been no work on the design of an STM system
for very large scale platforms containing potentially thousands of
nodes. In this work, we present Cluster-STM, an STM designed
for high performance on large-scale commodity clusters. Our de-
sign addresses several novel issues posed by this domain, includ-
ing aggregating communication, managing locality, and distribut-
ing transactional metadata onto the nodes. We also re-evaluate sev-
eral STM design choices previously studied for cache-coherent ma-
chines and conclude that, in some cases, different choices are ap-
propriate on clusters. Finally, we show that our design scales well
up to 512 processors. This is because on a cluster, the main barrier
to STM scalability is the remote communication overhead imposed
by the STM operations, and our design aggregates most of that
communication with the communication of the underlying data.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming—Distributed Programming; D.1.3 [Software]:
Concurrent Programming—Parallel Programming; D.3.3 [Soft-
ware]: Language Constructs and Features—Concurrent Program-
ming Structures

General Terms Languages, Performance

Keywords Software Transactional Memory (STM), Distributed
Memory Architectures, Clusters, Scalability

1. Introduction
Transactional memory is a promising mechanism for simplifying
shared memory parallel programming. Transactions improve upon
locks because they are easier to reason about, are more compos-
able, and in some cases provide progress guarantees without com-
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plex algorithm design. A transactional memory solution may be
implemented purely in software (software transactional memory,
or STM), purely in hardware, or some hybrid of the two.

On a distributed memory system, transactional memory is a
natural fit for languages that use a Partitioned Global Address
Space (PGAS) programming model. Such languages include Uni-
fied Parallel C (UPC) [12], Co-Array Fortran (CAF) [28], Tita-
nium [38], and the languages developed in the DARPA HPCS pro-
gram (Chapel [8], Fortress [37], and X10 [9]). Indeed, two of the
three HPCS languages (Chapel and Fortress) incorporate constructs
implying transactional memory. Implementing these features effec-
tively requires an efficient and highly scalable transactional run-
time system that can be targeted by compilers or by library writers
for those languages. The implementation must use an STM scheme
(with or without hardware acceleration) because there is generally
no hardware support for shared address spaces across nodes in the
system.

However, while there has been extensive work on STM designs
for cache coherent shared memory systems, to our knowledge there
is no work investigating STM designs for large-scale systems of any
kind. Prior STM work has focused almost exclusively on relatively
small scale cache coherent systems (e.g., 1–50 processors). We
refer to this work collectively as cc-STM. The only STM work
we know of that is intended for message-passing systems relies on
global cache coherence and has not been shown to scale to large
numbers of nodes [19, 22].

The most important difference between smaller-scale hardware
shared memory systems and large-scale distributed memory sys-
tems is that the former support fast access to arbitrary (local or
remote) addresses, while the latter require expensive communica-
tion for remote accesses, typically using a software communica-
tion layer. On a commodity cluster, remote accesses can be several
orders of magnitude slower than local ones (i.e., accessing main
memory within a single cluster node), and it is therefore critical
for performance to distribute both the data and the computation to
minimize communication.

These observations lead to a very different design rationale for
STM on a large cluster than on a cache coherent machine. In cc-
STM, the key to good performance is to reduce the scalar (i.e.,
single-processor) overhead imposed by the STM bookkeeping op-
erations. On a cluster, there are three potentially important goals:
(1) to reduce or eliminate the extra remote operations imposed by
the STM; (2) to ensure that the STM interface and implementa-
tion enable aggregating communication and exploiting locality; and
(3) to minimize scalar overhead. In fact, the scalar overhead does
not impact scalability: it primarily adds a constant factor overhead
to overall performance. While such constant factors can be im-
portant, we expect that scalar overhead will be less important on
large-scale clusters for two reasons. First, except for very efficient
programs with low communication overhead, the scalar overhead
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will often be overlapped with (and dominated by) remote commu-
nication costs. Second, we expect that hardware support will be
added to multicore processors to reduce this scalar overhead sig-
nificantly [33, 26], while the other two issues require careful STM
interface and algorithm design.

In this work, we make four distinct contributions:

1. We present Cluster-STM, an STM system designed for high
performance on large-scale distributed memory systems such
as commodity clusters. Our design addresses several important
issues for these systems that have not been addressed in previ-
ous STM designs, including managing locality and distributing
STM metadata onto the nodes. Both the STM library interface
and the underlying algorithm implementing that interface are
important in achieving these goals.

2. We evaluate a prototype of Cluster-STM, implemented on top
of the GASNet communication library [6], on up to 512 pro-
cessors of a large Intel Xeon cluster. We show that our design
scales well across that range of processors because we carefully
reduce, and in many cases eliminate, any extra remote-access
overhead imposed by the STM bookkeeping operations. We do
this by folding the bookkeeping operations into the underlying
data communication operations that are occurring anyway.

3. We decompose the cc-STM work into an eight-axis space that
allows most existing designs to be expressed as points in the
space. This decomposition helped us identify what design is-
sues, previously studied for cc-STM, may require different
choices on large-scale systems. The design space also facili-
tates comparison among the different existing algorithms, and
shows how new design choices might be constructed from ex-
isting ones.

4. We evaluate several design choices in the context of Cluster-
STM. Our results show that two different choices are indeed ap-
propriate on such clusters compared with cc-STM. First, reader
locks perform acceptably even though they can degrade perfor-
mance on cache coherent systems by causing cache evictions.
Second, write buffering performs acceptably (and in our exper-
iments performed competitively with undo logging), whereas
previous researchers have concluded that undo logging is nec-
essary for good performance. Both of these results flow from
the fact that on a cluster, the remote operations dominate the
latency.

The rest of this paper proceeds as follows. In Section 2, we dis-
cuss prior work on PGAS programming and software transactional
memory. In Section 3, we present the interface design for Cluster-
STM. In Section 4, we describe the algorithmic choices that we in-
vestigated for implementing the interface. In Section 5, we present
our experimental results. In Section 6, we discuss related work and
conclude.

2. Background and Related Work
In this section, we briefly discuss partitioned global address space
(PGAS) languages, which provide the context for our work. We
then compare our work with previous work on software transac-
tional memory design and evaluation.

2.1 Background: PGAS Programming
The partitioned global address space (PGAS) model, embodied in
languages such as Unified Parallel C (UPC) [12], Co-Array For-
tran [28], and Titanium [38], has recently emerged as an attractive
way to program large parallel systems, including commodity clus-
ters, the focus of our work here. PGAS represents a middle ground
between a “pure shared memory” style emulated in software, such

as software distributed shared memory (SDSM) [2], and an explicit
message passing style, such as MPI. Like shared memory program-
ming, and unlike MPI, PGAS languages provide a global address
space, allowing threads to refer to remote memory directly, instead
of via message passing calls. However, by allowing the program-
mer to control locality and communication, the PGAS model also
provides better performance and scalability than SDSM. None of
these traditional PGAS languages supports transactional memory,
but one could extend them to include transactional concepts like an
atomic{...} block.

The DARPA HPCS languages — Chapel [8], Fortress [37], and
X10 [9] — build upon the PGAS model and aim to provide the next
generation in high performance programming languages. Like the
traditional PGAS languages, they are based on a partitioned global
address space, but they also provide many higher-level features,
including flexible task creation, a rich set of parallel operations
on global arrays, and object-oriented programming. Both Chapel
and Fortress provide an atomic{...} block, which guarantees that
code enclosed within the block will behave like a transaction. (X10
also provides an atomic construct, but it is intended for short crit-
ical sections and requires that the accessed memory locations be
statically known and local to the executing thread.) How to im-
plement this construct, and its performance implications for large-
scale computing, are open questions that we address in this work.

2.2 Cache Coherent STM
The concepts of transactional processing [13], the property of se-
rializability [29], and practical techniques to guarantee serializ-
ability [13, 21, 4] were originally developed in the database com-
munity. In the mid-1990s, researchers started applying transac-
tions to general purpose programming, first as hardware transac-
tional memory [18] and then as software transactional memory, or
STM [34]. With the advent of multicore computing, in recent years
there has been a great deal of interest in transactional memory, for
the reasons explained in the introduction. Many designs have been
proposed, either purely in software [1, 32, 15, 16, 10, 23, 17, 24, 14]
or with hardware support [7, 20, 30, 5, 36, 27]. The focus of our
work is on software designs for implementing transactional mem-
ory, and in particular doing so on large scale systems.

To date, most work on STM has focused on cache-coherent
shared memory machines, either SMP (including the emerg-
ing class of multicore desktop machines) [32] or cache-coherent
NUMA machines [15]. Manassiev et al. describe a transactional
system designed for clusters [22], but their approach is based on
SDSM, uses a kind of broadcast-based software cache coherence,
and has not been shown to scale beyond about ten processors. Her-
lihy and Sun describe a design for a distributed memory STM, also
based on global coherence [19]. We are aware of no work on STM
that is directly applicable to the context of a distributed memory
system containing thousands of nodes.

In Section 4.1, we describe how to decompose the set of existing
cc-STM designs into a set of (mostly orthogonal) design choices,
which can be viewed as axes in the design space, so that different
algorithms can be viewed as combinations of such design choices.
While there has been some prior work in this spirit [23, 24, 32,
11], no prior work has recognized all these dimensions explicitly
(though they are implicit in the designs), nor has there been any
evaluation of their impact on large-scale clusters.

3. STM Interface Design
Cluster-STM consists of an interface and an algorithm to imple-
ment that interface. In this section we describe our interface design.
As in prior STM work, we provide an STM API as a set of low-level
C functions that could be targeted by a compiler when translating

248



i n c r e m e n t ( p r o c t proc , i n t ∗ addr ) {
tmp = g e t ( proc , addr )
++tmp
put ( proc , addr , tmp )

}

i n c r e m e n t ( p r o c t proc , i n t ∗addr ) {
on ( p roc ) {

++∗ addr
}

}

(a) (b)

Figure 1. (a) Remote increment without on construct; (b) remote increment with on construct. Potential remote operations are marked in bold. Assuming
that proc is remote to this code, then (a) incurs two remote communication events (get and put), while (b) incurs one (spawning the remote operation).

higher-level constructs like the atomic block provided by Chapel
and Fortress.

3.1 Execution Model
We assume a Single Program Multiple Data (SPMD) execution
model similar to the traditional PGAS languages, in which one ex-
ecution context is started for each processor at the outset of the
program, and each runs until the end of its computation. No other
execution contexts are created or destroyed during the life of the
program. We assume that every data element (a scalar or an array
element) is assigned a “home” processor, and not replicated auto-
matically on any other processors. The application is responsible
for caching local copies of remote values explicitly. Further, we
treat the processors as a flat set, and do not distinguish between,
e.g., processors within a node and processors across nodes. Un-
like most SPMD models, we do allow an execution context on one
processor to invoke operations on another processor to exploit data
locality. Note, however, that we retain the limitation of p dynamic
tasks for p processors. Chapel and Fortress support the ability to
create more than p tasks, so our future work will include relaxing
our execution model to support more general multithreaded pro-
gramming.

3.2 Transactional Semantics
Cluster-STM provides weak atomicity [25]. This means that we
guarantee atomicity only as to conflicting pairs of transactional
accesses; conflicts between transactional and non-transactional ac-
cesses are not protected. Weak atomicity is less composable than
strong atomicity (protecting all pairs where at least one is a trans-
actional access). It also raises subtle problems, e.g., granular lost
updates. However, the runtime overhead of strong atomicity can be
prohibitively high in the absence of hardware support [25, 35].

In order to avoid the subtle problems of weak atomicity in our
STM, we impose the programming restriction that each memory
location must be accessed always within transactions or always
outside transactions; we refer to these as transactional and non-
transactional data. This restriction is only required within each
interval between global synchronization points (e.g., global barri-
ers); a memory location can be transactional in one such interval
and non-transactional in another. The global barrier ensures that all
threads see consistent behavior of the location throughout the exe-
cution.

With this programming restriction, Cluster-STM guarantees se-
rializability [29] of reads and writes to transactional data. A trans-
actional execution is serializable if the reads and writes can be in-
terchanged into some serial order (so that there is no interleaving
among transactions) without interchanging any conflicting opera-
tions (i.e., pairs of overlapping accesses such that at least one is
a write) [4]. The Cluster-STM interface specifies that any imple-
mentation of the interface must guarantee serializability; it does
not specify the algorithm for achieving this guarantee. We explore
several algorithmic possibilities in the next section.

One potential complication of the above programming restric-
tion is that certain STM algorithms may detect sharing conflicts

at a granularity greater than one word. We call this unit of detect-
ing sharing conflicts the conflict detection unit, or CDU (defined
more precisely in Section 4). The complication is that an entire
CDU must meet the programming restriction, i.e., must be always
transactional or always non-transactional. To avoid exposing this
internal algorithmic parameter to programmers, we impose the re-
striction that every allocated object be entirely transactional or en-
tirely non-transactional. The compiler and run-time can ensure that
distinct allocated objects never share a single CDU (unless the com-
piler can prove that two such objects are both transactional or both
non-transactional). In practice, the CDU will be a few words, which
should keep the memory penalty small.

3.3 Design Principles
In addition to providing the usual STM constructs (start, commit,
read, write, and allocate memory), we based our design on several
core principles motivated by the desire for high performance on
clusters:

Multiword data movement is important. cc-STM designs are
based on a shared heap-private stack model of memory in which
(1) the heap is protected by STM metadata; (2) each transaction
allocates private variables on the stack for local computations; and
(3) transfers between (1) and (2) are done using single-word or
single-object stm read and stm write operations [1, 32, 15, 16,
17]. On clusters, however, fine-grained remote reads and writes
are usually inefficient, and transfers from remote shared to local
private memory must be done in bulk where possible. Therefore,
our design should support bulk transfers of data to and from the
transactional store.

A transactional “on” construct is important. Multiword data
transfers allow the programmer to “bring the data to the compu-
tation.” However, it is often also important to be able to “send
the computation to the data.” For example, consider the code in
Figure 1(a). If the destination processor is remote to the proces-
sor running the code, this code is inefficient, because it does a
fine-grained get followed by a fine-grained put. The code in Fig-
ure 1(b) is written with an “on” construct specifying that the code
should be incremented “in place” on the processor where the data
is, rather than moving it back and forth to increment it. The Chapel
language specification includes an “on” construct for exactly this
purpose. We believe that the “on” construct is important in high-
performance programming on clusters, and that our STM should
support a transactional version of “on,” so that on sections may be
freely combined with atomic sections. In Section 5, we give ex-
amples of such combinations, and we show how the on construct is
essential to getting good performance in a real application.

Any software cache should be orthogonal to the STM. On a
cluster, there is often data reuse such that remote data should be
cached locally for good performance. This caching must be done
in software. Our initial STM design integrated a transparent soft-
ware cache into the STM such that, when a remote value was read,
it would be cached for later use for the life of the transaction.
However, we realized that this design complicated the implementa-
tion and did not necessarily provide what is wanted: while conve-
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Table 1. STM Interface
Function Explanation

Memory Allocation
stm all alloc(work proc, size) Allocate a pointer to size bytes on work proc and return the pointer to all processors.
stm alloc(src proc, work proc, size) On behalf of src proc, allocate and return a pointer to size bytes on work proc.
stm free(work proc, addr) Free the memory allocated at address addr on processor work proc.

Transaction Start and Commit
stm start(src proc) Start a transaction on behalf of src proc.
stm commit(src proc) Commit a transaction on behalf of src proc.

Data Movement
stm open read(src proc, addr, size) On behalf of src proc, open size bytes starting at addr for reading.
stm read(src proc, dest, src, size) On behalf of src proc, copy size bytes from transactional memory src to private memory dest.
stm open write(src proc, addr, size) On behalf of src proc, open size bytes starting at addr for writing.
stm write(src proc, dest, src, size) On behalf of src proc, copy size bytes from private memory src to transactional memory dest.
stm get(src proc, dest, work proc, src, size,

open)

On behalf of src proc, copy size bytes from transactional memory src on processor work proc to
private local memory dest. If open==true, open the source data for reading first.

stm put(src proc, work proc, dest, src, size,

open)

On behalf of src proc, copy size bytes from src private local to transactional memory dest on
processor work proc. If open==true, open the destination data for writing first.

Remote Work
stm on(src proc, work proc, function, arg buf,

arg buf size, result buf, result buf size)

On behalf of src proc, perform function function on processor work proc, using the argument
in arg buf and placing the result if any in result buf. Return the number of bytes written to
result buf.

nient in many cases, transparent caching can also be less efficient
than programmer-controlled locality management. Therefore, we
decided that the software caching policy should be up to the appli-
cation programmer, compiler, or a runtime layer above the STM.
The STM is responsible only for guaranteeing serializability, and it
should work with a variety of software caching protocols.

3.4 Interface Description
Table 1 illustrates the design of our STM interface using the as-
sumptions and design principles stated above. Two of the parame-
ters require explanation:

• src proc: The processor on behalf of which the operation is
occurring. This parameter is needed because, e.g., processor
P may spawn some remote transactional work on processor Q
using the on construct. The STM algorithm must log updates
and check conflicts on behalf of P . To enable this, we pass
P as an argument to the transactional API functions called
by Q. This is similar to the technique of passing a thread-
local transaction descriptor into each function called within a
transaction [32]. We extend this technique to remote procedure
invocation.

• work proc: The processor on which the work is to be done.
In the case of get and put, work proc is the other processor
involved in the transfer. In the case of on, work proc is the
processor where the work is to be done. If work proc is equal
to the processor invoking the function, then the operation is
local and may be done without any remote communication.
For operations that are always local (such as stm start and
stm commit; see below), this parameter is omitted.

All API functions are blocking, i.e., a transaction must wait until the
call returns to continue. In particular, no processor may create par-
allelism inside a transaction using these operations. This means that
the API does not allow overlapping communication and computa-
tion within a transaction. We have found that this limitation does
not impose much of a performance penalty for the benchmarks we
have studied. Allowing nonblocking puts, gets, and on work within
a transaction complicates the API semantics and is a subject of fu-
ture work.

Memory allocation. We provide a function stm alloc that is
called by one processor and returns a pointer to allocated data to
that processor only, initializing the associated transactional meta-
data. This function may be called inside a transaction, in which

case the allocation is logged on behalf of src proc; if the transac-
tion aborts, the allocation is undone.

We also provide a function stm all alloc for allocating from
the transactional store outside a transaction. This function must
be called by all processors, employs a barrier synchronization,
and returns a pointer to the allocated data (allocated on proces-
sor work proc) to all calling processors. It is an error to call
stm all alloc within a transaction. This design captures a com-
mon and useful programming idiom (allocate a common block of
memory at the outset of execution, then use it repeatedly across
transactions). If more general shared object creation is needed, one
can allocate on one processor using stm alloc and then manually
communicate the address to other processors using communication
and synchronization primitives.

Finally, we provide an stm free function for freeing transac-
tional memory allocations. This function may be called by any pro-
cessor, but it must be called exactly once for each allocated object;
in practice, it is usually called by the work proc as a local opera-
tion.

Transaction start and commit. Transactions are started with
stm start and ended with stm commit. A transaction must be
started and committed on the same processor. All transactional op-
erations must occur within a dynamically matched pair of these op-
erations. Transactions may be nested, but in the present design we
flatten nested transactions into a single transaction, treating only the
dynamically first stm start and dynamically last stm commit as
significant. Our interface has no explicit abort operation; any abort
is implicit and is triggered by the conflict detection mechanism in
the implementation of this interface.

Data movement. We provide both local and remote data move-
ment operations. The local interface is similar to previously pro-
posed STM interfaces [1, 16]. We provide stm open read and
stm open write operations that open a contiguous set of mem-
ory locations for reading or writing. We also provide stm read
and stm write functions for moving data between transactional
and local private memory. Each transactional location touched by
stm read must be opened for reading at least once prior to the
read, and each location touched by stm write must be opened for
writing at least once. Decomposing the interface in this way allows
a single stm open operation to protect multiple subsequent read or
write operations, eliminating redundant operations.

We also provide one-sided put and get operations similar to
those provided by GASNet [6], except that they are supported by
logging and conflict detection necessary to guarantee serializabil-
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(a)

i n c r e m e n t ( p r o c t proc , i n t ∗ addr ) {
a tomic {

on ( p roc ) {
++∗ addr

}
}

}

(b)
i n c r e m e n t ( p r o c t proc , i n t ∗ addr ) {

s t m s t a r t ( MY ID )
stm on ( MY ID , proc , i n c r e m e n t l o c a l ,

addr , s i z e o f ( i n t ∗ ) , 0 , 0 )
stm commit (MY ID )

}

i n c r e m e n t l o c a l ( p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e ) {

i n t ∗addr = ∗ ( ( i n t ∗) a r g ) ;
i n t tmp ;
s t m o p e n r e a d ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm read ( s r c p r o c , &tmp , addr , s i z e o f ( i n t ) )
++tmp ;
s t m o p e n w r i t e ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm wri te ( s r c p r o c , addr , &tmp , s i z e o f ( i n t ) )

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.

Remote work. We provide an stm on construct for performing
a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.

Figure 2 illustrates the implementation of the remote incre-
ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space
A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.

1. Transactional view of the heap. “Word-based” STMs [1, 32,
16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.

2. Read synchronization. Most STMs use “read validation”:
when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to prevent B from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.

3. Write synchronization. In most STMs, a transaction T writ-
ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.

4. Recovery mechanism. Some STMs use a write buffer: Each
transaction buffers its writes until commit, so no global state is
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changed until the transaction can definitely commit [15, 17, 24, 14].
Others use an undo log: Each transaction makes its writes in place,
saving the old value to be restored if necessary on abort [1, 32, 16].
Because it provides “invisible writes,” the write buffering mech-
anism allows more flexibility in the timing of acquiring locations
for writing (see immediately below). However, it is also potentially
less efficient, because (1) it requires the write buffer to be searched
on every read; and (2) it requires that written locations be copied
on commit, instead of abort, and we want commit to be fast.

In Cluster-STM, we implemented both write buffering and undo
logging. We expected that the additional overhead of write buffer-
ing would be less dramatic in cases where the runtime is dominated
by remote access latencies, so long as the write buffering and undo
logging implementations use the same number of remote opera-
tions, and the only extra overhead of write buffering is local scalar
overhead (searching and copying).

5. Time of acquire for write. In implementations that use a write
buffer, a transaction may acquire a location for writing at the time of
the write [1, 32, 16, 17, 24], or it may acquire the location at commit
time [14, 15, 24]. Acquiring locations later in the transaction may
allow more concurrency, or it may allow doomed transactions to
spend more time doing wasted work. The tradeoffs between write-
time and commit-time acquire have been studied for cache coherent
machines [23, 24, 11]. For Cluster-STM, we implemented both
early and late acquire in our write buffering implementation.

6. Size of conflict detection unit (CDU). In previous work, ac-
cess conflicts are detected for objects [32, 16, 17, 24, 14], cache
lines [32], or groups of words associated by a hash function on
their addresses [15]. The tradeoff here is between reducing false
sharing (with finer granularity detection) and reducing the memory
overhead imposed by the STM metadata (with coarser granularity
detection). To test this effect, we use the same STM metadata to
guard contiguous blocks of 2n words, where n ≥ 0 is a parameter
initialized at startup. We call each such contiguous block a conflict
detection unit, or CDU.

7. Progress guarantee. All STM designs avoid deadlock by
aborting transactions that get stuck. Some provide no additional
progress guarantee, e.g., they do not guarantee against livelock
or guarantee progress when a lockholding thread is preempted
or fails [1, 32, 16]. Others are obstruction free: they guarantee
that some thread will make progress unless livelock is occurring
[15, 17, 24]. One design is lock free, which means that some thread
always makes progress (livelock never occurs) [14]. Increasing the
level of progress guarantee increases the implementation complex-
ity and, while beneficial in theory, can actually degrade perfor-
mance in some cases [15, 32]. For Cluster-STM, we provide no
progress guarantee except absence of deadlock for simplicity of
implementation, and because we expect preemption or failure of
lockholding threads to be rare.

8. Where metadata is stored. All STMs store and maintain meta-
data for detecting conflicting accesses to program data by differ-
ent transactions. This metadata may be stored in program data ob-
jects [16, 32, 1], in transaction descriptors [14], or in side data struc-
tures [32, 1, 15, 17, 24]. Cluster-STM employs a novel strategy that
uses a transaction descriptor distributed across multiple processors,
plus one word of globally shared metadata per CDU.

To summarize, our algorithm is word-based (1), uses exclusive
access for writes (3), gives no progress guarantee other than ab-
sence of deadlock (7), and uses a novel distributed metadata orga-
nization (8). The CDU size (6) is a numerical parameter to the algo-
rithm. For the remaining three axes, we implement both choices in
each: read locking (RL) and read validation (RV) (2); write buffer-
ing (WB) and undo logging (UL) (4); and early acquire (EA) and
late acquire (LA) (5). This creates eight possible combinations.

However, late acquire cannot be used with undo logging, leaving
six feasible variations of our algorithm.

4.2 Choices Motivated by Clusters
4.2.1 Distribution of metadata onto the processors
One important decision we faced was how to distribute the STM
metadata onto the processors. This design decision is not addressed
in prior work on cc-STM, because the cache-coherent model as-
sumes efficient access to all memory.

Globally shared metadata. As discussed in the previous section,
we reserve one word of globally shared metadata per CDU, where
a CDU represents 2n contiguous words on the transactional store,
and n is a user-defined parameter. In all implementations, the least
significant bit of the word is set if the corresponding CDU is locked
for writing, clear otherwise. The other bits represent (1) the number
of readers, in the read locking implementation when the write bit
is clear; or (2) the version of the associated CDU, in the read
validation implementation.

It is natural to keep this metadata on the processor where
the corresponding program data is. Therefore, we reserve the top
1/(2n+1) of each processor’s transactional store for metadata, and
we map the ith CDU in the store to the ith word in the metadata
section.

Transaction-local metadata. Conceptually, each active transac-
tion maintains a transaction descriptor with the following informa-
tion:

• A dataset containing one entry for each CDU read or written by
the transaction. The entry contains information such as whether
the access was a read or a write; the data being buffered or
logged for the CDU; and the old version read (in the read
validation implementation).

• The transaction nesting depth and information on where to re-
turn on abort (in our implementation, we use setjmp/longjmp
and store this information in a jmp buf).

• A list of transactional allocations, for undo on abort.

Our initial idea was to locate this metadata on the processor that
initiated the transaction. However, we realized this would cause
unnecessary network traffic, make the implementation unduly com-
plex, or both. For example, to implement stm on, we would either
need to send metadata to the initiating processor after each remote
operation, thus defeating the purpose of the on clause, or we would
need some way to marshal the metadata at the end of the remote ex-
ecution and send it back. Following the lead of distributed database
implementations [4, 31], we realized it would be easier and more
efficient to keep all the metadata associated with a CDU of program
data on the home node for that data (defined in Section 3.1).

For a transaction T initiated on processor P , we slice T ’s
descriptor across all the processors on which P initiates memory,
allocation, or other local operations. Each processor maintains a
transaction descriptor for every processor that invoked operations
on it. To make this scheme work, we added the following data to
each transaction descriptor slice:

• src proc: the processor on behalf of which the descriptor is
recording information

• tx proc: the processor that initiated the currently active (out-
ermost) transaction

• remote procs: the set of remote processors whose memory
src proc has accessed in executing the transaction on this
processor.

Note that the only case where src proc is different from tx proc
is if a processor (src proc) initiates an on operation (outside any

252



Table 2. Cluster-STM Algorithm
Vertically stacked operations show a sequence of steps by a processor.

RL = read locking, EA = early acquire, UL = undo logging, RV = read versioning, WB = write buffering, and LA = late acquire. See Section 4.1.
Operation RL-EA-UL RV-EA-UL RL-EA-WB RL-LA-WB

Memory Allocation
stm alloc Call memalign to get an allocation aligned on a CDU boundary and clear associated metadata. If tx depth > 0, record the

allocation.
stm all alloc Same as stm alloc, except never inside a transaction and the result is broadcast to all processors.
stm free Call free

Transaction Start and Commit
stm start Increment tx depth. If tx depth == 1, set tx proc to the current processor and invoke setjmp.
stm commit Decrement tx depth. If tx depth == 0, then attempt to commit the transaction:

Validate READ CDUs, aborting
on failure. Increment version of

Acquire WRITE CDUs, abort-
ing on failure.

WRITE CDUs. Copy data from WRITE entries
Release all held locks

Data Movement
stm open read For each CDU touched that is not already in the dataset, create a new READ entry and do the following atomically with respect

to the associated global metadata word, aborting if the word is locked for writing:
Increment reader count Record version Increment reader count

stm read Copy data from transactional store to private store Copy data from buffer if there, otherwise from store
stm open write For each CDU touched that does not already have a WRITE entry in the dataset, do the following atomically with respect to the

associated global metadata word, aborting if the word is locked for writing:
Abort if reader count exceeds
one, or equals one and CDU is
not in read set

If a READ entry exists, validate
it and abort on failure (since the
transaction would later abort on

Abort if reader count exceeds
one, or equals one and CDU is
not in read set.

commit anyway). Get data from store into write buffer.
Set write bit of metadata word

stm write Copy from private store to transactional store Copy from private store to buffer
stm get If work proc is remote, add work proc to remote procs. Optionally invoke stm open read on work proc, aborting on

failure. Invoke stm read on work proc.
stm put If work proc is remote, add work proc to remote procs. Optionally invoke stm open write on work proc, aborting on failure.

Invoke stm write on work proc.
Remote Work

stm on If work proc is remote, and tx depth > 0, add work proc to remote procs. Invoke setjmp. Invoke specified function on
work proc, aborting on failure.

transaction) and during the execution of that operation a different
processor (tx proc) initiates an outermost transaction.

A simple way to implement the slicing is to have each proces-
sor keep an array of descriptors, containing one descriptor for ev-
ery other processor. This is sufficient (and no synchronization is
required for these arrays) even in the presence of nested operations
because all remote operations, including stm on, are blocking, and
therefore two transactions will never compete for the same slice
on any processor. Also, since the size of an initialized descriptor
is small, and only grows when the descriptor is actually in use by
a transaction, the memory overhead of this approach is acceptable.
We could also create descriptors on an as-needed basis and store
them in a hash map.

4.2.2 Algorithm design
Table 2 summarizes our algorithm design for four out of the six
feasible configurations described in Section 4.1 (for lack of time
and space, we have not implemented the other two configurations,
RV-EA-WB and RV-LA-WB). The table shows, for each interface
function in each configuration, the main steps that are carried out.
Using these algorithm descriptions, it is straightforward to show
that each variant guarantees serializability of transactions by plac-
ing a serialization point [29] between the lock operations and the
unlock operations (for the reader lock implementations) or between
the lock operations and the validate operations (for the read valida-
tion implementations).

For memory allocations, we reserve a transactional store on
each processor at the outset of the program, and manage it us-
ing memalign and free protected by a lock. We also retain the
“normal” program heap (managed with malloc and free) for
processor-local computations.

Every transaction maintains the nesting depth tx depth, incre-
menting and decrementing it on start and commit. stm start sets
tx proc if the depth becomes 1, denoting an outermost transaction.
The matching stm commit sees the depth become 0 and attempts
to commit, which requires sending one or two commit messages
to each processor in remote procs. In the RL-EA-UL case, each
processor only has to release all read locks that are held; only a
single commit message is necessary. In the RV-EA-UL case, one
message notifies all participating processors to validate their READ
CDUs and increment version numbers for WRITE CDUs; if all re-
spond as successful, a second message notifies all to release all held
write locks. The stm put/get/on operations all add the target pro-
cessor to remote procs to be notified during a subsequent commit
of the outermost transaction, before performing the appropriate op-
eration. Both stm start and stm on execute a setjmp to prepare
to receive control on a possible abort. When an abort occurs inside
an on clause inside a transaction, control is transferred to the point
of the on invocation via longjmp on the remote processor, then to
the invoking processor via handler return, then to the start of the
transaction via longjmp on the invoking processor.

Our design has several important properties:
We aggregate communication well. For the memory allocation,

data movement, and remote work operations, the STM metadata
operations introduce no extra communication events. stm start
is a purely local operation. stm commit does introduce communi-
cation events, but our distributed metadata limits their number to
one event per processor touched by the transaction, even if many
locations are touched on each processor. The same is true on abort.
The late acquire and read validation options each add one more
event per processor touched on commit or abort.

We maintain one dataset. We maintain a single dataset that
serves as our read and write set, undo log and write buffer. This
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simplifies the implementation. It also allows us to promote readers
to writers, by checking that the writing transaction is the only
reader, in contrast to the more complicated approach taken in [32].
As pointed out in recent work [32, 16], the use of sets instead of lists
may add local scalar overhead to the STM, but in this work we used
a simple implementation because we were concerned primarily
with the issues posed by remote data access. Tuning the local scalar
part of the STM is a subject of future work.

We optimize block data moves. Our dataset stores one entry per
CDU, in contrast to recent cc-STM designs that store one entry per
word in the undo log, even when the conflict detection granularity
is larger than one word [1, 16]. This allows us to use one dataset
entry per CDU size in words, rather than one entry per word. In
the write buffering implementation, it also reduces the number of
buffer searches on read and write to one per CDU size.

5. Evaluation
To evaluate our design of Cluster-STM, we built a prototype in C
on top of the GASNet communication library [6]. We assign one
GASNet process at startup to each processor, and we use GASNet’s
Active Message capability to spawn remote on work. We ran our
experiments on the NCSA Tungsten cluster comprising 1280 nodes
(each of which is a Dell PowerEdge 1750 server with two Intel
Xeon 3.2 GHz processors), running Red Hat Linux and connected
by Myricom’s Myrinet cluster interconnect network. We ran the
experiments using one processor per node, because we found this
configuration was necessary to obtain stable runtimes. This config-
uration also generated faster runtimes than using two processors per
node, probably because it eliminated resource contention between
two processors on one node.

5.1 Micro Benchmarks
We ran experiments using two concurrent data structure bench-
marks that help to clarify the overheads and scalability of the STM
operations because they are dominated by these operations. They
are similar to benchmarks used in previous STM papers [15, 23].

The first micro benchmark, intset, performs a sequence of ran-
dom insert and find operations on a set of integers that is evenly
distributed over the nodes. Each remote operation occurs entirely
inside an on clause. In the locking implementation, a lock is taken
and released on the remote processor inside that clause. In the STM
implementation, a transaction is started and committed inside the
clause.

Figure 3(a) shows a plot of the runtimes of intset implemented
with distributed queued locks for 1–512 processors (1 ≤ p ≤ 512),
with 16% inserts, taking the minimum of several runs. We used
two problem sizes, a smaller one (6 million operations) for p ≤ 8,
and a larger one (100 million operations) for p ≥ 8, because the
larger problem size did not fit on 1–2 processors, and the smaller
problem size generated runs that were too short for large p. The
graph shows a “bump” at 2–4 processors, as the parallel speedup
achieved by adding processors is offset by the increased cost of
remote communication. After 4 processors, however, the runtime
scales linearly with the number of processors.

Figure 3(b) shows the results for each of the four STM im-
plementations with a CDU size of one word (n = 0). We have
normalized the results so the runtime for the lock implementation
is one, and the other STM runtimes are expressed as ratios to it.
Note that while scalar overhead is significant (about 2.8x–3.7x) on
one processor, the STM performance penalty all but disappears af-
ter p = 2, as the runtime becomes dominated by the remote ac-
cess latency. Further, all four STM implementations show about
the same performance. These results occur because all four STM
implementations show about the same performance. This occurs
because all four STM implementations use the same number of re-

mote accesses (i.e., one on invocation per operation) and impose no
extra remote operations over the lock version for this benchmark.
Note also that . We also ran these experiments for a CDU size of
16 (n = 4). The results were similar, but the STM overhead was
slightly higher because of the increase in false conflicts.

The second benchmark, hashmap swap, tests an atomic swap of
the values associated with two randomly selected keys in a hash
map. Again the data is distributed evenly over the nodes. The swap
consists of two finds followed by two inserts, all in a single atomic
section. In the locking implementation, we lock the two keys (in nu-
merical order to avoid deadlock), perform the swap, and unlock the
keys. In the STM implementation, we start a transaction and nest
on clauses inside it for the remote finds and inserts. In the common
case of swapping two remotely-stored values, the lock implemen-
tation uses eight separate remote accesses per swap operation (two
each of lock, find, insert, and unlock). The RV-EA-UL and RL-
LA-WB STM implementations also use eight (two each of find,
insert, and commit, plus two validations for RV and two acquires
for LA). However, the two RL-EA implementations use only six re-
mote operations (two each of find, insert, and commit, avoiding the
extra validation and acquire as discussed in the previous section).
Thus, we expect the RV and LA STM implementations to perform
about as well as the lock implementation, and the RL-EA STM im-
plementations to outperform the other STM implementations (and
locks) by about 6/8.

Figure 4(a) shows a plot of the runtimes for the lock implemen-
tation, and Figure 4(b) shows the STM results, again expressed as
ratios to the lock runtimes. Again we use two problem sizes, for
the reasons discussed above. The results are close to what we ex-
pect: the two RL-EA STM implementations significantly outper-
form locks, and the other two STM implementations do slightly
better than locks. In both cases, after p = 2, the STM runtimes
are slightly lower than we would predict by counting remote oper-
ations. This is likely because the locking implementation takes two
remote locks even when both are on the same processor, whereas
the STM implementation “automatically” consolidates accesses to
the same processor. The locking implementation could be made
more efficient, but at a cost to programmability. Again, we see that
the significant scalar overhead for p = 1 (about 3x–4x) disappears
after p = 2 as the runtimes become dominated by the remote access
latency.

Finally, note that reader locks (RL) perform well in both bench-
marks, and they outperform read validation (RV) in the hashmap
swap benchmark, in contrast to the cc-STM literature reporting that
read validation outperforms reader locks [15, 32]. Note also that
write buffering (WB), when used with RL and EA, performs about
as well as undo logging, again in contrast to the results reported
for cc-STM [32, 16]. Both of these results illustrate the differences
between the design spaces of cc-STM and STM on large-scale clus-
ters.

5.2 SSCA2 Kernel 4
To evaluate our design on a larger, more realistic application, we
used kernel 4 from Version 1.0 of the Scalable Synthetic Compact
Application (SSCA) benchmark number 2 (Graph Analysis) [3].
SSCA2 kernel 4 is a graph clustering problem. The graph consists
of n vertices grouped into random-sized cliques (i.e., sets of ver-
tices such that every pair in the set is connected by a graph edge)
of a specified maximum clique size. There are also random inter-
clique edges (i.e., edges between pairs of vertices that are in differ-
ent cliques). The point of the kernel is to find clusters in the graph,
so there is no a priori knowledge of graph locality that could be
used to distribute the graph onto the nodes for memory locality.
This fact makes the application especially challenging for high per-
formance on a cluster with high remote memory access latency.
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Figure 3. (a) Runtimes for intset implemented with locks. (b) Ratios of STM runtime to lock runtime for each STM implementation. The bar graph shows
the results for the larger problem size at p = 8.
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Figure 4. (a) Runtimes for hashmap swap implemented with locks. (b) Ratios of STM runtime to lock runtime for each STM implementation. The bar graph
shows the results for the larger problem size at p = 8.

5.2.1 Algorithm Description
Our implementation of SSCA2 kernel 4 is based on the algorithm
suggested in the benchmark specification [3]. The graph is stored
in an adjacency list representation. Before the algorithm starts, the
vertices of the graph and their adjacency lists are distributed evenly
across the processors. In the explicit locking version, each proces-
sor iterates through its local vertices in parallel. For each vertex v,
if v has already been claimed by another processor, the loop con-
tinues to the next iteration. Otherwise, the processor attempts to
lock v and its adjacent vertices. If the locking is successful, the
processor uses a heuristic to pick one of the adjacent vertices as
the next candidate for inclusion in the cluster. It then repeats this
process, locking all the adjacent vertices and picking one, until it
has formed a cluster of sufficient size. If at any point the locking
fails, the processor unlocks all its held vertices, discards the cluster
it was building, and retries the original start vertex v.

The Cluster-STM version is similar, except that there is no
explicit locking; instead, the synchronization is handled by the
transactional implementation. Each loop iteration is a transaction.
If the start vertex is claimed, the loop moves on to the next vertex,
as before. Otherwise, the processor builds its cluster, reading and
writing the shared graph data. If these reads and writes cause a
conflict between two processors, the STM framework detects it
and rolls back the iteration. We have aggressively privatized the
computation so that only shared data is accessed by the STM
operations. Purely local operations (such as computing the cluster
once all the adjacency sets have been pulled into cache) are done in
private memory with no STM overhead. This technique keeps the
overall STM overhead reasonable.

In both the STM and locking versions of SSCA2 kernel 4, we
carefully tuned the program to avoid fine-grained remote data ac-
cess. For example, when a processor is reading the adjacency sets
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Figure 5. (a) Runtimes for SSCA2 kernel 4 implemented with locks. (b) Ratios of STM runtime to lock runtime for each STM implementation.

of candidate vertices, the straightforward implementation is to send
out one message per vertex. However, this incurs unacceptable
communication cost. In our version, we sort the vertices by pro-
cessor, marshal the data for all vertices on one processor into a
buffer, and then send a single request to get the adjacency sets of
all the vertices via the on clause discussed in Section 3.4. There-
fore, the on clause was essential to getting good performance on
this benchmark.

5.2.2 Performance Results
We ran our SSCA2 kernel 4 implementations on a graph with 220

vertices and a maximum clique size of 8. Figure 5(a) shows a plot
of the runtimes for the lock implementation, for 1–512 processors.
The overall shape of the graph is similar to the graphs for the micro
benchmarks, except that the “bump” in execution time for small p
is less dramatic, because this application is well tuned, with a better
communication to computation ratio.

Figure 5(b) compares the STM versions, again expressed as
ratios to the lock runtimes, using a CDU size of 4 (n = 2).
Again, the RL-EA implementations perform better, for the reasons
discussed above in connection with the hashmap swap benchmark.
The STM overhead is lower than in the micro benchmarks for
p = 1, because much of the computation is private and incurs
no STM overhead. However, unlike for the micro benchmarks, the
STM overhead remains significant for large p. We believe that this
result occurs for two reasons. First, our SSCA2 is better tuned than
our micro benchmarks, and wastes fewer cycles waiting for remote
computation. Thus, less of the scalar STM overhead is hidden.
Second, the lock implementation is able to fold the remote write
and unlock operations into one message, whereas the STM version
requires separate write and commit operations.

We may be able to improve the scalar overhead with more ag-
gressive use of optimization techniques such as those discussed
in [16, 1]. Hardware support could also be used to reduce the per-
formance penalty of the local scalar operations. Because Cluster-
STM uses at most two more remote operations than the locking im-
plementation per transaction, the performance of a hardware sup-
ported Cluster-STM should approach that of locks. In any event,
these graphs show excellent STM scalability to 512 processors for
a realistic application with poor locality and demanding remote ac-
cess patterns.

We also ran this experiment using the RL-EA-UL STM imple-
mentation for CDU sizes of 1, 2, 8, 16, and 32, for p = 16, 64,

and 128. We observed that the runtime was extremely insensitive
to CDU size in these experiments. We believe this result occurs for
two reasons. First, in this application, any read-write or write-write
sharing of a single allocation between transactions causes a “gen-
uine” (semantically required) conflict. Second, because we allocate
transactional data on a CDU boundary, no two allocations can share
a CDU. Therefore, increasing the CDU size does not increase the
number of conflicts for this benchmark.

6. Conclusion and Future Work
We have presented Cluster-STM, the first STM we know of explic-
itly designed for high performance on large-scale distributed archi-
tectures. Cluster-STM incorporates several novel features, includ-
ing distribution of metadata and aggregation of computation, that
allow it to execute STM operations with minimal overhead, mea-
sured in terms of remote accesses. We validate our design experi-
mentally and show excellent scalability up to 512 processors. We
also characterize the existing space of cc-STM designs and show
that, on clusters, several design tradeoffs come out differently.

We have several plans for future work. In the algorithm itself,
we would like to improve the scalar overhead and exploit shared
memory within multiprocessor nodes to make intra-node commu-
nication faster. We would also like to test Cluster-STM with addi-
tional HPC workloads containing long and short transactions. Fi-
nally, we would like to add support for non-blocking remote oper-
ations inside a transaction, and for dynamic spawning of threads.
These issues complicate both the semantic definition of the STM
operations and the handling of distributed metadata in the STM
implementation. However, they are important for supporting more
general and dynamic parallel programming models.
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