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Abstract

A number of deterministic parallel programming models with

strong safety guarantees are emerging, but similar sufgranbn-
deterministic algorithms, such as branch and bound seamctains

an open question. We present a language together with a tgpe a

effect system that supports nondeterministic computatieith a
deterministic-by-default guarantee: nondeterminism tnings ex-
plicitly requested via special parallel constructs (mdrke), and
any deterministic construct that does not execute any nedtaami
has deterministic input-output behavior. Moreover, detaistic
parallel constructs are always equivalent to a sequentdiaposi-
tion of their constituent tasks, even if they enclose, oregrgosed
by, nd constructs. Finally, in the execution of nd conssuat-

terference may occur only between pairs of accesses guasded

atomic statements, so there are no data races, either esveric
statements and unguarded accesses (strong isolation}veedre
pairs of unguarded accesses (stronger than strong isokitboe).

We enforce the guarantees at compile time with modular check

ing using novel extensions to a previously described effgstem.
Our effect system extensions also enable the compiler t@ovem
unnecessary transactional synchronization. We provideti se-

mantics, dynamic semantics, and a complete proof of sowsdne

for the language, both with and without the barrier remogatire.
An experimental evaluation shows that our language careeehi
good scalability for realistic parallel algorithms, andtthe barrier
removal techniques provide significant performance gains.

Categories and Subject DescriptordD.1.3 [Softwaré: Con-
current Programming—Parallel Programming; D.3Sbffwarg:
Formal Definitions and Theory; D.3.3¢ftwaré: Language Class-
ifications—Concurrent, distributed, and parallel langesg D.3.2

[Softwaré: Language Classifications—Object-oriented languages;
D.3.3 [Softwaré: Language Constructs and Features—Concurrent

Programming Structures

General Terms Languages, Verification, Performance

1. Introduction

Widely used parallel programming models today (Java, C&ixPo
Win32) are based on a low-level and error-prone concepteéatts.
These models provide few or no guards against parallel progr
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ming errors such as data races, deadlocks, or atomicity-viol
tions. Some higher-level programming models are availaivlare
emerging, that prevent these kinds of errors. Howevergthesdels
achieve their safety guarantees by greatly restricting sitects,
either through functional programming (e.g., STM Haskall])

or through dataflow or data-parallel styles of programmiagy.(
Concurrent Collections [23], Ct [30]).

There is much recent interest in supportieterministicalgo-
rithms within general imperative languages, via staticetygys-
tems [17], runtime-supported language mechanisms [1024],
45, 49, 50], or largely transparent runtime techniques 154,27,
43]. For algorithms that have deterministic input-outpahévior,
such models can provide major benefits compared with toawditi
thread-based programming [18, 38].

There are also important algorithms, however, thahdthave
deterministic input-output behavior, and are not supmbioiethese
techniques. Some examples include clustering algorithops;
mization algorithms like branch-and-bound solvers, araplral-
gorithms like Delaunay mesh refinement. A common feature of
such algorithms is that they permit any of multiple possimlg-
puts to be produced for a given input. Such outputs must lysual
be derived from a controlled set of choices, typically froiffied-
ent, schedule-dependent, orders of evaluating parab&ktee.g.,
evaluating different groups of neighboring points in ctustg al-
gorithms. Importantly, the nondeterminism should not dynge-
rive from unpredictable behavior due to data races and atmi
violations. Such behavior is not only potentially erronedut can
also can make proram executions difficult to reason abaogit, ley
producing non-sequentially-consistent results. Furttoee, real-
world applications are composed of a (potentially largenhar
of different algorithms, likely to be a mixture of deterngtic and
nondeterministic ones. Therefore, it is essential to be albbtom-
pose deterministic and nondeterministic algorithms in g that is
easy to reason about.

These observations pose two challenges for a safe anctiealis
parallel programming model: (1) How do we express nondéaterm
ism itself in a disciplined manner that simplifies reasorétgut
program behavior? (2) How do we allow nondeterministic aed d
terministic computations to be composed without weakerttireg
deterministic guarantees for the latter?

In this work, we present a Java-based parallel language that
supports both deterministic and nondeterministic pdratide in a
disciplined manner. Our language has the following majatfees:

1. Deterministic parallel operationsWe provide operations that
describe deterministic parallel composition of tasks. Aede
ministic parallel operation enforcesninterferencéetween its
component tasks (i.e., there are no conflicting reads oesvitt
any pair of tasks), ensuring that the whole operation behave
like a sequential (and therefore deterministic) compaositf



its component tasks. The noninterference property is eatbr
at compile timeThis part is derived from previous work [17].

. Nondeterministic parallel operationdVe provide operations
that describe potentially nondeterministic parallel cosition
of tasks. These operations allow interference betwees task
any such interference is subject to the following guara)tee
again enforcea@t compile timeThis part is entirely new.

(a) Race freedom and sequential consisteNzyexecution of a

valid program in our language can ever produce a data race.

This property is very important, even for nondeterministic

codes, because in the Java memory model, race freedom im-

plies sequential consistency, which makes parallel progra
much easier to reason about.

(b) Strong isolation.Our language provides asmomic state-
mentatomic S that executes the enclosed statem®rih
isolation, i.e., as if there were no interleaving with concu
rently executing tasks. The isolationssong i.e., isolation
is provided with respect tall concurrent operations, not just
other ones occurring in atomic statements. Novel effect sys
tem features enable our language to be built on top of an “off
the shelf” runtime, such as software transactional memory,
that provides only weak isolation. Previous work [6, 31, 42]
has also used effects to enforce strong isolation but, as dis
cussed in Section 7, our language is less restrictive, and ou
guarantees are stronger.

(c) Composition of deterministic and nondeterministic opera-
tions. A deterministic parallel operation always behaves as
an isolated and sequential composition of its component
tasks,even if the operation encloses, or is enclosed in, a
nondeterministic parallel operatioriThis property allows
local, compositional reasoning about deterministic opera
tions, which we view as essential for a language that sup-
ports both deterministic and nondeterministic operations

(d) Determinism by defaulNondeterminism occurenly where
requested by an explicit nondeterministic operatiamd
cannot occur “by accident.” Specifically, if a determirgsti
construct does not encounter any nondeterministic cartstru
for a given input heap state in some execution, then it has de-
terministic input-output behavior (i.e., it produces thene
output heap state and other results in all executions, &r th
input heap state).

For the deterministic parallel operations (1), we build atémin-
istic Parallel Java (DPJ) [17]. In DPJ, the programmer paris the
heap intoregions and writeseffect summariesn methods that de-
scribe the method’s read and write operations on the regidns
compiler uses the regions and effect summaries to enforteteo-
ference of parallel tasks at compile time. However, by dedipPJ
completely disallows nondeterministic parallel algorith To pro-
vide the nondeterministic operations (2) and their assediguar-
antees, we must extend DPJ.

For the isolation guarantee 2(b), we build on software tans
tional memory (STM) [37]. STM is not the only choice here, but
it is a good one, as it runs on all platforms (as opposed to-hard
ware transactions, which require special hardware) andigee
relatively strong guarantees (isolation and deadlockdive® with
very low programming overhead. However, STM alone is insuffi
cient for our purposes. First, STM implementations usyaidtyvide
only weak isolation and we want strong isolation. Second, even
strong isolation is not enough: it allows data races betvaeeasses
outside of transactions, and we want to disallow such datesta
Finally, STM introduces significant runtime overheads/udng
scalar overhead and false conflicts (due to over-synchaaiz),
which can cause poor scalability.

To solve these technical challenges, we extend the DPX effec
system in several ways. First, we add a new kind of effecedadh
atomic effecfor tracking when memory accesses occur inside an
atomic statement. The atomic effects allow the compilertargn-
tee both race freedom (property 2(a)) and strong isolafi¢n)), by
prohibiting conflicting memory operationsless each operation is
in an atomic statemenSecond, we introduce new effect checking
rules to enforce composition of operations (2(c)) and aeitgsm
by default (2(d)). For composition of operations, the egthef-
fect system disallows interference between a determinigiera-
tion and any other concurrent operatiamess the whole determin-
istic operation is enclosed in an atomic statemé&iar determinism
by default, the interference is disallowed for determinigaral-
lel operations, but allowed for nondeterministic paradigérations.
Third, to reduce STM overhead, we introdug@®mic regions so
that the programmer can identify which regions may be aeckiss
an interfering manner. For operations to other regionsgtinepiler
can remove or simplify the STM synchronization, becausé spe
erations never cause conflicts.

Overall, this work makes the following contributions:

1. We present a language that provides the compile-timeaguar
tees 1 through 2(d) stated above. To our knowledgerevious
language or system has provided all these properties faresha
memory parallel programs through any mechanisms, static or
dynamic.Our language includes novel extensions to the DPJ
effect system as discussed above for enforcing race freedom
strong isolation, and determinism by default; and for réalyic
the runtime overhead of the underlying STM implementation.

. We formalize our ideas using three formal languages: the fi
has only deterministic parallel operations, the second add-
deterministic parallel operations, and the third adds &osy
gions. We have developed a full syntax, static semantia$, an
dynamic semantics for all three languages. Further, wefoave
mally stated the soundness properties given informallywabo
and proved that the properties follow from the semantic defin
tions. Here we summarize the key features of the formal lan-
guage and the essential soundness results; the full details
cluding proofs, may be found in the lead author’s Ph.D. the-
sis [19].

. We describe our experience using our language to implemen
three nondeterministic algorithmBelaunay Mesh Refinement
from the Lonestar benchmarks [1], ttraveling salesman prob-
lem(TSP), andDO7[25], a synthetic database benchmark. Our
experience shows that porting these algorithms form “pure”
Java into our language was relatively straightforward amd r
quired neither redesign of existing data structures ndrues
turing of the algorithms themselves. The language natuesd
presses all these algorithms, although the speedups adhiev
vary depending on the inherent parallelism in the algorithm
and performance limitations of the underlying STM. Additio
ally, judicious use of atomic regions eliminated a largeticn
of the STM-related overhead in two out of three benchmarks.

3

2. Background

In this work, we build on a language called Deterministicafat
Java (DPJ) [17]. DPJ uses an effect system to enforce detistioi
semantics for explicitly parallel programs via compilewi type
checking. This section briefly explains the key constru¢to®J;
the details may be found in [17, 19]. In the rest of this pape,
refer to the preexisting language lz&sic DPJ
DPJ provides a fork-join parallel model: the programmer cre

ates parallel tasks using eithef@reach statement (for a parallel
loop) or cobegin block (for a group of mutually parallel state-



ments). DPJ’s effect system guarantees that in a well-tppedllel
program, any two parallel tasks hameninterfering effectsAn ef-
fect is a set of operations on memory. Two effects interfetiedy

As an example of check (1) (correct method effects), theceffe
of setMass is legal because the method body writes to fiedds
in regionP and has no other heap effects. As an example of check

both access a common memory location and at least one of them(2) (parallel noninterference), the compiler infers th effect of

writes to that location. The noninterference guaranteeéoallel
tasks implies deterministic input-output semantics fer ¢bmpu-
tation.

The DPJ effect system works as follows. The programmer as-
signs every object field and array cell toregion and annotates
every method with anethod effect summasyating (a superset of)
the reads or write operations performed by the method, mgef
regions. The compiler checks two things: (1) that the eféech-
maries are a superset of the actual effects in the method body
(2) that no two parallel statements are interfering. TheafSum-
maries on method definitions enable modular checking otesfe

class Node<region P> {
region L, R;
double mass in P;
Node<P:L> left in P:L;
Node<P:R> right in P:R;
void setMass(double mass) writes P {
this.mass = mass; // writes P
}
void setMassOfChildren(double mass) writes P:* {
cobegin {
if (left !'= null) left.setMass(mass); // writes P:L
if (right != null) right.setMass(mass); // writes P:R
}
}
}

Figure 1. Some features of basic DPJ for deterministic parallelism.

Figure 1 illustrates the use of regions and effects in ba§ld.D
In line 1, we declare claséode to have one region parameter
Line 3 declares fieldass in regionP; the actual region of the field
is determined when the class is instantiated into a typehasrs
in lines 4 and 5. Line 2 declares nanmiesindR that have static
scope (i.e., they are shared by all instances of diage). Lines
4 and 5 declare fieldseft andright and place them in regions
P:L andP:R, respectively. The fornp:L is called aregion path
list, or RPL, and it expresses the hierarchical structure obregi
intuitively, P: L. andP:R are both nested under The use of. and
R puts the two fields in different regions, while the usepafllows
differentNode objects instantiated with different bindings rao
have their fields in different regions. BecausandR are distinct
namespP:L andP:R are guaranteed to refer to different regions, for
any common binding t8.

Lines 6 and 9 illustrate the use of method effect summaries.
Method setMass (line 6) has declared effectarites P, while
setMass0fChildren (line 9) has declared effecterites P:x,
where thex is a wildcard representing any sequence of names. If
an effect declaration is omitted, it defaults to most geneffect
(writes the whole heap).

The compiler performs checks (1) and (2) stated above by-accu
mulating the effects of a methoflpreach statement, otobegin
statement. The analysis is simple and local because, atczdich
site, the declared effects of the invoked method providesffexts
of the invocation, after substituting actual for formalimgparam-
eters. For example, the effect béft.setMass(mass) inline 11
iswrites P:L, obtained by substituting: L (from the type of left)
for the class parameterin the declared method effegtites P
(the read of fieldLeft is subsumed because in DPJ, write effects
imply read effects). Similarly, the compiler infers theesft of a
field access or assignmentdgf by substituting the region named
in the type ofe for the parameter in the declared region of the field

f

lines 11 and 12 arerites P:L andwrites P:R, respectively.
Becauser:L andP:R must be disjoint regions, for any common
binding toP, the effects are noninterfering.

Although this example is somewhat simplistic, these anéroth
features of DPJ can express a range of realistic paraltehisi{17],
including parallel updates on arrays of objects, parattldrsals
and updates of a tree, in-place divide-and-conquer on sreayd
commutative operations within parallel tasks.

3. Language Support for Nondeterminism

We now informally describe the language mechanisms for non-
deterministic parallel control, parallel safety guarasteand op-
timization support. We illustrate the new language feawvéh a
running example of théraveling salesman problefTSP). Sec-
tion 4 describes the language more formally.

3.1 The TSP Computation

The traveling salesman problem, or TSP, is the well-knovabpr
lem of finding a shortest cycle in a weighted graph that vis-
its all the nodes once (i.e., a Hamiltonian cycle). TSP can be
solved bybranch and bound searctea common algorithm for
solving optimization problems and a classical example obmn
deterministic computation. Figures 2—4 show simplifiedadav
like pseudocode for TSP. The global data (lines 1-13) irelad
weighted graph that is the input to the program; a prioritgwgi
for storing the paths being explored; and a “best” (i.e.,rsho
est) tour, which is refined as the computation progresses-ev
tually storing the answer. Two regions are used to hold tha:da
ReadOnly for fields that will not be modified during the computa-
tion, andMutable for those that will be. The priority queue’s type
PriorityQueue<Path<ReadOnly>, Mutable> indicates that it
contains objects of typeath<ReadOnly>, and that the internal
data used to represent the queue itself is in retfioteble. The
main computation loop (lines 15-23) iterates in parallerosev-
eral worker tasks. Each task generates a prefix to searaiy(te
pseudocode in Figure 3) and adds it to a priority queue. WHen a
prefixes have been generated, the tasks remove prefixes lieom t
priority queue and search them (using the pseudocode imd=iu
until there are no more prefixes to search.

3.2 Nondeterministic Parallel Control

To express nondeterministic parallel computations, wethice a
parallel loop denotedoreach_nd, wherend stands for “nondeter-
ministic.” Line 15 in Figure 2 shows an example. This consttis
identical toforeach in basic DPJ[17], except it says explicitly that
conflicting accesses, and therefore potential nondetésmijrare
allowed between the loop iterationsffreach_nd. We also intro-
duce acobegin_nd construct corresponding tobegin in basic
DPJ. Collectively, we refer to these foutofreach, foreach nd,
cobegin, andcobegin_nd) asparallel constructs

The resulting parallel control structure is just fork-jgaral-
lelism and can be represented as a static task graph, whehme ea
node ortaskis a single iteration of a parallel loogdreach or
foreach_nd) Or a single statement in @begin Or cobegin_nd.
All four parallel constructs have an implicit “join” synatmization
at the end of the construct for the tasks of the construct. (@ihe
rected) edges in the task graph represent either prograem, ad
forking at the start of a parallel construct, or the “join"ngjro-
nization at the end of a parallel construct. Two taskscareurrent
if they are not ordered in the task graph. Two memory accesges
concurrent if they occur in concurrent tasks.
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/* Regions for partitioning data */
region ReadOnly, atomic Mutable;

/* Graph we are working on; immutable */
Graph<ReadOnly> graph in ReadOnly = the TSP graph;

/* Priority queue for tour prefix paths */

final PriorityQueue<Path<ReadOnly>, Mutable> priorityQueue =
new PriorityQueue<Path<ReadOnly>, Mutable>();

priorityQueue.add(new Path<ReadOnly>(startNode));

/* The answer */
Path<ReadOnly> bestTour in Mutable = infinite path;
foreach_nd(int i in O, NWORKERS) {

Path<ReadOnly> prefix = null;

do {

atomic {
prefix = generateNextPrefix();

}

if (prefix !'= null) searchAllToursWithPrefix(prefix);
} while (prefix != null);

Figure 2. Global data and main computation for the Traveling
Salesman Problem.

Path generateNextPrefix() reads ReadOnly writes Mutable {
while (!priorityQueue.isEmpty() &&
priorityQueue.best().length() < bestTour.length()) {
Path<ReadOnly> prefix = priorityQueue.removeBest();
if (prefix.nodeCount() > PREFIX_CUTOFF) {
return prefix;
} else {
for (each edge edge that can be added to prefix
while staying under bestTour.length()) {
Path<ReadOnly> newPrefix =
new Path<ReadOnly>(prefix, edge);
priorityQueue.add(newPrefix) ;

}
}

return null;

Figure 3. Generating the next tour prefix.

void searchAllToursWithPrefix(Path<ReadOnly> prefix)
reads ReadOnly writes atomic Mutable {
for (each Hamilton cycle tour in graph with prefiz prefix) {
atomic {
if (tour.length() < bestTour.length()) {
bestTour = tour;

}

Figure 4. Searching all tours with a given prefix.

The specific parallel constructs used to fork and join tasks a

not fundamental to our work. The language mechanisms used to

enforce safety properties (described next) can be appiredtty
to other fork-join parallel programming languages, e.gk {16],

a large subset of OpenMP [4], and potentially other parédiel
guages in which the compiler can identify all groups of conent
tasks. Distinguishing the constructs that permit intenee (i.e.,
may be nondeterministic) from those that do not (and so aer-de
ministic) is a useful property, but again, not necessaryafor of
our other guarantees.

3.3 Safety Properties for Nondeterministic Code

As stated in the introduction, the goal of our language deaitd
type system is to achieve four safety guarantees for nomditis-
tic and deterministic code: (i) data race freedom; (ii) strdsola-

tion for nondeterministic parallel constructs; (i) semtial equiv-
alence for deterministic parallel constructs; and (iv) aperty we
call determinism by defayldefined below. These four properties
give programmers a simple, elegant execution model fooréag
about partly nondeterministic programs. Below, we dis¢hedan-
guage mechanisms for expressing synchronization, thetefjes-
tem features for enforcing the properties, and the regubiecu-
tion model seen by programmers.

Synchronization: To ensure correctly synchronized accesses in the
presence of interference (defined in Section 2), we addtamic
statementto the language. This construct is similar to previous
work [8, 28, 32, 33], except that in conjunction with our effe
system, discussed below, our atomic statements providagsr
guarantees. A statemeatomic S indicates thatS is to be run
as if all other concurrent executiowere suspended whil§' is
executing. This is called strong isolation [40, 47].

With reference to the TSP example, in Figure 2 each call to
generateNextPrefix is enclosed by an atomic statement that
protects the accesses to the shared priority queue. Ndtevkile
the calls togenerateNextPrefix are effectively serialized, each
worker can start its call teearchA11ToursWithPrefix as soon
as its call togenerateNextPrefix is done, in a pipelined manner.
This pattern can achieve good speedups because most of the wo
in this code is done iBearchAl1ToursWithPrefix. In Figure 4,
an atomic statement protects the concurrent updatessteTour.

An atomic statement may appear inside any of the four paralle
constructs, as well as inside other atomic statements. Bsted
atomic statements in the same task are “flattened”: thatesnner
atomic becomes a no-op, and atomicity is enforced entirely at
the outeratomic. If a parallel task created in an atomic statement
contains a nested atomic statement, then the nesting kematie
standard way: the innertomic enforces isolation with regard to
other tasks created by the immediately enclosing paraitetruct,
while the outerntomic enforces isolation as to tasks created by any
outer enclosing parallel construct.

Effect System:We now discuss how our effect system enforces the
four safety properties stated at the outset of this section.

Data Race Freedom and Strong Isolatione use the following
strategy to ensure both data race freedom and strong ol &iirst,

a transactional runtime guarantees at least weak isolatiatomic
statements (i.e., isolation between different atomicestaints, but
not between atomic statements and unguarded code). Sebend,
effect system ensures that for any pair of conflicting menaary
cesses, each access occurs inside an atomic statemenkafor e
ple, in Figure 4, any two concurrent accessésdotTour are both
enclosed in instances of the atomic block at line 4 (the cencu
rency is created by theoreach_nd at line 15 of Figure 2). This
requirement ensures strong isolation, because no corifétigeen
unguarded memory accesses and atomic statements aredallowe
also ensures race freedom, because no conflicts betweanopair
unguarded accesses are allowed.

Notice two things about our strategy. First, our languagg ma
be built on top of a standard software transactional men®i\)
implementation, which typically guarantees only weakasioh for
performance reasons. Second, our strategy prohibits tallrdaes.
Even TM systems with strong isolation generally allow daees
between pairs of accesses occurring outside any transactio

To accomplish the effect checking, we extend the DPJ effect
system to distinguish effects that aaomic (meaning the effect
occurred inside an atomic statement) from effects thatnare
atomic(meaning the effect occurred outside any atomic statement)
The compiler ensures that interference ocamly between atomic
effects

To enable sound modular reasoning about method invocations
we make atomic effects explicit in method effect summarkes.



example, the effecirites atomic Mutable in the summary for
searchAl1ToursWithPrefix (Figure 4) says that any possible
writes to regionMutable occur inside atomic blocks in the body
of the method or its callees. In checking method effect suresa
our system is sound but conservative: it is correct to sunmmar
a write to regionR occurring inside aratomic block as either
writes atomic R or simplywrites R; the latter is more con-
servative than necessary but is correct. However, it is ooect
to summarize an access occurring outside any atomic sextian
atomic effect, because such an effect would report a tréiosat
guard when in fact there is none.

For example, the effect system can verify that all interfgri
accesses within théoreach_nd in Figure 2 are atomic effects.
First, the variableprefix is local to each task and so generates
no conflicts across tasks. Second, according to the effeutnsuy
for generateNextPrefix (Figure 3), the method invocation in
line 19 produces conflicting effects on regitntable. These
effects are enclosed within the atomic statement startingne.
18 and so are recorded as atomic effects that may interfered, T
the call tosearchAl1ToursWithPrefix is not within an atomic
statement; but according to its effect summary it generatdg
read effects (which do not interfere with themselves) amnat
write effects (which are allowed to interfere with themsalyand
are to a different region from the read effects).

Sequential Equivalence for Deterministic Construdist impor-
tant property we wish to preserve from basic DP&ésjuential
equivalencefor deterministic constructs: that ioreach and
cobegin are equivalent to the sequential execution of their con-
stituent tasks in program order. To enforce this propertyolwvi-
ously need to disallow interference betweemegin or foreach
branches, even if the interfering effects are atomic. Fangle,
this program is not allowed:

cobegin {
atomic x
atomic x

}

0;
1;

For this we just have a simple typing rule that interferenegveen
atomic effects is allowed only insid&reach nd or cobegin_nd.

However, that is not enough, because interference canetsw o
between a deterministic task and a concurrent nondetestigini
task. For example, consider the following program:

z = 0;

cobegin_nd {
cobegin { atomic x = z; atomic y = z; } // S1, S2
atomic z = 1; // S3

}

This program could produce the result= 1,y = 0 by ex-
ecutings2; S3; Si. This result violates sequential equivalence

of cobegin, because it does not correspond to any sequentially

consistent execution of the program where tbegin block

is executed in program order. Instead, we wish to ensureahat
foreach Or cobegin executes in isolation, even if it appears in-
sideforeach_nd Or cobegin_nd.

Our solution to this problem is to convert atomic effects oc-
curring inside a deterministic construct to non-atomieef§ when
propagating them to the outer context. In the example abolven
checking interference, the compiler seematomicreads toz in
the firstcobegin_nd branch: those reads occurred in atomic state-

Determinism by Default=inally, by virtue of the isolation of deter-
ministic constructs, and the noninterference betweem ihigrnal
tasks, both discussed above, we have the following propiéray
deterministic construct does not dynamically execute amyde-
terministic construct, then the execution of the deterstioicon-
struct is, in fact, deterministic. That is, a given input petate to
the deterministic construct always produces a fixed resilievand
fixed output heap state. We refer to this propertdeterminism by
default nondeterministic input-output behavior may be introdlice
only by the execution of an explicit nondeterministic construct
Implications for Programmers: The properties discussed above,
and treated more formally in the next section, provide twplen-
efits for programmers. First, concurrency errors such as daes
or unintentional nondeterminism will be detected via cdetime
type checking; this benefit existed in base DPJ for detestini
programs and has now been extended to nondeterministic ones

Second, once a program has been type checked, the above prop-

erties greatly simplify how programmers can reason abaupts-
sible (nondeterministic) execution behaviors.

With regard to the second point, many programmers and tgstin
tools analyze program behavior by reasoning about thelgess
terleavings (or schedules) of parallel operations. The@lpooper-
ties simplify this reasoning in several important ways (oeus on
cobegin here without loss of generalitgoreach is analogous):

1. We only need to consider interleavings of isolate@mics,
cobegins, and unguarded accesses, because of strong isolation
and sequential equivalence @fbegin. Thend constructs do
not constrain interleavings.

2. We can reason about the tasks afobegin sequentially: the
first task can be fully evaluated without any intervening ac-
cesses from elsewhere, immediately followed by a complete
evaluation of the second task.

3. cobegin_nd provides the only source of nondeterminism. Even
within such a construct, the effect system guarantees that a
block of code that is outside an atomic statement and does not
execute any atomic statement (call thissaomic-free section
cannot interfere with any concurrent task. Therefore, g
mers need not consider interactions between any atomgc-fre
sections when reasoning about program behavior.

Put together, these observations mean thatonly source of
multiple interleavings is from different orderings of ationsec-
tions thereby significantly reducing the number of interleaging
that programmers must consider. Furthermore, programoers
control the granularity of the atomic sections to contrel tumber
of possible interleavings.

The following example illustrates these observationsuaes
thes terms are all atomic-free statements).

cobegin_nd {
{ S11; S12; atomic S13 }
{ S21; atomic S22; 823 }

Even if all the statements are primitive operations (readerites),
if sequential consistency is not guaranteed, then u@l te- 720
different interleavings are possible. If sequential cstesicy holds,

ments, but became nonatomic when passing outwards acmss th then there are still up to 20 different interleavings. In language,
cobegin. On the other hand, the second branch has atomic writes however,we may consider only two sequentially consistent inter-

to z. Therefore theobegin_nd branches have illegal read-write in-
terference (i.e., not both guarded by atomickofio write this pro-
gram legally in our language, the programmer could put thelevh
cobegin in an atomic statement.

leavings one with atomic S13 appearing beforetomic S22,
and vice versa. For example, any execution generated byaaur |
guage is equivalent to executing the entire fiksttegin_nd branch
before the entire second branch, or vice versa.



3.4 Performance: Removing Unneeded Barriers

We use a Software Transactional Memory (STM) runtime system
to implement theatomic construct because STM provides weak
atomicity, better composability than locks, and potehtidletter
scalability because of optimistic rather than pessimisgiechro-
nization. One key drawback of STMs is the overhead dueatts-
actional read and write barriergor every load or store to shared
data (e.g., see [52]). These barriers are snippets of ctide,auto-
matically inserted by a transactions-aware compiler,ithatke the
STM runtime to implement some transactional concurrencyrob
protocol. The barriers can either read and write shared medio
rectly (so-calledn-place updateéSTM) andundoall transactional
operations when a transaction aborts, or they can buffeatepd
into a private data structure (so-calledte bufferingSTM) and ap-
ply all the buffered changes into shared memory when a tciosa
successfully commits. In both cases, barriers can incunifgignt
overhead and minimizing them is essential for performance.

We observe that we can use the region and effect system to
remove unnecessary STM barriers, where there is no inéeréer
However, the effect system as described so far does not carry
enough information to perform this analysis locally. Foamyple,
suppose a methooh reads a variable inside an atomic section.
Then the read needs a barrier if and onlyrifis invoked in some
context where there is interferenceonThere is no information in
the method body that enables the compiler to make that judgme
interprocedural analysis would be required.

However, with a slight extension to the effect system, we can
enablelocal reasoning about this kind of noninterference. Specif-
ically, we have the effect system distinguish two kinds afioes:
those that may interfere (and so need barriers everywhemt) a
those that cannot (and so do not need read barriers anywhkiéze)
call the first kindatomic regions The programmer can declare a
region to beatomic, such as regioMutable on line 2 of Figure 2.

The key benefit is that, for a non-atomic region, the compiler
can remove read barriers entirely and, assuming STM using in
place updates, it can turn write barriers into logging-dodyriers
(synchronization is not needed, because there is no inkede, but
transactions must still log the old value on writes, in céisettans-
action aborts). This completely eliminates the barrierbgads for
read-only shared data. It also substantially reduces thieebaver-
heads for task-local data and noninterfering shared data.

To enable sound reasoning about atomic regions and barrier
elimination, we require some constraints on the use of these
gions. Any region declaration (field region, local regionyegion
parameter) may be declared to be atomic. We impose the fioljpw
requirements:

¢ When instantiating a type, an atomic (respectively, nammic)
region parameter may only be passed an atomic (respectively
non-atomic) region name as the argument. This is straightfo
ward to enforce using the region declarations.

¢ Aregion that is involved in interfering effects must be deed
atomic. This is enforced by the compiler as described below.

The barrier elimination also requires a refinement in thessem
tics of atomic effects described in the previous section.efact
in an atomic statement is marked atonaioly if it operates on
an atomic region For example, the read of regi®teadOnly in
Figure 4 (due to the operatiotbur.length()) does not gener-
ate an atomic effect, even though it is inside #wemnic block at
line 4. The write to regiontutable does generate an atomic ef-
fect. If regionMutable hadnot been declaredtomic, the write
to bestTour would generate a non-atomic effect. The compiler
would then flag the effect declaration at line 2 of Figure 4as a

Programs P = R*C*e
Classes C = class C<p> { F* M* }
Region Names R :=  regionr
Fields F == T finR
Methods M = Tm(Tz)E{e}
Regions R = r|p
Types T =  C<R>
Effects FE = (|reads R|writesR|EUFE
Expressions e :=  this.f|this.f=e|e.m(e) |v |newT |

seq(e,e) | cobegin(e,e)

Variables this |z

Figure 5. Core language syntak, p, f, m, andz are identifiers.

error because an atomic effect does not cover a non-atofeict,ef
as noted earlier.

We can now explain how the last rule above is enforced. If a
region is not marked atomic but has an effect that causedéante
ence in some parallel construct, the compiler will deteceanr
either at the parallel construct or at the method effect sargnfror
example, if regiorMutable were not markechitomic, the write
to bestTour would generate a normal effegkites Mutable.
This would cause the effect summary at line 2 of Figure 4 to
be flagged as an error, as noted above. If the effect summary
were changed to not mark the write effect atomic, then thietaal
searchAl1ToursWithPrefix atline 21 of Figure 2 would gener-
ate a nonatomic effect, and the compiler would report therfat-
ence there.

4. Formal Semantics and Soundness

To make precise the ideas discussed in the previous seet®n,
have studied three variants of the same formal languagb, @a
building on the last:

1. The first variant, which we call théeterministic languageis
a simple expression language with regions, effects, aner-det
ministic parallel composition. It is a version of Core DPJ][1
simplified to focus on the key elements for this work.

. The second variant, which we call tHeterministic-by-default
language adds nondeterministic parallel composition, atomic
expressions, and atomic effects to the deterministic laggu

The third variant, which we call tha&omic regions language
adds atomic regions for removing or simplifying transauaio
barriers.

3.

Without loss of generality, we only includ@begin andcobegin_nd
in these simple languages; the treatmenttareach andforeach_nd
is similar.

4.1 Overview of Language Variants

We first explain the syntactic structure of all three langsa@nd

we summarize the soundness guarantees that each one provide
In the following subsections, we explain the formal senw@ntf
each language variant, state the soundness guaranteesfarore
mally, and sketch how the guarantees follow from the semanti
definitions. The full details, including all the semanticgess and
proofs of all the claims, may be found in the lead author'sCPh.
thesis [19].

Deterministic Language: Figure 5 gives the syntax of the deter-
ministic language. A prograr® consists of zero or more region
declarations, zero or more class definitions, and an express
evaluate. A clas€ consists of a class nantg, a region parameter

p, zero or more field declarations, and zero or more method dec-
larations. A field F specifies a type, a field name, and a region.
A method M consists of a return type, a method name, a formal
parameter type, a formal parameter, an effect, and an esipne®



Effects FE
Expressions e

.. | atomic reads R | atomic writes R
... | cobeginnd(e,e) | atomic e

R
C

Regions
Classes

.. | atomic regionr
.. | class C<atomic p> { F* M™* }

Figure 6. Syntax of the deterministic-by-default language (ex-
tends Figure 5).

evaluate. A regiolR is either a region nameor a region parameter
p. AtypeT is a class instantiated with a region paramefériR>.

An effect E is a possibly empty union of read effects and write
effects on regions.

For expressiong:, we model field access, field assignment,
method invocation, variables, new objects, sequentialpomition
(seq), and deterministic parallel compositionopegin). A vari-
ablev is this or a method formal parameter. The operational
semantics of the first five expressions in Figure 5 is exadlina
Java. The last two expressions evaluate both componeneexpr
sions (either sequentially or in parallel) and return thieeaf the
second component as the value of the entire expression.

The deterministic language provides the following sentanti
guarantees, stated more formally as Theorems 1-2 in Setf2on
They follow from the fact that the executions of the two bizex
of any cobegin expression are required to be noninterfering:

1. Equivalence ofcobegin and segq: In terms of the final result
(final value produced and final heap state), there is no differ
ence between executingbegin(e,e’) andseq(e,e’). As a
consequence, the entire program is guaranteed to behave lik
sequential program (the one that results by replaesigegin
everywhere withseq).

. Determinism:If an expressiore evaluates to completion, then
the value it produces is deterministic. Moreovere ifs evalu-
ated in a sequential context (i.e., not insideabegin), then
the final heap state is deterministic. In particular, thel fireap
produced by a terminating execution of the whole program is
deterministic.

Deterministic-by-Default Language: Figure 6 shows the addi-
tional syntax for the deterministic-by-default langua@é extend
the syntax of effects to record atomic effects. We also add (1
cobegin_nd, which is the same asobegin, except that it allows
interference guarded by atomic expressions; and (2) esipres
atomic e, which signal that expression should be executed in
isolationt that is, as if it were executed all at once, with no inter-
leavings from the rest of the execution.

The deterministic-by-default language provides the foilg
semantic guarantees, stated more formally as Theoremsm3—6 i
Section 4.3:

1. Race freedom and sequential consisteriggogram execution
contains no data race. This result follows because thetesifise
tem requires that all parallel interference occur betwesinsp
of accesses guarded by atomic expressions. Further, imhe J
memory model, race freedom implies sequential consistency
i.e., one can reason about execution ggagram-orderedin-
terleaving of memory operations.

. Strong isolation:For the same reason that the program is race
free, expressionstomic e executee in isolation,even if the un-
derlying implementation guarantees only weak isolatiore-
over, the effect system disallows any interference betviken
cobegin and concurrent operations that would violate isolation
of thecobegin. Therefore, evergobegin expression executes
in isolation. Together, race freedom and strong isolatoply
that execution is a sequentially consistent interleawihgso-
lated expressions

Figure 7. Syntax of the atomic regions language (extends Fig-
ure 6).

3. Equivalence ofcobegin and seq: Becausecobegin(e,e’)
executes in isolation, it is equivalent to an isolated etieou
of seq, i.e.,atomic seq(e,e’). As discussed in Section 3.3,
for the deterministic-by-default language, we makegin
behave likeatomic seq, and not justseq, to guarantee that
cobegin executes deterministicallgven inside aobegin_nd.

. Determinism by defaulBoth atomic and cobegin expressions
execute deterministically in the same sense as discuss#ukfo
deterministic languag@ven inside aobegin_nd, unlessthey
contain a dynamic instance eébegin_nd.

Atomic Regions Language:The third variant of the formal lan-
guage allows some regions to be markedmic, andonly opera-
tions on those regions generate atomic effe@gerations on non-
atomic regionsever generate atomic effects, even in an atomic
expressionFigure 7 shows the new syntax.

The execution semantics of this language variant is idehtic
that of the deterministic-by-default language, except the com-
piler can distinguish, and potentially optimize, operasiovithin
an atomic expression that never interfere with concurrasits. In
Section 5, we discuss a prototype compiler that uses thése tau
optimize our STM by omitting or simplifying barriers (ingdan
atomic expression) for such noninterfering operations.

4.2 Deterministic Language

Static Semantics:The typing is done with respect to an environ-
mentI’, which consists of elements, T") stating that variable
has typel'. The key rule forsubeffectgi.e., when one effect con-
servatively summarizes another, written~ £ C E’), is that a
write effect on region covers a read effect on the same region

SE-READS-WRITES
I'F reads R C writes R

The rules for typing programs, classes, fields, etc., asggstifor-
ward. The rule for typing methods enforaeféect subsumptiorthat
is, that a method’s actual effect must be a subeffect of ittaded
effect:

METHOD

r-7. '+7, THE TU(z,Tx)+e:T.,E/ THE CE

THFT, m(Tyz)E{e}

The key rules fomoninterfering effectgi.e., effects that may
safely go in parallel, with deterministic composition, ttehT" +
E # E') are that reads never interfere with reads, and writes never
interfere with reads or writes to different regions:

NI-WRITES
r#£r

I'F writes r # writesr

NI-READS

T F reads r # reads r’

NI-READS-WRITES
r#r

T F reads r # writes r’

As in Core DPJ [17, 19], every expression has a type and an
effect. The rules for typing expressionswith type T' and effect

E (T'F e: T, F) are straightforward. The most important rule says
that in parallel composition, the effects of the expressibring
evaluated in parallel must be noninterfering:

COBEGIN I'Fe:T,E T'He :T',E' T HFE#E'
I' F cobegin(e,e’) : T',EUE




Dynamic Semantics:We give a small-step operational semantics
describing the recursive reduction of expressions.

Execution StateThe execution state ite, H), consisting of an
expression to evaluate and a heap. A héafs a partial function
from object references to paif®, T"), whereO is an object, and

T is the type ofO. An objectO is a mapping from field names

to object references. null is a special reference that isom (H)

but does not map to an object. Attempting to invoke a method of
null causes the execution to fail. We extend the static syntax of
expressions to represent computations:

ex=...lo](e,%,E)|e;

The additional expressions have the following meaninggeabb
references are the values produced by reducing expressions; a
local execution statée, X, E') records an expressianto evaluate,
an environmenk containing the bindings for the free variables in
e, and an effecE& of reducinge; and the indices enable us to say
unambiguously which expression is reduced in a given ei@tut
step, as explained below.

A program execution is a sequence of steps

((ep,0,0);,null) —™ (e;, H),

for somesi, e, and H, whereep is the main program expression,
1 is an arbitrary index denoting the top-level expressionha t
reduction,e; is the evolution of expressio(er, 0, 0);, and H is
the evolved heap (represented as a domain contaiing plus
all object references added during the execution). A terminating
execution hag; = (o, 0, F);, whereo is the “answer” computed
by the program, and is the union of all effects oif done in the
execution.

Expression Semantic&ield access and assignment work in the
standard way, except that we track dynamic effects, to state
prove the soundness results. As an example of the effe&irigac
we give the rule for field access:

DYN-FIELD-ACCESS
(this,0) € X H(o) = (0,C<r>) F(C,f)=T fin R
((this. £, %, 0), H) — ((O(f), X, reads 0c<,>(R)), H)

The functiono <> substitutes the region argumentor the pa-
rameter of classC. The rule for field assignment is similar, except
that the right-hand-side subexpression is evaluatedtfisteap is
updated, and the effect is a write instead of a read.
For evaluation of subexpressions, we use the followingosteth

rule:

DYN-SUBEXP

(e, H) — (¢/, H)
(e, H) — (e — ei], H')

It says that if we can reduce expressioto ¢’ starting with heap
H, ande appears with indexas a subexpression &f, then we can
reducee” by rewriting the subexpressian in place and updating
the heap.
The rules forcobegin illustrate subexpression evaluation:
DYN-COBEGIN-EVAL

fresh(i) fresh(j)
((cobegin(e,e), %, 0), H) — (cobegin((e, X, 0):,(¢", %, 0),;), H)

DYN-COBEGIN-ACCUMULATE

(cobegin((0, %, E);, (0", =, EN;),H) — ((o/,S,EUE"), H)

DYN-COBEGIN-EVAL creates two new subexpressions with fresh
indices: and j for evaluation in environmenE. The evaluation
steps ofe; ande; can be arbitrarily interleaved, via ruley®-
SuBEXP. This interleaving models the parallelism. When both are

done, DrN-COBEGIN-ACCUMULATE accumulates the results into
the top-level expression. Field assignment, method ini@taand
sequential composition are similar, except that the sutessions
are evaluated in a fixed sequential order (so there is noleksel,
except inside @obegin). The rules are entirely standard, and are
stated in full in the thesis.

Soundness ResultsAs summarized in Section 4.1, there are two
main soundness results for the core deterministic langUaggate
the results, we call out the reduction of a particular exgmes
inside the evolution of the whole program. We write

((evzvq))ivH) ~P (e;,H,)

to denote aeduction of expressiohoccurring in program execu-
tion. That meansP is well-typed with main expressioap, and
there is a program execution

((ep,0,0);,null) —~ (e;,.,H) —* (e;”,Hl)7

such thate’; contains(e, 3, 0);, which is the first appearance of
expression in the execution; and;’ containse;. (e}, H) is called
the initial state of the reduction, ande, H') is called thefinal
state

Ouir first result states that there is no semantic differenchis
language betweeseq andcobegin: at any point in the execution
that is an initial state for @obegin reduction, we can replace
cobegin with seq and get exactly the same results. The proof
follows directly from the noninterference property gudesd by
the static and dynamic semantics.

Theorem 1(Equivalence otobegin andseq).
((cobegin(e,e’), %, 0)s, H) ~p ((0,3, E)s, H')

if and only if
((seq(e, e,)., 2, 0);, H) ~p ((0, %, E)4, H’)

with the same initial state, except that expressigas shown.

The second result states that expression evaluation ig-inpu
output deterministic, up to the choice of object referenames.
The proof follows from the fact that onesbegin is replaced by
seq everywhere according to Theorem 1, the only nondeterminism
left in the rules is the choice of reference names and express
indices.

Theorem 2 (Input-Output Determinism) If ((e, >, 0);, H) ~p
((0,Z,E);,H')and ((e,%,0);, H) ~p ((0, X, E');, H") with
the same initial state, them= o', where= denotes equivalence up
to renaming object references, afil= E’. Moreover, if(e, 32, 0)

is not a subexpression of arpbegin expression, thell =2 H'.

4.3 Deterministic-by-Default Language

Static Semantics:Figure 8 gives the static semantics of atomic
effects. RuleSE-Aromic-1 formally expresses the idea that non-
atomic effects cover atomic effects: that is,Af occurred in an
atomic expression, then we can summarize the effect asreithe
atomic F or E. Note that the converse is not true, because we
cannot soundly report an atomic effect where there is no iatom
expression. Rul&E-Aromic-2 provides the subeffect relation for
two atomic effects. Rul&ll-ATomic says that an atomic effect is
noninterfering if the underlying effect is.

The judgmentl” + nondet(E, E') states that it is safe to run
expressions with effects and £’ nondeterministically in parallel,
inside acobegin_nd. Figure 8 gives the key rules for making the
judgment.

Figure 9 gives the rules for typing nondeterministic padall
composition and atomic expressions. RUeBeEGIN.ND is simi-
lar to CoBeaIN, except that interfering effects are allowed if they



SE-Aromic-1
'+ ECE

- ECE'
't atomic E C E
'+ E#E’| NI-ATomic '+ E#E'
't atomic E# E
I'+ nondet(E, E’) | NONDETNI

NONDET-ATOMIC
T F nondet(atomic E, atomic E”)

SE-ATOMIC-2
r- ECE’
I' + atomic E C atomic E/

I+ E#E
T+ nondet(E, E")

Figure 8. Static semantics of atomic effects (selected rules).

COBEGIN-ND

'te:T,E I'e:T,E TFe :T',E' TF nondet(E,E’)

T F cobeginnd(e,e’) : T, EU E’

ATOMIC T'Fe:T,E T F atomic(E) = E’
T F atomice : T, E’

The:T,E ThHe :T.E TrHE#E
T F cobegin(e,e’) : T', nonatomic(E U E",T")

COBEGIN

ATOMIC-READS
‘ I' + atomic(E) = E’ ‘

I' I atomic(reads R) = atomic reads R

NONATOMIC-ATOMIC

nonatomic(E, I')

Figure 9. Static semantics afobegin_nd and atomic expressions
(selected rules). The judgmeht- atomic(E) = E’ says thatF’

is the effect obtained after addiagomic from all reads and writes
in E/; andI" F nonatomic(FE) is the reverse.

I" F nonatomic(atomic E) = E

are both guarded by atomic expressions. Rulemic collects the
effect £ of the expressior, then marks all the constituent read
and write effects atomic, to reflect the fact tiiats occurring in an
atomic expression. Finally, ruleosecin has changed. In addition
to checking noninterference, as in the basic language,aWvaule
converts all atomic effects occurring inside thebegin to ordi-
nary effects using the judgmefit - nonatomic(E) = E’. This
ensures thaho atomic effects are ever propagated outward from
inside acobegin. The last rule is key to ensuring thaebbegin
executes in isolation, as discussed in Section 3.3.

Dynamic Semantics:We describe the dynamic semantics of the
nondeterministic language in two parts, the first operatiand the
second non-operational. The first, operational, part isthessame
semantics as for the basic language (Section 4.2), with arfievor
adjustments to accommodate the new features. The secomd, no
operational part, describesveeak isolation constrainin execution
histories generated by the operational part. The overalhoyc
semantics comprises all execution histories describethéypper-
ational semantics that also satisfy weak isolation. Infracweak
isolation would be enforced by a runtime implementatiorcfsas
software transactional memory [37]).

Operational Semantics of Expressiofi$ie operational semantics
is identical to the one described in Section 4.2, with thienges.
First, we add a rule to executbegin nd,; it is identical to the
rule for cobegin shown in Section 4.2 (i.e., in the operational
semantics, there is no difference between executstgegin nd
andcobegin — the difference is all in the static semantics).

Second, we add a rule for executing an expressigsnic e.
We execute, then mark all its effects atomic, for purposes of effect
tracking:

DyYN-ATOMIC-EVAL
fresh(i)
((atomice, X, 0), H) — (atomic (e, %, 0);, H)
DyN-ATOMIC-MARK-EFFECTS
0 + atomic(E) = E’
(atomic (0,3, E);, H) — ((0,%,E"), H)

Finally, we modify the rule DN-COBEGIN-ACCUMULATE
(shown in Section 4.2) to mark the effects afabegin expression
non-atomic:

DYN-COBEGIN-ACCUMULATE
) - nonatomic(EUE') = E”
(cobegin((0, %, E)i, (0", =, E");), H) — ((o/, =, E”), H)

Weak |solation ConstraintTo state the weak isolation constraint,
we need the concept of @eduction historyH, which is a se-
quence of program execution steps witnessirgX:, 0);, H) ~p
(e, H). If ((e,X,0):), H) is the initial program state, then we call
H aprogram execution historgnd writeH». Two histories occur
in parallel undercobegin (or cobegin_ nd) if they each occur in
reducing different branches of the samegin (Or cobegin_nd)
expression, in the same program execution.

Definition 1 (Conflict relation on atomic expressiondfix a pro-
gram execution historf», and let] be the set of expression in-
dices appearing ifHp that label atomic expressions (i.e., expres-
sions introduced by rul®yN-AToMIC-EVAL). Theconflict rela-
tion on atomic expressions il is the transitive closure of the
following relation onl x I: (4, 7) is in the relation ifi # j, and
there are conflicting memory accessesand a; such that (a)a;
occurs in the reduction of an atomic expressign(b) a; occurs
in the reduction of an atomic expressiey1 (c) the reductions of;
ande; occur in parallel undercobegin_nd, and (d)a; precedes
a; in Hp.

Notice that we put the relatiomnly on operations under
cobegin_nd, not undercobegin; and wedo not include any con-
flicts occurring outside of atomic expressiofi$at is because the
type system will ensure there are no conflicts betweebegin
tasks or outside of atomic expressions; this is the souisdmessilt
that we state below.

Now we can define the weak isolation constraint on executions
in the language. For the remainder of this section, we assame
implementation that guarantees weakly isolated prograaigion
historiesHp.

Definition 2 (Weakly isolated histories)Let H be a history. If the
conflict relation on atomic expressionskhis a partial order, then
we say thaiH is weakly isolated

Soundness ResultsAs summarized in Section 4.1, there are three
main soundness results for the nondeterministic languesyse
freedom, strong isolation, and determinism by default.

Race FreedomThe first result says that the language is race free,
assuming that pairs of memory accesses in different atoxpies-
sions are well-synchronized (which is true of any transeeti im-
plementation). The proof follows from the fact that the tgystem
disallows parallel interference, except for pairs of asesdoth oc-
curring in atomic expressions.

Theorem 3 (Race freedom) If - P, then a historyHp that
has synchronization orderings consistent with the conféilzttion
stated in Definition 1, contains no data race.

Strong Isolation:To state the strong isolation result formally, we
use the well-known concept gkrializable historie§44]. We say



that a historyH witnessing((e, X, 0);, H) ~» (e}, H') is serial
with respect to expressianif every step in the history transforms
expression or a subexpression of expressionNVe say thatH is
serializable with respect to expressioif it is possible to generate
a historyH’ with the same initial and final states Hsthat contains

a serial history witnessing(e, %, 0);, H") ~p (ej, H""), for
some heap#/” and H'”. In other words, an expression reduction
is serializable if we “could have done it serially,” with tlsame
results.

The following theorem says that a history is serializablé if
does not occur in aobegin_nd; or it does not reduce any atomic
expression; or it reduces @begin or atomic expression. The
proof follows from the type system’s guarantees of nonfetence
for cobegin tasks, and noninterference fesbegin _nd tasks ex-
cept where guarded by atomic expressions; together wittvétad
isolation assumption for atomic expressions.

Theorem 4 (Strong isolation) Suppose- P, let Hp be a weakly
isolated history executin@, and letH be a history witnessing
((e,%,0);, H) ~p (e;, H') contained intLp. ThenH is serializ-
able with respect to expressiaiif (1) (e, 2, 0), is not a subexpres-
sion of anycobegin_nd expression; or (2) no atomic expression
appears inH; or (3) e is a cobegin Or atomic expression.

Determinism by Default=inally, we show that the nondeterminis-
tic language is deterministic by default. First we show thaie
alent of Theorem 1 for the nondeterministic language: thsre
no difference betweenobegin e andatomic seq e. Note that
we need theatomic here because in generalsaq occurring
under acobegin nd can interfere with the other branch of the
cobegin_nd. The result follows directly from Theorem 1 and The-
orem 4. (“Initial state” is defined before Theorem 1.)

Theorem 5(Semantic equivalence ebbegin andatomic seq).

((cobegin(e,e'), X, 0);, H) ~p ((0,%, E);, H')
if and only if
((atomic seq(e,e'),%,0);, H) ~p ((0,%, E);, H)

with the same initial state, except that expressiaas shown.

Second, we show the equivalent of Theorem 2 for the nonde-
terministic language: for the expressions called out byofém 4
as having serializable reductions, the execution of suphessions
is also input-output deterministicinlessthere is explicit nonde-
terminism viacobegin_nd. The proof follows from Theorem 2,
together with the definition of a serializable history.

Theorem 6 (Determinism by default) Suppose- P, and letH

be a history witnessing(e, 2, 0);, H) ~» ((0,%, E);, H') that

is serializable with respect to expressignvhere nocobegin_nd
expression ever appears in expressionf ((e,%,0);, H) ~p
((d,%, E");, H'") with the same initial state as iH, theno & o,
where 2 denotes equivalence up to renaming object references,
and E = E’. Moreover, if(e, 3, ); is not a subexpression of any
cobegin OF cobegin_nd expression, thedl’ = H"'.

4.4 Atomic Regions Language

Static SemanticsFirst, the rules for constructing types require that
atomic regions bind only to region parameters declareghic,
and non-atomic regions bind only to region parameters redackd

expression, the compiler will never allow effects on noorat re-
gions to interfere. The rules are stated in full in the thesis
Dynamic Semantics and SoundnessThe dynamic semantics
of this language is exactly as given in the previous section,
with two changes. First, marking effects in ruleri-ATOMIC-
MARK-EFFECTS happens according to the refined definition of
¢ + atomic(E) = E': that is, effects are marked atomic only if
they operate on atomic regions. Second, we redefine the aonfli
relation on atomic expressions (Definition 1) so that onlgfiicts
involving accesses to statically identifiable atomic regidi.e.,
region names: or region parameters markedatomic) are syn-
chronized by the implementation. The soundness result thays
Theorems 3-6 hold for this language variant; the proofssrgin
the thesis, are entirely straightforward.

5. Prototype Implementation

To implement our new mechanisms, we extended the compiber us
for basic DPJ. It is a modified version of Sugsvac, which trans-
lates DPJ code to standard Java. The compiler implements DPJ
parallelism constructs by generating calls to BwrkJoinTask
library [2], which schedules tasks onto a pool of worker #us
further details are available in [17].

In this work, we extended the compiler to implement atomic
blocks using the Deuce STM library [3]. We used the well-
respected Transactional Locking Il (TL2) algorithm [28L.Zis
a write-buffering (i.e., lazy versioning) algorithm witlptimistic
reads. Deuce supports concurrency control at the objedtifeél,
and uses a light-weight, custom reflection mechanism tosacce
object fields inside transactions.

We selected this STM system for pragmatic reasons of ease
of implementation, and because it implements a well-knoigh-h
performance STM algorithm. We have not attempted to maxmiz
absolute performance in our implementation; it could berowed
significantly by using a different STM system, such as one-int
grated with the JVM [46]. Our method is applicable to otherety
of STM systems and algorithms (including those utilizingpiace
updates).

For each atomic block, the compiler generates code to execut
the body of the atomic block as a transaction, retrying uhtl
transaction commits successfully. Nested atomic blocksflat-
tened. Methods that are transitively callable within atoiviocks
are cloned; versions containing barriers are used when ahey
called within atomic blocks. Within atomic blocks, the cdtapin-
serts normal read and write barriers for accesses to fiela®mic
regions. As discussed in section 3.4, the compiler omitsdyarfor
read accesses to non-atomic regions, and it generatesi¢pggly
barriers for write accesses.

We modified the TL2 implementation in Deuce to support these
optimized logging-only barriers. However, because TL2\gite-
buffering algorithm, we would have to use read-barriershitaim
correct values in the read-after-write cases. To avoid beaders
entirely, we modified the algorithm to perform in-place ujgga
for these locations and we maintain a separate undo log &trev
effects of such updates in case the transaction abortssReadch
locations do not need barriers because they can now obtaiin th
values directly from the original memory location.

6. Evaluation
The ideas presented in this paper raise four key questioexer-

atomic. This requirement ensures that memory regions are treatedimental investigation: (1) Can the language express nenahitis-

consistently across method invocation. Second, we refmgutiy-
mentT  atomic(E) = E’ so that an atomic expression “makes
an effect atomic” only if the effect is on an atomic regionisTiule
ensures that, in applying ru@oBecIN.ND to check acobegin_nd

tic algorithms in a natural way? (2) Can the algorithms espee
in the language give good performance? (3) How effectivéés t
optimization of STM barriers? (4) What is the annotationrbead
of the language?



We used four nondeterministic algorithms to evaluate these also written TSP-R with a similar race. The four codes do rsat u

questions: two different versions of TSP, Delaunay mestng- any deterministic algorithms but such algorithms do notireny
lation from thelLonestar Benchmarkgl], and OO7, a synthetic runtime performance overheads in our language; such cadshe
database benchmark that has been used in previous stugasbf are dominated by that of atomic sections in nondetermmesiim-
lel performance [47, 51]. These codes are discussed fuvtiew. ponents. The performance and expressivity of the languagdef

terministic algorithms were studied previously [17].
6.1 Benchmarks and Expressing Parallelism

Traveling Salesman Problem:We studied two versions of the )

TSP algorithm, which we cafSP-PQandTSP-R. TSP-PQisthe ~ To evaluate performance, we measured the self-relativedspe
algorithm described in Section 3. As discussed there, tharishm (i.e., the speedup compared to running the transactioni co
proceeds in two phases: the first phase breaks the problentaip i one thread) achieved by the three codes. We focused oresii+e
subproblems and adds them to a priority queue, and the secondsPeedup rather than absolute speedup because (a) opgjrtizn
phase concurrently removes items from the queue and pesess Code generation for atomic statements has not been a fothis of
each one using sequential recursive search. The prioriqugiu  Paper, and (b) the Deuce STM, although using a gaigdrithm

6.2 Performance

orders the work, so that more promising subtrees are expfoss. lacks many many essential performance features of a hidbrper
TSP-R is a variant that eliminates the priority queue anduse Mance Java STM [46]. Self-relative speedups have the effect
recursion to express the entire algorithm. At each levehefttee, factoring out” some of the performance impact of the STM im-

the algorithm computes a bound for each subtree and comparesPlementation while capturing the scalability of the benahks.
the bound against the global current best tour. Bounds tieat a  YVe ran and measured the codes on a 24-core system using four

definitely no better than the current best are excludededdilinds ~ Intel Xeon E7450 processors (each with six cores), runnirig-W
that may be better are explored recursively. The recursionrs in dows Server 2008. Figure 10 shows the self-relative speedith
parallel until a specified depth of the tree; in our studiesused barrier optimizations enabled, using running times forsDeky

a depth varying with the log of the number of threads. TSP-R is and TSP, and throughput scaling for OO7. Because the rustime
a simpler algorithm than TSP-PQ, but it potentially sufféresm are nondeterministic, we averaged 5-10 runs for each daté po

more contention, as the global best tour must be read beferg e~ Using an interquartile method to exclude a few extreme erstli
recursive descent into a subtree to avoid exploring too niey ~ For both TSP variants, we used the one-thread version ofAQP-
paths. By contrast, because TSP-PQ uses a priority queuddo o which was the faster. of the two, as the baseline. Both vessién .
the paths, it can read the global best tour less often (oncege TSP show good scaling, and OO7 shows moderately good scaling
level). throughout the range of numbers of threaslge e>.<a.m|ned. TSP-R
We adapted both versions of TSP from code that was used in Shows better (superlinear) speedup for smailéfis is because the
previous studies of STM performance [46, 47]. Our TSP-PQcod parallel algorlthm is very efficient in that range: it rulag subtrees
uses the identical algorithm to the original code, and esqgethe ~ quickly, and so visits only about/4 of the tree nodes at= 2 com-
parallelism in the same way. The original code had a data emce ~ Pared tot = 1. However, the scaling curve for TSP-R flattens out
we added one extra atomic block to eliminate that race. OR-TS ~ ast increases, most likely due to higher contention than TSP-PQ

R code is a transformation of TSP-PQ that eliminates theipyio The speedup curve for Delaunay is poor: it flattens out and
queue, checks the bound at each level of the tree, and pesle ~ feaches only 3x on 22 threads. We profiled the code to under-
the recursion. stand the source of this behavior and traced it to the method
Delaunay Mesh RefinementThis code uses Chew’s algorithm [26, SySt_em-{'Ldentity_Hashcode(_) in the JVM. Th_|s standard Java
36] to find and eliminate “bad triangles,” i.e., those thandb sat- function is extensively used in Deuce to index into lock ¢abMWe

isfy some quality constraint from a Delaunay triangulatioia observed that the time spent in this function grows with tineber

mesh of points. The program is nondeterministic since wiffe of threads. In Delaunay, which has large transactionsptréshead
orders of processing of bad elements lead to different nsesite ~ Negatively affected the speedup curve. This problem camhygd
though all such meshes satisfy the quality constraints. [ZBf by modifying the JVM, but we leave that (and other optimiaat
program uses @oreach_nd loop, and each iteration of the loop ~ for atomic) to future work.

spawns a new worker thread (at most one per core). Each worker

thread has a private worklist of bad triangles. In each fi@nzof

the worklist loop, the worker selects one bad traingle frdma t 20
work list, forms acavity around it, re-triangulates the cavity, and

< TSP-R
adds any new bad triangles back to the worklist. Cavity fig@ind ® TSP-PQ
> X X 15 = 007 A
re-triangulating code sections access the shared mesktdataure 2D PO
. . elaunay ~  ___.--
and are enclosed in atomic blocks. JUPTS e
10 =

007: 007 simulates a number of clients, each performing a fixed
number of queries on an in-memory database. Each query is en-
closed in an atomic block. The performance metric is theuitine 5 »
put (queries per unit time), and we measure how this scales by
varying the number of clients while keeping the number ofrigse

Speedup

performed by each one constant. The program uses@ach_nd 0

loop, with one iteration corresponding to each client. Waficp 0 4 8 12 16 20 24

ured it to use a number of clients equal to the number of worker Number of worker threads

threads, so there is always one thread per client. Thus,othé t

amount of work performed is proportional to the number oé ius. Figure 10. Self-relative speedups. For OO7, we scaled the amount
Expressing Parallelism:We successfully expressed the paral- of work with the number of worker threads, and measured speed

lelism that did not use data races, in these four nondetéstizin based on throughput scaling (number of queries done petinnei}.
algorithms. As discussed above, we eliminated a race inFQP-  The barrier optimization was enabled for all of these berafis
that was presumably there to avoid synchronization; wedchave



6.3

We compared the performance of two versions of the paradigéc
for each benchmark: with and without the barrier simplifimabp-
timization for non-atomic regions. Figure 11 shows the iover
ment in running time for the optimized code compared to the un
optimized code. Figure 12 shows the reduction in the number o
dynamically-executed barriers due to our optimizations.

Impact of Barrier Elimination

1.2

Delaunay | 007 |

| threads| opt | unopt | opt [ unopt |
2 0.999 | 0.944 | 0.944 | 0.932

3 0.975 | 0.848 | 0.877 | 0.872

4 0.998 | 0.810 | 0.822 | 0.560

7 0.993 | 0.647 | 0.700 | 0.210

12 0.996 | 0.405 | 0.539 | 0.100

17 0.995 | 0.291 | 0.442 | 0.071

22 0.994 | 0.244 | 0.369 | 0.071

Table 1. Ratio of committed transactions to started transactions

for Delaunay and OO7. Lower numbers indicate more aborted
o 1 = u ; transactions. For both versions of TSP, all numbers ared1.00
£o0s | m3
a 4
§ 0.6 | .7
| 12
bn- 0.4 - 17 Total Annotated Region Effect
o 02 I— L o0 Program | SLOC SLOC Decls RPLs Params Summ.
’ I I 1 I TSP-PQ 433 77 (17.8%) 2(0) 101(4) 6(2) 14720
o NN REFE SNE= NI TSP-R 200 34 (17%) 20)  42(4) 2(0) 6/12
g g 007 1570 105 (6.7%) 4(1) 76(7) 6(0) 52/104
TSP-PQ TSP-R  Delaunay 007 Delaunay | 1994 302 (15.1%)  3(1)  374(Q3)  21(7) 165216
Total [ 4197 ©518(12.3%) 11(4)  593(18) 35(9) 2371352

Figure 11. Ratio of optimized runtimes (with barrier elimination)
to unoptimized runtimes (without barrier elimination). Aalve
lower than 1 means the optimization increased performance.
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Figure 12. Reduction in barriers due to optimizations, showing
the proportion of barriers from the unoptimized versiont the
eliminated entirely, simplified to log-only write barriersr that
remain as full barriers in the optimized version, for eachhaf
three benchmarks with 1, 7, 12, and 22 worker threads.

The optimization has a substantial impact on performance fo
three of the four benchmarks (TSP-PQ, Delaunay, and OO®. Th
performance improvements correlate well with the barréstuc-
tions. The optimizations give essentially no improvementiSP-

R, because the transactions are very short (reads and meaifixm
write operations on the best tour). As a result (1) there areif
any barriers to remove; and (2) transactional overheadtia s@-
nificant component of the overall runtime. On the other hai8R-
PQ, 007, and Delaunay use longer transactions, providing mo
opportunities for reducing overhead.

Our optimizations can eliminate barriers both by actuadly r
moving barrier operations on certain statements and alsedyc-
ing the number of times that transactions must be retried |tber
effect occurs because removing unnecessary barriersegdbe
number of false conflicts incurred by the STM system. As shown
in Table 1, this effect is more pronounced with larger nuratur
worker threads, so our optimizations not only reduce saaler-
heads but also improve scalability. For example, in Delgutrae
optimization changed this ratio from 0.944 to 0.999 on 24dHee
but from 0.244 to 0.944 on 22 threads.

Table 2. Annotation counts for the four benchmarks. In the middle
columns, the numbers in parentheses represent the number of
notations markedtomic. In the last columngz /y means of, total
method definitions in the program, were annotated with effect
summaries.

6.4 Annotation Overhead

Table 2 provides a quantitative measure of the annotatierhead

of writing the four benchmarks in our language. Column 1rédfie
vertical bar shows the total number of non-blank, non-comme
lines of source code, counted b¥occount. Column 2 gives the
count of annotated lines, as an absolute number and as atsgee
of the total lines. The following three columns show the nemtf
region declarations, RPLs (including argumentsitparguments to
types and methods, and arguments to effect summaries)egiuhr
parameters. The number of annotations markeehic is shown

in parentheses after the main number. The last column shwavs t
number of effect summaries before the slash, and the nuniber o
method definitions after the slash.

While the average number of annotated lines (12.3%) is iventr
ial, we believe it is not unduly high, given the strong safatyper-
ties of the programming model. As in our prior work [17], moét
the RPL annotations were arguments to types. The overhedd co
be reduced by inferring some of the annotations [48], buteagé
that for future work.

Our approach does impose the limitation that if a programmer
wishes to use a class region parameter as an atomic regiomia s
context and a non-atomic region in some other context, then t
class must beloned the programmer must create two copies of the
class, one with the atomic parameter and one with the naniato
parameter. The cloning is required because differentdrarmust
be generated for methods of the class that operate tramsaltyi
on the parameter, depending on whether the region bounceto th
parameter is atomic. The cloning could be done automayitsl
the compiler, similarly to what C++ does for templates. \While
have not implemented this approach, we believe it does &g ra
any significant technical issues.

In the benchmarks we studied, only Delaunay required class
cloning. In Delaunay, we needed both atomic and non-atomric v
sions of the list and map structures used in the benchmark.



7. Related Work

Type and Effect Systems: Several researchers have described ef-
fect systems for enforcing a locking discipline in hondetigistic
programs that prevents data races and deadlocks [5, 20; §dho
antees isolation for critical sections [29]. Matsakis ef4l] have
recently proposed a type system that guarantees racesfrefmt
locks and other synchronization constructs using a coctstalled
an “interval” for expressing parallelism. While there isr@over-
lap with our work in the guarantees provided (race freedozadd
lock freedom, and isolation), the mechanisms are veryrdiffe(ex-
plicit synchronization vs. atomic statements supportedSHiv).
Further, these systems do not provide determinism by defaidl
nally, there is no other effect system we know of that prosideth
race freedonand strong isolation together.

STM Correctness (Language): STM Haskell [31] provides
an isolation guarantee, but for a pure functional langudme t
uses monads to limit effects to the transactional storekeiaur

imperative shared-memory language. Moore and Grossmdn [42 gr
and Abadi et al. [6] use types and effects to guarantee strong

isolation for an imperative language, but their languagesnit
races where neither access occurs in a transaction. Finalhe
of these languages allows both transactional and nonédctinsal
effects to the same memory, as our language does.

Beckman et al. [12] show how to use a form of alias con-
trol calledaccess permissiorj21] to verify that the placement of
atomic blocks in a threaded program respects the invariaings
specification written by the programmer — for example, thatra
dition is checked and acted upon atomically. This approacioin-
plementary to ours: we provide guarantees of race freedmongs
isolation, and determinism by default for all programs im tzn-
guage; on top of that one could check that additional program
specified invariants are satisfied.

STM Correctness (Compiler and Runtime): Several STMs
guarantee strong isolation by preventing interferenceveet
transactions and non-transactional accesses at runtimst &f
these systems use a combination of sophisticated statitewho
program analysis, runtime optimizations, and other ruettech-
niques like page protection to optimize strong isolation2Z, 46,
47]. While these techniques can significantly reduce thé obs
strong isolation, they cannot completely eliminate it. bntast,
our language-based approach provides strong isolatidroutiim-
posing extra runtime overhead.

Reducing STM Overheads: Much research has been devoted
to reducing the cost of compiler-generated STM barriersanst
actional memory accesses. Early work [8, 32] showed howino-el
inate several classes of transactional overhead inclueithgndant
barriers, barriers for accesses to provably immutable nngros
cations, and certain barriers for accesses to objectsaddiddn a
transaction. Recent work by Afek et al. [9] uses the logic mf-p
gram reads and writes within a transaction to reduce STM-over
head: for example, a shared variable that is read severastoan
be be read once and cached locally. These optimizationsleemp
ment ours, as they target different kinds of STM overheaohfoor
work.

ture) that our system cannot. As future work, it would berieséng
to explore these tradeoffs further.

Finally, several researchers have eliminated STM overfead
accesses to thread-local data using whole-program ststipe
analysis [47] and programmer annotations to specify codeksl
that do not require instrumentation [52]. Unlike our wotkstwork
either requires whole-program analysis, or it relies oneuified
programmer annotations.

Nondeterministic Parallel Programming: Several research
efforts are developing parallel models for nondetermimisbdes
with irregular data access patterns, such as Delaunay reésb-r
ment. Galois [36] provides a form of isolation, but with &&ons of
parallel loops (instead of atomic statements) as the stledmpu-
tations. Concurrency is increased by detecting conflictiseatevel
of method calls, instead of reads and writes, and using sénan
commutativity properties. Lublinerman et al. [39] have pweed
object assemblieas an alternative model for expressing irregular,
aph-based computations.

These models are largely orthogonal to our work. In Galois,
strong isolation holds if all shared data is accessed througjl-
defined APlIs, but this property is not enforced, either cadiii or
at runtime. We believe that our type and effect mechanisrakico
be applied to Galois to ensure this property. The objectnalsbes
model may have stronger isolation guarantees than Galaig, ib
very specialized to irregular graph computations, in csttto the
more general fork-join model we present here.

Kulkarni et al. [35] have recently proposddsk typesas a
way of enforcing a property they caflervasive atomicityThis
work shares with ours the broad goal of reducing the number of
concurrent interleavings the programmer must consideweser,
Kulkarni et al. adopt an actor-inspired approach, in whiekads
non-shared by default, and sharing musk occur through alpeci
“task objects.” This is in contrast to our approach of allogi
familiar shared-memory patterns of programming, but usiffect
annotations to enforce safety properties. Finally, nonthefwork
discussed above provides any deterministic-by-defawdtantee.

8. Conclusion

We have shown how to design a type and effect system that, to-
gether with a weakly atomic runtime system, achieves ouedta
goals of providing disciplined and safe nondeterminisraluding

race freedom, strong isolation of atomic operations anerdenis-

tic parallel operations, compositional reasoning abotérieinistic

and nondeterministic operations, and determinism by diefdle
have also shown how to leverage the system to remove uniaegess
barriers from the transactional implementation, theraftyamcing
performance.
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