
Safe Nondeterminism in a
Deterministic-by-Default Parallel Language

Robert L. Bocchino Jr.1 Stephen Heumann2 Nima Honarmand2 Sarita V. Adve2

Vikram S. Adve2 Adam Welc3 Tatiana Shpeisman4

1Carnegie Mellon University 2University of Illinois at Urbana-Champaign 3Adobe Systems 4Intel Labs
rbocchin@cs.cmu.edu dpj@cs.uiuc.edu awelc@adobe.com tatiana.shpeisman@intel.com

Abstract
A number of deterministic parallel programming models with
strong safety guarantees are emerging, but similar supportfor non-
deterministic algorithms, such as branch and bound search,remains
an open question. We present a language together with a type and
effect system that supports nondeterministic computations with a
deterministic-by-default guarantee: nondeterminism must be ex-
plicitly requested via special parallel constructs (marked nd), and
any deterministic construct that does not execute any nd construct
has deterministic input-output behavior. Moreover, deterministic
parallel constructs are always equivalent to a sequential composi-
tion of their constituent tasks, even if they enclose, or areenclosed
by, nd constructs. Finally, in the execution of nd constructs, in-
terference may occur only between pairs of accesses guardedby
atomic statements, so there are no data races, either between atomic
statements and unguarded accesses (strong isolation) or between
pairs of unguarded accesses (stronger than strong isolation alone).
We enforce the guarantees at compile time with modular check-
ing using novel extensions to a previously described effectsystem.
Our effect system extensions also enable the compiler to remove
unnecessary transactional synchronization. We provide a static se-
mantics, dynamic semantics, and a complete proof of soundness
for the language, both with and without the barrier removal feature.
An experimental evaluation shows that our language can achieve
good scalability for realistic parallel algorithms, and that the barrier
removal techniques provide significant performance gains.

Categories and Subject DescriptorsD.1.3 [Software]: Con-
current Programming—Parallel Programming; D.3.1 [Software]:
Formal Definitions and Theory; D.3.2 [Software]: Language Class-
ifications—Concurrent, distributed, and parallel languages; D.3.2
[Software]: Language Classifications—Object-oriented languages;
D.3.3 [Software]: Language Constructs and Features—Concurrent
Programming Structures

General Terms Languages, Verification, Performance

1. Introduction
Widely used parallel programming models today (Java, C#, Posix,
Win32) are based on a low-level and error-prone concept of threads.
These models provide few or no guards against parallel program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

ming errors such as data races, deadlocks, or atomicity viola-
tions. Some higher-level programming models are available, or are
emerging, that prevent these kinds of errors. However, these models
achieve their safety guarantees by greatly restricting side effects,
either through functional programming (e.g., STM Haskell [31])
or through dataflow or data-parallel styles of programming (e.g.,
Concurrent Collections [23], Ct [30]).

There is much recent interest in supportingdeterministicalgo-
rithms within general imperative languages, via static type sys-
tems [17], runtime-supported language mechanisms [10, 11,24,
45, 49, 50], or largely transparent runtime techniques [14,15, 27,
43]. For algorithms that have deterministic input-output behavior,
such models can provide major benefits compared with traditional
thread-based programming [18, 38].

There are also important algorithms, however, that donot have
deterministic input-output behavior, and are not supported by these
techniques. Some examples include clustering algorithms,opti-
mization algorithms like branch-and-bound solvers, and graph al-
gorithms like Delaunay mesh refinement. A common feature of
such algorithms is that they permit any of multiple possibleout-
puts to be produced for a given input. Such outputs must usually
be derived from a controlled set of choices, typically from differ-
ent, schedule-dependent, orders of evaluating parallel tasks, e.g.,
evaluating different groups of neighboring points in clustering al-
gorithms. Importantly, the nondeterminism should not simply de-
rive from unpredictable behavior due to data races and atomicity
violations. Such behavior is not only potentially erroneous but can
also can make proram executions difficult to reason about, e.g., by
producing non-sequentially-consistent results. Furthermore, real-
world applications are composed of a (potentially large) number
of different algorithms, likely to be a mixture of deterministic and
nondeterministic ones. Therefore, it is essential to be able to com-
pose deterministic and nondeterministic algorithms in a way that is
easy to reason about.

These observations pose two challenges for a safe and realistic
parallel programming model: (1) How do we express nondetermin-
ism itself in a disciplined manner that simplifies reasoningabout
program behavior? (2) How do we allow nondeterministic and de-
terministic computations to be composed without weakeningthe
deterministic guarantees for the latter?

In this work, we present a Java-based parallel language that
supports both deterministic and nondeterministic parallel code in a
disciplined manner. Our language has the following major features:

1. Deterministic parallel operations.We provide operations that
describe deterministic parallel composition of tasks. A deter-
ministic parallel operation enforcesnoninterferencebetween its
component tasks (i.e., there are no conflicting reads or writes in
any pair of tasks), ensuring that the whole operation behaves
like a sequential (and therefore deterministic) composition of

its component tasks. The noninterference property is enforced
at compile time. This part is derived from previous work [17].

2. Nondeterministic parallel operations.We provide operations
that describe potentially nondeterministic parallel composition
of tasks. These operations allow interference between tasks, but
any such interference is subject to the following guarantees,
again enforcedat compile time. This part is entirely new.

(a) Race freedom and sequential consistency.No execution of a
valid program in our language can ever produce a data race.
This property is very important, even for nondeterministic
codes, because in the Java memory model, race freedom im-
plies sequential consistency, which makes parallel programs
much easier to reason about.

(b) Strong isolation.Our language provides anatomic state-
mentatomic S that executes the enclosed statementS in
isolation, i.e., as if there were no interleaving with concur-
rently executing tasks. The isolation isstrong, i.e., isolation
is provided with respect toall concurrent operations, not just
other ones occurring in atomic statements. Novel effect sys-
tem features enable our language to be built on top of an “off
the shelf” runtime, such as software transactional memory,
that provides only weak isolation. Previous work [6, 31, 42]
has also used effects to enforce strong isolation but, as dis-
cussed in Section 7, our language is less restrictive, and our
guarantees are stronger.

(c) Composition of deterministic and nondeterministic opera-
tions.A deterministic parallel operation always behaves as
an isolated and sequential composition of its component
tasks,even if the operation encloses, or is enclosed in, a
nondeterministic parallel operation. This property allows
local, compositional reasoning about deterministic opera-
tions, which we view as essential for a language that sup-
ports both deterministic and nondeterministic operations.

(d) Determinism by default.Nondeterminism occursonly where
requested by an explicit nondeterministic operation, and
cannot occur “by accident.” Specifically, if a deterministic
construct does not encounter any nondeterministic construct
for a given input heap state in some execution, then it has de-
terministic input-output behavior (i.e., it produces the same
output heap state and other results in all executions, for that
input heap state).

For the deterministic parallel operations (1), we build on Determin-
istic Parallel Java (DPJ) [17]. In DPJ, the programmer partitions the
heap intoregions, and writeseffect summarieson methods that de-
scribe the method’s read and write operations on the regions. The
compiler uses the regions and effect summaries to enforce noninter-
ference of parallel tasks at compile time. However, by design, DPJ
completely disallows nondeterministic parallel algorithms. To pro-
vide the nondeterministic operations (2) and their associated guar-
antees, we must extend DPJ.

For the isolation guarantee 2(b), we build on software transac-
tional memory (STM) [37]. STM is not the only choice here, but
it is a good one, as it runs on all platforms (as opposed to hard-
ware transactions, which require special hardware) and provides
relatively strong guarantees (isolation and deadlock freedom) with
very low programming overhead. However, STM alone is insuffi-
cient for our purposes. First, STM implementations usuallyprovide
only weak isolation, and we want strong isolation. Second, even
strong isolation is not enough: it allows data races betweenaccesses
outside of transactions, and we want to disallow such data races.
Finally, STM introduces significant runtime overheads, including
scalar overhead and false conflicts (due to over-synchronization),
which can cause poor scalability.

To solve these technical challenges, we extend the DPJ effect
system in several ways. First, we add a new kind of effect called an
atomic effectfor tracking when memory accesses occur inside an
atomic statement. The atomic effects allow the compiler to guaran-
tee both race freedom (property 2(a)) and strong isolation (2(b)), by
prohibiting conflicting memory operationsunless each operation is
in an atomic statement. Second, we introduce new effect checking
rules to enforce composition of operations (2(c)) and determinism
by default (2(d)). For composition of operations, the extended ef-
fect system disallows interference between a deterministic opera-
tion and any other concurrent operationunless the whole determin-
istic operation is enclosed in an atomic statement. For determinism
by default, the interference is disallowed for deterministic paral-
lel operations, but allowed for nondeterministic paralleloperations.
Third, to reduce STM overhead, we introduceatomic regions, so
that the programmer can identify which regions may be accessed in
an interfering manner. For operations to other regions, thecompiler
can remove or simplify the STM synchronization, because such op-
erations never cause conflicts.

Overall, this work makes the following contributions:

1. We present a language that provides the compile-time guaran-
tees 1 through 2(d) stated above. To our knowledge,no previous
language or system has provided all these properties for shared-
memory parallel programs through any mechanisms, static or
dynamic.Our language includes novel extensions to the DPJ
effect system as discussed above for enforcing race freedom,
strong isolation, and determinism by default; and for reducing
the runtime overhead of the underlying STM implementation.

2. We formalize our ideas using three formal languages: the first
has only deterministic parallel operations, the second adds non-
deterministic parallel operations, and the third adds atomic re-
gions. We have developed a full syntax, static semantics, and
dynamic semantics for all three languages. Further, we havefor-
mally stated the soundness properties given informally above,
and proved that the properties follow from the semantic defini-
tions. Here we summarize the key features of the formal lan-
guage and the essential soundness results; the full details, in-
cluding proofs, may be found in the lead author’s Ph.D. the-
sis [19].

3. We describe our experience using our language to implement
three nondeterministic algorithms:Delaunay Mesh Refinement
from the Lonestar benchmarks [1], thetraveling salesman prob-
lem(TSP), andOO7 [25], a synthetic database benchmark. Our
experience shows that porting these algorithms form “pure”
Java into our language was relatively straightforward and re-
quired neither redesign of existing data structures nor restruc-
turing of the algorithms themselves. The language naturally ex-
presses all these algorithms, although the speedups achieved
vary depending on the inherent parallelism in the algorithms
and performance limitations of the underlying STM. Addition-
ally, judicious use of atomic regions eliminated a large fraction
of the STM-related overhead in two out of three benchmarks.

2. Background
In this work, we build on a language called Deterministic Parallel
Java (DPJ) [17]. DPJ uses an effect system to enforce deterministic
semantics for explicitly parallel programs via compile-time type
checking. This section briefly explains the key constructs of DPJ;
the details may be found in [17, 19]. In the rest of this paper,we
refer to the preexisting language asbasic DPJ.

DPJ provides a fork-join parallel model: the programmer cre-
ates parallel tasks using either aforeach statement (for a parallel
loop) or cobegin block (for a group of mutually parallel state-

ments). DPJ’s effect system guarantees that in a well-typedparallel
program, any two parallel tasks havenoninterfering effects. An ef-
fect is a set of operations on memory. Two effects interfere if they
both access a common memory location and at least one of them
writes to that location. The noninterference guarantee forparallel
tasks implies deterministic input-output semantics for the compu-
tation.

The DPJ effect system works as follows. The programmer as-
signs every object field and array cell to aregion and annotates
every method with amethod effect summarystating (a superset of)
the reads or write operations performed by the method, in terms of
regions. The compiler checks two things: (1) that the effectsum-
maries are a superset of the actual effects in the method body; and
(2) that no two parallel statements are interfering. The effect sum-
maries on method definitions enable modular checking of effects.

1 class Node<region P> {

2 region L, R;
3 double mass in P;

4 Node<P:L> left in P:L;
5 Node<P:R> right in P:R;
6 void setMass(double mass) writes P {

7 this.mass = mass; // writes P
8 }

9 void setMassOfChildren(double mass) writes P:* {
10 cobegin {

11 if (left != null) left.setMass(mass); // writes P:L
12 if (right != null) right.setMass(mass); // writes P:R
13 }

14 }
15 }

Figure 1. Some features of basic DPJ for deterministic parallelism.

Figure 1 illustrates the use of regions and effects in basic DPJ.
In line 1, we declare classNode to have one region parameterP.
Line 3 declares fieldmass in regionP; the actual region of the field
is determined when the class is instantiated into a type, as shown
in lines 4 and 5. Line 2 declares namesL and R that have static
scope (i.e., they are shared by all instances of classNode). Lines
4 and 5 declare fieldsleft andright and place them in regions
P:L andP:R, respectively. The formP:L is called aregion path
list, or RPL, and it expresses the hierarchical structure of regions:
intuitively, P:L andP:R are both nested underP. The use ofL and
R puts the two fields in different regions, while the use ofP allows
different Node objects instantiated with different bindings toP to
have their fields in different regions. BecauseL andR are distinct
names,P:L andP:R are guaranteed to refer to different regions, for
any common binding toP.

Lines 6 and 9 illustrate the use of method effect summaries.
Method setMass (line 6) has declared effectswrites P, while
setMassOfChildren (line 9) has declared effectswrites P:*,
where the* is a wildcard representing any sequence of names. If
an effect declaration is omitted, it defaults to most general effect
(writes the whole heap).

The compiler performs checks (1) and (2) stated above by accu-
mulating the effects of a method,foreach statement, orcobegin
statement. The analysis is simple and local because, at eachcall
site, the declared effects of the invoked method provide theeffects
of the invocation, after substituting actual for formal region param-
eters. For example, the effect ofleft.setMass(mass) in line 11
iswrites P:L, obtained by substitutingP:L (from the type of left)
for the class parameterP in the declared method effectwrites P
(the read of fieldleft is subsumed because in DPJ, write effects
imply read effects). Similarly, the compiler infers the effect of a
field access or assignment toe.f by substituting the region named
in the type ofe for the parameter in the declared region of the field
f .

As an example of check (1) (correct method effects), the effect
of setMass is legal because the method body writes to fieldmass
in regionP and has no other heap effects. As an example of check
(2) (parallel noninterference), the compiler infers that the effect of
lines 11 and 12 arewrites P:L andwrites P:R, respectively.
BecauseP:L andP:R must be disjoint regions, for any common
binding toP, the effects are noninterfering.

Although this example is somewhat simplistic, these and other
features of DPJ can express a range of realistic parallel idioms [17],
including parallel updates on arrays of objects, parallel traversals
and updates of a tree, in-place divide-and-conquer on arrays, and
commutative operations within parallel tasks.

3. Language Support for Nondeterminism
We now informally describe the language mechanisms for non-
deterministic parallel control, parallel safety guarantees, and op-
timization support. We illustrate the new language features with a
running example of thetraveling salesman problem(TSP). Sec-
tion 4 describes the language more formally.

3.1 The TSP Computation

The traveling salesman problem, or TSP, is the well-known prob-
lem of finding a shortest cycle in a weighted graph that vis-
its all the nodes once (i.e., a Hamiltonian cycle). TSP can be
solved by branch and bound search, a common algorithm for
solving optimization problems and a classical example of a non-
deterministic computation. Figures 2–4 show simplified Java-
like pseudocode for TSP. The global data (lines 1–13) include a
weighted graph that is the input to the program; a priority queue
for storing the paths being explored; and a “best” (i.e., short-
est) tour, which is refined as the computation progresses, even-
tually storing the answer. Two regions are used to hold the data:
ReadOnly for fields that will not be modified during the computa-
tion, andMutable for those that will be. The priority queue’s type
PriorityQueue<Path<ReadOnly>, Mutable> indicates that it
contains objects of typePath<ReadOnly>, and that the internal
data used to represent the queue itself is in regionMutable. The
main computation loop (lines 15–23) iterates in parallel over sev-
eral worker tasks. Each task generates a prefix to search (using the
pseudocode in Figure 3) and adds it to a priority queue. When all
prefixes have been generated, the tasks remove prefixes from the
priority queue and search them (using the pseudocode in Figure 4),
until there are no more prefixes to search.

3.2 Nondeterministic Parallel Control

To express nondeterministic parallel computations, we introduce a
parallel loop denotedforeach nd, wherend stands for “nondeter-
ministic.” Line 15 in Figure 2 shows an example. This construct is
identical toforeach in basic DPJ [17], except it says explicitly that
conflicting accesses, and therefore potential nondeterminism, are
allowed between the loop iterations offoreach nd. We also intro-
duce acobegin nd construct corresponding tocobegin in basic
DPJ. Collectively, we refer to these four (foreach, foreach nd,
cobegin, andcobegin nd) asparallel constructs.

The resulting parallel control structure is just fork-joinparal-
lelism and can be represented as a static task graph, where each
node ortask is a single iteration of a parallel loop (foreach or
foreach nd) or a single statement in acobegin or cobegin nd.
All four parallel constructs have an implicit “join” synchronization
at the end of the construct for the tasks of the construct. The(di-
rected) edges in the task graph represent either program order, or
forking at the start of a parallel construct, or the “join” synchro-
nization at the end of a parallel construct. Two tasks areconcurrent
if they are not ordered in the task graph. Two memory accessesare
concurrent if they occur in concurrent tasks.

1 /* Regions for partitioning data */

2 region ReadOnly, atomic Mutable;
3

4 /* Graph we are working on; immutable */
5 Graph<ReadOnly> graph in ReadOnly = the TSP graph;
6

7 /* Priority queue for tour prefix paths */
8 final PriorityQueue<Path<ReadOnly>, Mutable> priorityQueue =

9 new PriorityQueue<Path<ReadOnly>, Mutable>();
10 priorityQueue.add(new Path<ReadOnly>(startNode));

11

12 /* The answer */
13 Path<ReadOnly> bestTour in Mutable = infinite path;

14

15 foreach_nd(int i in 0, NWORKERS) {

16 Path<ReadOnly> prefix = null;
17 do {
18 atomic {

19 prefix = generateNextPrefix();
20 }

21 if (prefix != null) searchAllToursWithPrefix(prefix);
22 } while (prefix != null);

23 }

Figure 2. Global data and main computation for the Traveling
Salesman Problem.

1 Path generateNextPrefix() reads ReadOnly writes Mutable {
2 while (!priorityQueue.isEmpty() &&

3 priorityQueue.best().length() < bestTour.length()) {
4 Path<ReadOnly> prefix = priorityQueue.removeBest();
5 if (prefix.nodeCount() > PREFIX_CUTOFF) {

6 return prefix;
7 } else {

8 for (each edge edge that can be added to prefix
9 while staying under bestTour.length()) {

10 Path<ReadOnly> newPrefix =

11 new Path<ReadOnly>(prefix, edge);
12 priorityQueue.add(newPrefix);

13 }
14 }

15 }
16 return null;
17 }

Figure 3. Generating the next tour prefix.

1 void searchAllToursWithPrefix(Path<ReadOnly> prefix)
2 reads ReadOnly writes atomic Mutable {
3 for (each Hamilton cycle tour in graph with prefix prefix) {

4 atomic {
5 if (tour.length() < bestTour.length()) {

6 bestTour = tour;
7 }
8 }

9 }
10 }

Figure 4. Searching all tours with a given prefix.

The specific parallel constructs used to fork and join tasks are
not fundamental to our work. The language mechanisms used to
enforce safety properties (described next) can be applied directly
to other fork-join parallel programming languages, e.g., Cilk [16],
a large subset of OpenMP [4], and potentially other parallellan-
guages in which the compiler can identify all groups of concurrent
tasks. Distinguishing the constructs that permit interference (i.e.,
may be nondeterministic) from those that do not (and so are deter-
ministic) is a useful property, but again, not necessary forany of
our other guarantees.

3.3 Safety Properties for Nondeterministic Code

As stated in the introduction, the goal of our language design and
type system is to achieve four safety guarantees for nondeterminis-
tic and deterministic code: (i) data race freedom; (ii) strong isola-

tion for nondeterministic parallel constructs; (iii) sequential equiv-
alence for deterministic parallel constructs; and (iv) a property we
call determinism by default, defined below. These four properties
give programmers a simple, elegant execution model for reasoning
about partly nondeterministic programs. Below, we discussthe lan-
guage mechanisms for expressing synchronization, the effect sys-
tem features for enforcing the properties, and the resulting execu-
tion model seen by programmers.
Synchronization:To ensure correctly synchronized accesses in the
presence of interference (defined in Section 2), we add anatomic
statementto the language. This construct is similar to previous
work [8, 28, 32, 33], except that in conjunction with our effect
system, discussed below, our atomic statements provide stronger
guarantees. A statementatomic S indicates thatS is to be run
as if all other concurrent executionwere suspended whileS is
executing. This is called strong isolation [40, 47].

With reference to the TSP example, in Figure 2 each call to
generateNextPrefix is enclosed by an atomic statement that
protects the accesses to the shared priority queue. Note that while
the calls togenerateNextPrefix are effectively serialized, each
worker can start its call tosearchAllToursWithPrefix as soon
as its call togenerateNextPrefix is done, in a pipelined manner.
This pattern can achieve good speedups because most of the work
in this code is done insearchAllToursWithPrefix. In Figure 4,
an atomic statement protects the concurrent updates tobestTour.

An atomic statement may appear inside any of the four parallel
constructs, as well as inside other atomic statements. Two nested
atomic statements in the same task are “flattened”: that is, the inner
atomic becomes a no-op, and atomicity is enforced entirely at
the outeratomic. If a parallel task created in an atomic statement
contains a nested atomic statement, then the nesting behaves in the
standard way: the inneratomic enforces isolation with regard to
other tasks created by the immediately enclosing parallel construct,
while the outeratomic enforces isolation as to tasks created by any
outer enclosing parallel construct.
Effect System:We now discuss how our effect system enforces the
four safety properties stated at the outset of this section.
Data Race Freedom and Strong Isolation:We use the following
strategy to ensure both data race freedom and strong isolation. First,
a transactional runtime guarantees at least weak isolationof atomic
statements (i.e., isolation between different atomic statements, but
not between atomic statements and unguarded code). Second,the
effect system ensures that for any pair of conflicting memoryac-
cesses, each access occurs inside an atomic statement. For exam-
ple, in Figure 4, any two concurrent accesses tobestTour are both
enclosed in instances of the atomic block at line 4 (the concur-
rency is created by theforeach nd at line 15 of Figure 2). This
requirement ensures strong isolation, because no conflictsbetween
unguarded memory accesses and atomic statements are allowed. It
also ensures race freedom, because no conflicts between pairs of
unguarded accesses are allowed.

Notice two things about our strategy. First, our language may
be built on top of a standard software transactional memory (STM)
implementation, which typically guarantees only weak isolation for
performance reasons. Second, our strategy prohibits all data races.
Even TM systems with strong isolation generally allow data races
between pairs of accesses occurring outside any transaction.

To accomplish the effect checking, we extend the DPJ effect
system to distinguish effects that areatomic (meaning the effect
occurred inside an atomic statement) from effects that arenon-
atomic(meaning the effect occurred outside any atomic statement).
The compiler ensures that interference occursonly between atomic
effects.

To enable sound modular reasoning about method invocations,
we make atomic effects explicit in method effect summaries.For

example, the effectwrites atomic Mutable in the summary for
searchAllToursWithPrefix (Figure 4) says that any possible
writes to regionMutable occur inside atomic blocks in the body
of the method or its callees. In checking method effect summaries,
our system is sound but conservative: it is correct to summarize
a write to regionR occurring inside anatomic block as either
writes atomic R or simply writes R; the latter is more con-
servative than necessary but is correct. However, it is not correct
to summarize an access occurring outside any atomic sectionas an
atomic effect, because such an effect would report a transactional
guard when in fact there is none.

For example, the effect system can verify that all interfering
accesses within theforeach nd in Figure 2 are atomic effects.
First, the variableprefix is local to each task and so generates
no conflicts across tasks. Second, according to the effect summary
for generateNextPrefix (Figure 3), the method invocation in
line 19 produces conflicting effects on regionMutable. These
effects are enclosed within the atomic statement starting at line
18 and so are recorded as atomic effects that may interfere. Third,
the call tosearchAllToursWithPrefix is not within an atomic
statement; but according to its effect summary it generatesonly
read effects (which do not interfere with themselves) and atomic
write effects (which are allowed to interfere with themselves, and
are to a different region from the read effects).
Sequential Equivalence for Deterministic Constructs:An impor-
tant property we wish to preserve from basic DPJ issequential
equivalencefor deterministic constructs: that is,foreach and
cobegin are equivalent to the sequential execution of their con-
stituent tasks in program order. To enforce this property, we obvi-
ously need to disallow interference betweencobegin or foreach
branches, even if the interfering effects are atomic. For example,
this program is not allowed:

cobegin {

atomic x = 0;
atomic x = 1;

}

For this we just have a simple typing rule that interference between
atomic effects is allowed only insideforeach nd or cobegin nd.

However, that is not enough, because interference can also occur
between a deterministic task and a concurrent nondeterministic
task. For example, consider the following program:

z = 0;
cobegin_nd {

cobegin { atomic x = z; atomic y = z; } // S1, S2
atomic z = 1; // S3

}

This program could produce the resultx = 1, y = 0 by ex-
ecutingS2; S3; S1. This result violates sequential equivalence
of cobegin, because it does not correspond to any sequentially
consistent execution of the program where thecobegin block
is executed in program order. Instead, we wish to ensure thata
foreach or cobegin executes in isolation, even if it appears in-
sideforeach nd or cobegin nd.

Our solution to this problem is to convert atomic effects oc-
curring inside a deterministic construct to non-atomic effects when
propagating them to the outer context. In the example above,when
checking interference, the compiler seesnonatomicreads toz in
the firstcobegin nd branch: those reads occurred in atomic state-
ments, but became nonatomic when passing outwards across the
cobegin. On the other hand, the second branch has atomic writes
toz. Therefore thecobegin nd branches have illegal read-write in-
terference (i.e., not both guarded by atomic) onz. To write this pro-
gram legally in our language, the programmer could put the whole
cobegin in an atomic statement.

Determinism by Default:Finally, by virtue of the isolation of deter-
ministic constructs, and the noninterference between their internal
tasks, both discussed above, we have the following property: if a
deterministic construct does not dynamically execute any nonde-
terministic construct, then the execution of the deterministic con-
struct is, in fact, deterministic. That is, a given input heap state to
the deterministic construct always produces a fixed result value and
fixed output heap state. We refer to this property asdeterminism by
default: nondeterministic input-output behavior may be introduced
only by the execution of an explicit nondeterministic construct.
Implications for Programmers: The properties discussed above,
and treated more formally in the next section, provide two key ben-
efits for programmers. First, concurrency errors such as data races
or unintentional nondeterminism will be detected via compile-time
type checking; this benefit existed in base DPJ for deterministic
programs and has now been extended to nondeterministic ones.
Second, once a program has been type checked, the above prop-
erties greatly simplify how programmers can reason about the pos-
sible (nondeterministic) execution behaviors.

With regard to the second point, many programmers and testing
tools analyze program behavior by reasoning about the possible in-
terleavings (or schedules) of parallel operations. The above proper-
ties simplify this reasoning in several important ways (we focus on
cobegin here without loss of generality;foreach is analogous):

1. We only need to consider interleavings of isolatedatomics,
cobegins, and unguarded accesses, because of strong isolation
and sequential equivalence ofcobegin. Thend constructs do
not constrain interleavings.

2. We can reason about the tasks of acobegin sequentially: the
first task can be fully evaluated without any intervening ac-
cesses from elsewhere, immediately followed by a complete
evaluation of the second task.

3. cobegin nd provides the only source of nondeterminism. Even
within such a construct, the effect system guarantees that any
block of code that is outside an atomic statement and does not
execute any atomic statement (call this anatomic-free section)
cannot interfere with any concurrent task. Therefore, program-
mers need not consider interactions between any atomic-free
sections when reasoning about program behavior.

Put together, these observations mean thatthe only source of
multiple interleavings is from different orderings of atomic sec-
tions, thereby significantly reducing the number of interleavings
that programmers must consider. Furthermore, programmerscan
control the granularity of the atomic sections to control the number
of possible interleavings.

The following example illustrates these observations (assume
theS terms are all atomic-free statements).

cobegin_nd {
{ S11; S12; atomic S13 }
{ S21; atomic S22; S23 }

}

Even if all the statements are primitive operations (reads or writes),
if sequential consistency is not guaranteed, then up to6! = 720
different interleavings are possible. If sequential consistency holds,
then there are still up to 20 different interleavings. In ourlanguage,
however,we may consider only two sequentially consistent inter-
leavings: one with atomic S13 appearing beforeatomic S22,
and vice versa. For example, any execution generated by our lan-
guage is equivalent to executing the entire firstcobegin nd branch
before the entire second branch, or vice versa.

3.4 Performance: Removing Unneeded Barriers

We use a Software Transactional Memory (STM) runtime system
to implement theatomic construct because STM provides weak
atomicity, better composability than locks, and potentially better
scalability because of optimistic rather than pessimisticsynchro-
nization. One key drawback of STMs is the overhead due totrans-
actional read and write barriersfor every load or store to shared
data (e.g., see [52]). These barriers are snippets of code, often auto-
matically inserted by a transactions-aware compiler, thatinvoke the
STM runtime to implement some transactional concurrency control
protocol. The barriers can either read and write shared memory di-
rectly (so-calledin-place updateSTM) andundoall transactional
operations when a transaction aborts, or they can buffer updates
into a private data structure (so-calledwrite bufferingSTM) and ap-
ply all the buffered changes into shared memory when a transaction
successfully commits. In both cases, barriers can incur significant
overhead and minimizing them is essential for performance.

We observe that we can use the region and effect system to
remove unnecessary STM barriers, where there is no interference.
However, the effect system as described so far does not carry
enough information to perform this analysis locally. For example,
suppose a methodm reads a variablex inside an atomic section.
Then the read needs a barrier if and only ifm is invoked in some
context where there is interference onx. There is no information in
the method body that enables the compiler to make that judgment;
interprocedural analysis would be required.

However, with a slight extension to the effect system, we can
enablelocal reasoning about this kind of noninterference. Specif-
ically, we have the effect system distinguish two kinds of regions:
those that may interfere (and so need barriers everywhere) and
those that cannot (and so do not need read barriers anywhere). We
call the first kindatomic regions. The programmer can declare a
region to beatomic, such as regionMutable on line 2 of Figure 2.

The key benefit is that, for a non-atomic region, the compiler
can remove read barriers entirely and, assuming STM using in-
place updates, it can turn write barriers into logging-onlybarriers
(synchronization is not needed, because there is no interference, but
transactions must still log the old value on writes, in case the trans-
action aborts). This completely eliminates the barrier overheads for
read-only shared data. It also substantially reduces the barrier over-
heads for task-local data and noninterfering shared data.

To enable sound reasoning about atomic regions and barrier
elimination, we require some constraints on the use of thesere-
gions. Any region declaration (field region, local region, or region
parameter) may be declared to be atomic. We impose the following
requirements:

• When instantiating a type, an atomic (respectively, non-atomic)
region parameter may only be passed an atomic (respectively,
non-atomic) region name as the argument. This is straightfor-
ward to enforce using the region declarations.

• A region that is involved in interfering effects must be declared
atomic. This is enforced by the compiler as described below.

The barrier elimination also requires a refinement in the seman-
tics of atomic effects described in the previous section. Aneffect
in an atomic statement is marked atomiconly if it operates on
an atomic region. For example, the read of regionReadOnly in
Figure 4 (due to the operationtour.length()) does not gener-
ate an atomic effect, even though it is inside theatomic block at
line 4. The write to regionMutable does generate an atomic ef-
fect. If regionMutable hadnot been declaredatomic, the write
to bestTour would generate a non-atomic effect. The compiler
would then flag the effect declaration at line 2 of Figure 4 as an

Programs P ::= R∗ C∗ e
Classes C ::= class C<ρ> { F∗ M∗ }

Region Names R ::= region r
Fields F ::= T f in R

Methods M ::= T m(T x) E { e }
Regions R ::= r | ρ

Types T ::= C<R>

Effects E ::= ∅ | reads R | writes R |E ∪ E
Expressions e ::= this.f | this.f=e | e.m(e) | v | new T |

seq(e,e) | cobegin(e,e)
Variables v ::= this | x

Figure 5. Core language syntax.C, ρ, f , m, andx are identifiers.

error because an atomic effect does not cover a non-atomic effect,
as noted earlier.

We can now explain how the last rule above is enforced. If a
region is not marked atomic but has an effect that causes interfer-
ence in some parallel construct, the compiler will detect anerror
either at the parallel construct or at the method effect summary. For
example, if regionMutable were not markedatomic, the write
to bestTour would generate a normal effectwrites Mutable.
This would cause the effect summary at line 2 of Figure 4 to
be flagged as an error, as noted above. If the effect summary
were changed to not mark the write effect atomic, then the call to
searchAllToursWithPrefix at line 21 of Figure 2 would gener-
ate a nonatomic effect, and the compiler would report the interfer-
ence there.

4. Formal Semantics and Soundness
To make precise the ideas discussed in the previous section,we
have studied three variants of the same formal language, each one
building on the last:

1. The first variant, which we call thedeterministic language, is
a simple expression language with regions, effects, and deter-
ministic parallel composition. It is a version of Core DPJ [17]
simplified to focus on the key elements for this work.

2. The second variant, which we call thedeterministic-by-default
language, adds nondeterministic parallel composition, atomic
expressions, and atomic effects to the deterministic language.

3. The third variant, which we call theatomic regions language,
adds atomic regions for removing or simplifying transactional
barriers.

Without loss of generality, we only includecobegin andcobegin nd
in these simple languages; the treatment forforeach andforeach nd
is similar.

4.1 Overview of Language Variants

We first explain the syntactic structure of all three languages, and
we summarize the soundness guarantees that each one provides.
In the following subsections, we explain the formal semantics of
each language variant, state the soundness guarantees morefor-
mally, and sketch how the guarantees follow from the semantic
definitions. The full details, including all the semantics rules and
proofs of all the claims, may be found in the lead author’s Ph.D.
thesis [19].
Deterministic Language: Figure 5 gives the syntax of the deter-
ministic language. A programP consists of zero or more region
declarations, zero or more class definitions, and an expression to
evaluate. A classC consists of a class nameC, a region parameter
ρ, zero or more field declarations, and zero or more method dec-
larations. A fieldF specifies a type, a field name, and a region.
A methodM consists of a return type, a method name, a formal
parameter type, a formal parameter, an effect, and an expression to

Effects E ::= . . . | atomic reads R | atomic writes R

Expressions e ::= . . . | cobegin nd(e,e) | atomic e

Figure 6. Syntax of the deterministic-by-default language (ex-
tends Figure 5).

evaluate. A regionR is either a region namer or a region parameter
ρ. A typeT is a class instantiated with a region parameter,C<R>.
An effect E is a possibly empty union of read effects and write
effects on regions.

For expressionse, we model field access, field assignment,
method invocation, variables, new objects, sequential composition
(seq), and deterministic parallel composition (cobegin). A vari-
ablev is this or a method formal parameterx. The operational
semantics of the first five expressions in Figure 5 is exactly as in
Java. The last two expressions evaluate both component expres-
sions (either sequentially or in parallel) and return the value of the
second component as the value of the entire expression.

The deterministic language provides the following semantic
guarantees, stated more formally as Theorems 1–2 in Section4.2.
They follow from the fact that the executions of the two branches
of anycobegin expression are required to be noninterfering:

1. Equivalence ofcobegin and seq: In terms of the final result
(final value produced and final heap state), there is no differ-
ence between executingcobegin(e,e′) andseq(e,e′). As a
consequence, the entire program is guaranteed to behave like a
sequential program (the one that results by replacingcobegin
everywhere withseq).

2. Determinism:If an expressione evaluates to completion, then
the value it produces is deterministic. Moreover, ife is evalu-
ated in a sequential context (i.e., not inside acobegin), then
the final heap state is deterministic. In particular, the final heap
produced by a terminating execution of the whole program is
deterministic.

Deterministic-by-Default Language: Figure 6 shows the addi-
tional syntax for the deterministic-by-default language.We extend
the syntax of effects to record atomic effects. We also add (1)
cobegin nd, which is the same ascobegin, except that it allows
interference guarded by atomic expressions; and (2) expressions
atomic e, which signal that expressione should be executed in
isolation: that is, as if it were executed all at once, with no inter-
leavings from the rest of the execution.

The deterministic-by-default language provides the following
semantic guarantees, stated more formally as Theorems 3–6 in
Section 4.3:

1. Race freedom and sequential consistency:Program execution
contains no data race. This result follows because the effect sys-
tem requires that all parallel interference occur between pairs
of accesses guarded by atomic expressions. Further, in the Java
memory model, race freedom implies sequential consistency,
i.e., one can reason about execution as aprogram-orderedin-
terleaving of memory operations.

2. Strong isolation:For the same reason that the program is race
free, expressionsatomic e executee in isolation,even if the un-
derlying implementation guarantees only weak isolation. More-
over, the effect system disallows any interference betweenthe
cobegin and concurrent operations that would violate isolation
of thecobegin. Therefore, everycobegin expression executes
in isolation. Together, race freedom and strong isolation imply
that execution is a sequentially consistent interleavingof iso-
lated expressions.

Regions R ::= . . . | atomic region r

Classes C ::= . . . | class C<atomic ρ> { F∗ M∗ }

Figure 7. Syntax of the atomic regions language (extends Fig-
ure 6).

3. Equivalence ofcobegin and seq: Becausecobegin(e,e′)
executes in isolation, it is equivalent to an isolated execution
of seq, i.e., atomic seq(e,e′). As discussed in Section 3.3,
for the deterministic-by-default language, we makecobegin
behave likeatomic seq, and not justseq, to guarantee that
cobegin executes deterministically,even inside acobegin nd.

4. Determinism by default:Both atomic and cobegin expressions
execute deterministically in the same sense as discussed for the
deterministic language,even inside acobegin nd, unlessthey
contain a dynamic instance ofcobegin nd.

Atomic Regions Language:The third variant of the formal lan-
guage allows some regions to be markedatomic, andonly opera-
tions on those regions generate atomic effects. Operations on non-
atomic regionsnever generate atomic effects, even in an atomic
expression. Figure 7 shows the new syntax.

The execution semantics of this language variant is identical to
that of the deterministic-by-default language, except that the com-
piler can distinguish, and potentially optimize, operations within
an atomic expression that never interfere with concurrent tasks. In
Section 5, we discuss a prototype compiler that uses these rules to
optimize our STM by omitting or simplifying barriers (inside an
atomic expression) for such noninterfering operations.

4.2 Deterministic Language

Static Semantics:The typing is done with respect to an environ-
mentΓ, which consists of elements(v, T) stating that variablev
has typeT . The key rule forsubeffects(i.e., when one effect con-
servatively summarizes another, writtenΓ ⊢ E ⊆ E′), is that a
write effect on regionr covers a read effect on the same regionr:

SE-READS-WRITES

Γ ⊢ reads R ⊆ writes R

The rules for typing programs, classes, fields, etc., are straightfor-
ward. The rule for typing methods enforceseffect subsumption: that
is, that a method’s actual effect must be a subeffect of its declared
effect:

METHOD

Γ ⊢ Tr Γ ⊢ Tx Γ ⊢ E Γ ∪ (x, Tx) ⊢ e : Tr , E′ Γ ⊢ E′ ⊆ E

Γ ⊢ Tr m(Tx x) E { e }

The key rules fornoninterfering effects(i.e., effects that may
safely go in parallel, with deterministic composition, writtenΓ ⊢
E # E′) are that reads never interfere with reads, and writes never
interfere with reads or writes to different regions:

NI-READS

Γ ⊢ reads r # reads r′

NI-WRITES

r 6= r′

Γ ⊢ writes r # writes r′

NI-READS-WRITES

r 6= r′

Γ ⊢ reads r # writes r′

As in Core DPJ [17, 19], every expression has a type and an
effect. The rules for typing expressionse with type T and effect
E (Γ ⊢ e : T, E) are straightforward. The most important rule says
that in parallel composition, the effects of the expressions being
evaluated in parallel must be noninterfering:

COBEGIN Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ E # E′

Γ ⊢ cobegin(e,e′) : T ′, E ∪ E′

Dynamic Semantics:We give a small-step operational semantics
describing the recursive reduction of expressions.
Execution State:The execution state is(e, H), consisting of an
expression to evaluate and a heap. A heapH is a partial function
from object references to pairs(O, T), whereO is an object, and
T is the type ofO. An objectO is a mapping from field namesf
to object referenceso. null is a special reference that is inDom(H)
but does not map to an object. Attempting to invoke a method of
null causes the execution to fail. We extend the static syntax of
expressions to represent computations:

e ::= . . . | o | (e, Σ, E) | ei

The additional expressions have the following meanings: object
referenceso are the values produced by reducing expressions; a
local execution state(e, Σ, E) records an expressione to evaluate,
an environmentΣ containing the bindings for the free variables in
e, and an effectE of reducinge; and the indicesi enable us to say
unambiguously which expression is reduced in a given execution
step, as explained below.

A program execution is a sequence of steps

((eP , ∅, ∅)i, null)→∗ (ei, H),

for somei, e, andH , whereeP is the main program expression,
i is an arbitrary index denoting the top-level expression in the
reduction,ei is the evolution of expression(eP , ∅, ∅)i, andH is
the evolved heap (represented as a domain containingnull plus
all object referenceso added during the execution). A terminating
execution hasei = (o, ∅, E)i, whereo is the “answer” computed
by the program, andE is the union of all effects onH done in the
execution.
Expression Semantics:Field access and assignment work in the
standard way, except that we track dynamic effects, to stateand
prove the soundness results. As an example of the effect tracking,
we give the rule for field access:

DYN-FIELD -ACCESS

(this, o) ∈ Σ H(o) = (O, C<r>) F (C, f) = T f in R

((this.f, Σ, ∅), H) → ((O(f), Σ, reads σC<r>(R)), H)

The functionσC<r> substitutes the region argumentr for the pa-
rameterρ of classC. The rule for field assignment is similar, except
that the right-hand-side subexpression is evaluated first,the heap is
updated, and the effect is a write instead of a read.

For evaluation of subexpressions, we use the following standard
rule:

DYN-SUBEXP

(e, H) → (e′, H′)
(e′′, H)→ (e′′ [ei ← e′

i], H′)

It says that if we can reduce expressione to e′ starting with heap
H , ande appears with indexi as a subexpression ofe′′, then we can
reducee′′ by rewriting the subexpressionei in place and updating
the heap.

The rules forcobegin illustrate subexpression evaluation:

DYN-COBEGIN-EVAL

fresh(i) fresh(j)
((cobegin(e,e′), Σ, ∅), H) → (cobegin((e,Σ, ∅)i,(e

′, Σ, ∅)j), H)

DYN-COBEGIN-ACCUMULATE

(cobegin((o,Σ, E)i,(o
′, Σ, E′)j), H) → ((o′, Σ, E ∪E′), H)

DYN-COBEGIN-EVAL creates two new subexpressions with fresh
indices i and j for evaluation in environmentΣ. The evaluation
steps ofei and ej can be arbitrarily interleaved, via rule DYN-
SUBEXP. This interleaving models the parallelism. When both are

done, DYN-COBEGIN-ACCUMULATE accumulates the results into
the top-level expression. Field assignment, method invocation, and
sequential composition are similar, except that the subexpressions
are evaluated in a fixed sequential order (so there is no parallelism,
except inside acobegin). The rules are entirely standard, and are
stated in full in the thesis.
Soundness Results:As summarized in Section 4.1, there are two
main soundness results for the core deterministic language. To state
the results, we call out the reduction of a particular expression
inside the evolution of the whole program. We write

((e, Σ, ∅)i, H) ;P (e′

i, H
′)

to denote areduction of expressioni occurring in program execu-
tion. That meansP is well-typed with main expressioneP , and
there is a program execution

((eP , ∅, ∅)j , null)→∗ (e′′

j , H) →∗ (e′′′

j , H
′),

such thate′′j contains(e, Σ, ∅)i, which is the first appearance of
expressioni in the execution; ande′′′j containse′i. (e

′′

j , H) is called
the initial state of the reduction, and(e′j , H

′) is called thefinal
state.

Our first result states that there is no semantic difference in this
language betweenseq andcobegin: at any point in the execution
that is an initial state for acobegin reduction, we can replace
cobegin with seq and get exactly the same results. The proof
follows directly from the noninterference property guaranteed by
the static and dynamic semantics.

Theorem 1(Equivalence ofcobegin andseq).

((cobegin(e, e
′), Σ, ∅)i, H) ;P ((o, Σ, E)i, H

′)

if and only if

((seq(e, e
′), Σ, ∅)i, H) ;P ((o, Σ, E)i, H

′)

with the same initial state, except that expressioni is as shown.

The second result states that expression evaluation is input-
output deterministic, up to the choice of object reference names.
The proof follows from the fact that oncecobegin is replaced by
seq everywhere according to Theorem 1, the only nondeterminism
left in the rules is the choice of reference names and expression
indices.

Theorem 2 (Input-Output Determinism). If ((e,Σ, ∅)j , H) ;P

((o, Σ, E)j , H
′) and((e, Σ, ∅)j , H) ;P ((o′, Σ, E′)j , H

′′) with
the same initial state, theno ∼= o′, where∼= denotes equivalence up
to renaming object references, andE = E′. Moreover, if(e, Σ, ∅)j

is not a subexpression of anycobegin expression, thenH ∼= H ′.

4.3 Deterministic-by-Default Language

Static Semantics:Figure 8 gives the static semantics of atomic
effects. RuleSE-ATOMIC-1 formally expresses the idea that non-
atomic effects cover atomic effects: that is, ifE occurred in an
atomic expression, then we can summarize the effect as either
atomic E or E. Note that the converse is not true, because we
cannot soundly report an atomic effect where there is no atomic
expression. RuleSE-ATOMIC-2 provides the subeffect relation for
two atomic effects. RuleNI-ATOMIC says that an atomic effect is
noninterfering if the underlying effect is.

The judgmentΓ ⊢ nondet(E, E′) states that it is safe to run
expressions with effectsE andE′ nondeterministically in parallel,
inside acobegin nd. Figure 8 gives the key rules for making the
judgment.

Figure 9 gives the rules for typing nondeterministic parallel
composition and atomic expressions. RuleCOBEGIN ND is simi-
lar to COBEGIN, except that interfering effects are allowed if they

Γ ⊢ E ⊆ E
′

SE-ATOMIC-1
Γ ⊢ E ⊆ E′

Γ ⊢ atomic E ⊆ E′

SE-ATOMIC-2
Γ ⊢ E ⊆ E′

Γ ⊢ atomic E ⊆ atomic E′

Γ ⊢ E # E
′ NI-ATOMIC Γ ⊢ E # E′

Γ ⊢ atomic E # E′

Γ ⊢ nondet(E, E
′) NONDET-NI Γ ⊢ E # E′

Γ ⊢ nondet(E, E′)

NONDET-ATOMIC

Γ ⊢ nondet(atomic E, atomic E′)

Figure 8. Static semantics of atomic effects (selected rules).

Γ ⊢ e : T, E

COBEGIN ND
Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ nondet(E, E′)

Γ ⊢ cobegin nd(e,e′) : T ′, E ∪ E′

ATOMIC Γ ⊢ e : T, E Γ ⊢ atomic(E) = E′

Γ ⊢ atomic e : T, E′

COBEGIN Γ ⊢ e : T, E Γ ⊢ e′ : T ′, E′ Γ ⊢ E # E′

Γ ⊢ cobegin(e,e′) : T ′, nonatomic(E ∪ E′, Γ)

Γ ⊢ atomic(E) = E
′

ATOMIC-READS

Γ ⊢ atomic(reads R) = atomic reads R

nonatomic(E, Γ)
NONATOMIC-ATOMIC

Γ ⊢ nonatomic(atomic E) = E

Figure 9. Static semantics ofcobegin nd and atomic expressions
(selected rules). The judgmentΓ ⊢ atomic(E) = E′ says thatE′

is the effect obtained after addingatomic from all reads and writes
in E; andΓ ⊢ nonatomic(E) is the reverse.

are both guarded by atomic expressions. RuleATOMIC collects the
effect E of the expressione, then marks all the constituent read
and write effects atomic, to reflect the fact thatE is occurring in an
atomic expression. Finally, ruleCOBEGIN has changed. In addition
to checking noninterference, as in the basic language, the new rule
converts all atomic effects occurring inside thecobegin to ordi-
nary effects using the judgmentΓ ⊢ nonatomic(E) = E′. This
ensures thatno atomic effects are ever propagated outward from
inside acobegin. The last rule is key to ensuring thatcobegin
executes in isolation, as discussed in Section 3.3.
Dynamic Semantics:We describe the dynamic semantics of the
nondeterministic language in two parts, the first operational and the
second non-operational. The first, operational, part is just the same
semantics as for the basic language (Section 4.2), with a fewminor
adjustments to accommodate the new features. The second, non-
operational part, describes aweak isolation constrainton execution
histories generated by the operational part. The overall dynamic
semantics comprises all execution histories described by the oper-
ational semantics that also satisfy weak isolation. In practice, weak
isolation would be enforced by a runtime implementation (such as
software transactional memory [37]).
Operational Semantics of Expressions:The operational semantics
is identical to the one described in Section 4.2, with three changes.
First, we add a rule to executecobegin nd; it is identical to the
rule for cobegin shown in Section 4.2 (i.e., in the operational
semantics, there is no difference between executingcobegin nd
andcobegin — the difference is all in the static semantics).

Second, we add a rule for executing an expressionatomic e.
We executee, then mark all its effects atomic, for purposes of effect
tracking:

DYN-ATOMIC-EVAL

fresh(i)
((atomic e, Σ, ∅), H) → (atomic (e, Σ, ∅)i, H)

DYN-ATOMIC-MARK-EFFECTS

∅ ⊢ atomic(E) = E′

(atomic (o,Σ, E)i, H) → ((o, Σ, E′), H)

Finally, we modify the rule DYN-COBEGIN-ACCUMULATE
(shown in Section 4.2) to mark the effects of acobegin expression
non-atomic:

DYN-COBEGIN-ACCUMULATE

∅ ⊢ nonatomic(E ∪E′) = E′′

(cobegin((o,Σ, E)i,(o
′, Σ, E′)j), H) → ((o′, Σ, E′′), H)

Weak Isolation Constraint:To state the weak isolation constraint,
we need the concept of areduction historyH, which is a se-
quence of program execution steps witnessing((e,Σ, ∅)i, H) ;P

(e′i, H). If ((e, Σ, ∅)i), H) is the initial program state, then we call
H a program execution historyand writeHP . Two histories occur
in parallel undercobegin (or cobegin nd) if they each occur in
reducing different branches of the samecobegin (or cobegin nd)
expression, in the same program execution.

Definition 1 (Conflict relation on atomic expressions). Fix a pro-
gram execution historyHP , and letI be the set of expression in-
dices appearing inHP that label atomic expressions (i.e., expres-
sions introduced by ruleDYN-ATOMIC-EVAL). Theconflict rela-
tion on atomic expressions inHP is the transitive closure of the
following relation onI × I : (i, j) is in the relation ifi 6= j, and
there are conflicting memory accessesai and aj such that (a)ai

occurs in the reduction of an atomic expressionei; (b) aj occurs
in the reduction of an atomic expressionej ; (c) the reductions ofei

and ej occur in parallel undercobegin nd, and (d)ai precedes
aj in HP .

Notice that we put the relationonly on operations under
cobegin nd, not undercobegin; and wedo not include any con-
flicts occurring outside of atomic expressions. That is because the
type system will ensure there are no conflicts betweencobegin
tasks or outside of atomic expressions; this is the soundness result
that we state below.

Now we can define the weak isolation constraint on executions
in the language. For the remainder of this section, we assumean
implementation that guarantees weakly isolated program execution
historiesHP .

Definition 2 (Weakly isolated histories). LetH be a history. If the
conflict relation on atomic expressions inH is a partial order, then
we say thatH is weakly isolated.

Soundness Results:As summarized in Section 4.1, there are three
main soundness results for the nondeterministic language:race
freedom, strong isolation, and determinism by default.
Race Freedom:The first result says that the language is race free,
assuming that pairs of memory accesses in different atomic expres-
sions are well-synchronized (which is true of any transactional im-
plementation). The proof follows from the fact that the typesystem
disallows parallel interference, except for pairs of accesses both oc-
curring in atomic expressions.

Theorem 3 (Race freedom). If ⊢ P , then a historyHP that
has synchronization orderings consistent with the conflictrelation
stated in Definition 1, contains no data race.

Strong Isolation:To state the strong isolation result formally, we
use the well-known concept ofserializable histories[44]. We say

that a historyH witnessing((e,Σ, ∅)i, H) ;P (e′i, H
′) is serial

with respect to expressioni if every step in the history transforms
expressioni or a subexpression of expressioni. We say thatH is
serializable with respect to expressioni if it is possible to generate
a historyH′ with the same initial and final states asH that contains
a serial history witnessing((e,Σ, ∅)i, H

′′) ;P (e′i, H
′′′), for

some heapsH ′′ andH ′′′. In other words, an expression reduction
is serializable if we “could have done it serially,” with thesame
results.

The following theorem says that a history is serializable ifit
does not occur in acobegin nd; or it does not reduce any atomic
expression; or it reduces acobegin or atomic expression. The
proof follows from the type system’s guarantees of noninterference
for cobegin tasks, and noninterference forcobegin nd tasks ex-
cept where guarded by atomic expressions; together with theweak
isolation assumption for atomic expressions.

Theorem 4 (Strong isolation). Suppose⊢ P , let HP be a weakly
isolated history executingP , and letH be a history witnessing
((e, Σ, ∅)i, H) ;P (e′i, H

′) contained inHP . ThenH is serializ-
able with respect to expressioni if (1) (e, Σ, ∅)i is not a subexpres-
sion of anycobegin nd expression; or (2) no atomic expression
appears inH; or (3) e is acobegin or atomic expression.

Determinism by Default:Finally, we show that the nondeterminis-
tic language is deterministic by default. First we show the equiv-
alent of Theorem 1 for the nondeterministic language: thereis
no difference betweencobegin e andatomic seq e. Note that
we need theatomic here because in general aseq occurring
under acobegin nd can interfere with the other branch of the
cobegin nd. The result follows directly from Theorem 1 and The-
orem 4. (“Initial state” is defined before Theorem 1.)

Theorem 5(Semantic equivalence ofcobegin andatomic seq).

((cobegin(e, e
′
), Σ, ∅)i, H) ;P ((o, Σ, E)i, H

′
)

if and only if

((atomic seq(e, e
′), Σ, ∅)i, H) ;P ((o, Σ, E)i, H

′)

with the same initial state, except that expressioni is as shown.

Second, we show the equivalent of Theorem 2 for the nonde-
terministic language: for the expressions called out by Theorem 4
as having serializable reductions, the execution of such expressions
is also input-output deterministic,unlessthere is explicit nonde-
terminism viacobegin nd. The proof follows from Theorem 2,
together with the definition of a serializable history.

Theorem 6 (Determinism by default). Suppose⊢ P , and letH
be a history witnessing((e,Σ, ∅)i, H) ;P ((o, Σ, E)i, H

′) that
is serializable with respect to expressioni, where nocobegin nd
expression ever appears in expressioni. If ((e, Σ, ∅)i, H) ;P

((o′, Σ, E′)i, H
′′) with the same initial state as inH, theno ∼= o,

where∼= denotes equivalence up to renaming object references,
andE = E′. Moreover, if(e, Σ, ∅)i is not a subexpression of any
cobegin or cobegin nd expression, thenH ′ ∼= H ′′.

4.4 Atomic Regions Language

Static Semantics:First, the rules for constructing types require that
atomic regions bind only to region parameters declaredatomic,
and non-atomic regions bind only to region parameters not declared
atomic. This requirement ensures that memory regions are treated
consistently across method invocation. Second, we refine the judg-
mentΓ ⊢ atomic(E) = E′ so that an atomic expression “makes
an effect atomic” only if the effect is on an atomic region. This rule
ensures that, in applying ruleCOBEGIN ND to check acobegin nd

expression, the compiler will never allow effects on non-atomic re-
gions to interfere. The rules are stated in full in the thesis.
Dynamic Semantics and Soundness:The dynamic semantics
of this language is exactly as given in the previous section,
with two changes. First, marking effects in rule DYN-ATOMIC-
MARK-EFFECTS happens according to the refined definition of
∅ ⊢ atomic(E) = E′: that is, effects are marked atomic only if
they operate on atomic regions. Second, we redefine the conflict
relation on atomic expressions (Definition 1) so that only conflicts
involving accesses to statically identifiable atomic regions (i.e.,
region namesr or region parametersρ markedatomic) are syn-
chronized by the implementation. The soundness result saysthat
Theorems 3–6 hold for this language variant; the proofs, given in
the thesis, are entirely straightforward.

5. Prototype Implementation
To implement our new mechanisms, we extended the compiler used
for basic DPJ. It is a modified version of Sun’sjavac, which trans-
lates DPJ code to standard Java. The compiler implements DPJ’s
parallelism constructs by generating calls to theForkJoinTask
library [2], which schedules tasks onto a pool of worker threads;
further details are available in [17].

In this work, we extended the compiler to implement atomic
blocks using the Deuce STM library [3]. We used the well-
respected Transactional Locking II (TL2) algorithm [28]. TL2 is
a write-buffering (i.e., lazy versioning) algorithm with optimistic
reads. Deuce supports concurrency control at the object field level,
and uses a light-weight, custom reflection mechanism to access
object fields inside transactions.

We selected this STM system for pragmatic reasons of ease
of implementation, and because it implements a well-known high-
performance STM algorithm. We have not attempted to maximize
absolute performance in our implementation; it could be improved
significantly by using a different STM system, such as one inte-
grated with the JVM [46]. Our method is applicable to other types
of STM systems and algorithms (including those utilizing in-place
updates).

For each atomic block, the compiler generates code to execute
the body of the atomic block as a transaction, retrying untilthe
transaction commits successfully. Nested atomic blocks are flat-
tened. Methods that are transitively callable within atomic blocks
are cloned; versions containing barriers are used when theyare
called within atomic blocks. Within atomic blocks, the compiler in-
serts normal read and write barriers for accesses to fields inatomic
regions. As discussed in section 3.4, the compiler omits barriers for
read accesses to non-atomic regions, and it generates logging-only
barriers for write accesses.

We modified the TL2 implementation in Deuce to support these
optimized logging-only barriers. However, because TL2 is awrite-
buffering algorithm, we would have to use read-barriers to obtain
correct values in the read-after-write cases. To avoid readbarriers
entirely, we modified the algorithm to perform in-place updates
for these locations and we maintain a separate undo log to revert
effects of such updates in case the transaction aborts. Reads to such
locations do not need barriers because they can now obtain their
values directly from the original memory location.

6. Evaluation
The ideas presented in this paper raise four key questions for exper-
imental investigation: (1) Can the language express nondeterminis-
tic algorithms in a natural way? (2) Can the algorithms expressed
in the language give good performance? (3) How effective is the
optimization of STM barriers? (4) What is the annotation overhead
of the language?

We used four nondeterministic algorithms to evaluate these
questions: two different versions of TSP, Delaunay mesh triangu-
lation from theLonestar Benchmarks[1], and OO7, a synthetic
database benchmark that has been used in previous studies ofparal-
lel performance [47, 51]. These codes are discussed furtherbelow.

6.1 Benchmarks and Expressing Parallelism

Traveling Salesman Problem:We studied two versions of the
TSP algorithm, which we callTSP-PQandTSP-R. TSP-PQ is the
algorithm described in Section 3. As discussed there, the algorithm
proceeds in two phases: the first phase breaks the problem up into
subproblems and adds them to a priority queue, and the second
phase concurrently removes items from the queue and processes
each one using sequential recursive search. The priority queue
orders the work, so that more promising subtrees are explored first.

TSP-R is a variant that eliminates the priority queue and uses
recursion to express the entire algorithm. At each level of the tree,
the algorithm computes a bound for each subtree and compares
the bound against the global current best tour. Bounds that are
definitely no better than the current best are excluded, while bounds
that may be better are explored recursively. The recursion occurs in
parallel until a specified depth of the tree; in our studies weused
a depth varying with the log of the number of threads. TSP-R is
a simpler algorithm than TSP-PQ, but it potentially suffersfrom
more contention, as the global best tour must be read before every
recursive descent into a subtree to avoid exploring too manybad
paths. By contrast, because TSP-PQ uses a priority queue to order
the paths, it can read the global best tour less often (once per tree
level).

We adapted both versions of TSP from code that was used in
previous studies of STM performance [46, 47]. Our TSP-PQ code
uses the identical algorithm to the original code, and expresses the
parallelism in the same way. The original code had a data race, and
we added one extra atomic block to eliminate that race. Our TSP-
R code is a transformation of TSP-PQ that eliminates the priority
queue, checks the bound at each level of the tree, and parallelizes
the recursion.
Delaunay Mesh Refinement:This code uses Chew’s algorithm [26,
36] to find and eliminate “bad triangles,” i.e., those that donot sat-
isfy some quality constraint from a Delaunay triangulationof a
mesh of points. The program is nondeterministic since different
orders of processing of bad elements lead to different meshes, al-
though all such meshes satisfy the quality constraints [26]. The
program uses aforeach nd loop, and each iteration of the loop
spawns a new worker thread (at most one per core). Each worker
thread has a private worklist of bad triangles. In each iteration of
the worklist loop, the worker selects one bad traingle from the
work list, forms acavity around it, re-triangulates the cavity, and
adds any new bad triangles back to the worklist. Cavity finding and
re-triangulating code sections access the shared mesh datastructure
and are enclosed in atomic blocks.
OO7: OO7 simulates a number of clients, each performing a fixed
number of queries on an in-memory database. Each query is en-
closed in an atomic block. The performance metric is the through-
put (queries per unit time), and we measure how this scales by
varying the number of clients while keeping the number of queries
performed by each one constant. The program uses aforeach nd
loop, with one iteration corresponding to each client. We config-
ured it to use a number of clients equal to the number of worker
threads, so there is always one thread per client. Thus, the total
amount of work performed is proportional to the number of threads.
Expressing Parallelism:We successfully expressedall the paral-
lelism that did not use data races, in these four nondeterministic
algorithms. As discussed above, we eliminated a race in TSP-PQ
that was presumably there to avoid synchronization; we could have

also written TSP-R with a similar race. The four codes do not use
any deterministic algorithms but such algorithms do not incur any
runtime performance overheads in our language; such overheads
are dominated by that of atomic sections in nondeterministic com-
ponents. The performance and expressivity of the language for de-
terministic algorithms were studied previously [17].

6.2 Performance

To evaluate performance, we measured the self-relative speedup
(i.e., the speedup compared to running the transactional code on
one thread) achieved by the three codes. We focused on self-relative
speedup rather than absolute speedup because (a) optimizing the
code generation for atomic statements has not been a focus ofthis
paper, and (b) the Deuce STM, although using a goodalgorithm,
lacks many many essential performance features of a high perfor-
mance Java STM [46]. Self-relative speedups have the effectof
“factoring out” some of the performance impact of the STM im-
plementation while capturing the scalability of the benchmarks.

We ran and measured the codes on a 24-core system using four
Intel Xeon E7450 processors (each with six cores), running Win-
dows Server 2008. Figure 10 shows the self-relative speedups with
barrier optimizations enabled, using running times for Delaunay
and TSP, and throughput scaling for OO7. Because the runtimes
are nondeterministic, we averaged 5–10 runs for each data point,
using an interquartile method to exclude a few extreme outliers.
For both TSP variants, we used the one-thread version of TSP-PQ,
which was the faster of the two, as the baseline. Both versions of
TSP show good scaling, and OO7 shows moderately good scaling,
throughout the range of numbers of threadst we examined. TSP-R
shows better (superlinear) speedup for smallert; this is because the
parallel algorithm is very efficient in that range: it rules out subtrees
quickly, and so visits only about1/4 of the tree nodes att = 2 com-
pared tot = 1. However, the scaling curve for TSP-R flattens out
ast increases, most likely due to higher contention than TSP-PQ.

The speedup curve for Delaunay is poor: it flattens out and
reaches only 3x on 22 threads. We profiled the code to under-
stand the source of this behavior and traced it to the method
System.identityHashcode() in the JVM. This standard Java
function is extensively used in Deuce to index into lock tables. We
observed that the time spent in this function grows with the number
of threads. In Delaunay, which has large transactions, thisoverhead
negatively affected the speedup curve. This problem can by solved
by modifying the JVM, but we leave that (and other optimizations
for atomic) to future work.

0

5

10

15

20

0 4 8 12 16 20 24

S
p
e
e
d
u
p

Number of worker threads

TSP-R
TSP-PQ
OO7
Delaunay

Figure 10. Self-relative speedups. For OO7, we scaled the amount
of work with the number of worker threads, and measured speedup
based on throughput scaling (number of queries done per unittime).
The barrier optimization was enabled for all of these benchmarks.

6.3 Impact of Barrier Elimination

We compared the performance of two versions of the parallel code
for each benchmark: with and without the barrier simplification op-
timization for non-atomic regions. Figure 11 shows the improve-
ment in running time for the optimized code compared to the un-
optimized code. Figure 12 shows the reduction in the number of
dynamically-executed barriers due to our optimizations.

0

0.2

0.4

0.6

0.8

1

1.2

TSP-PQ TSP-R Delaunay OO7

O
p
t/
u
n
o
p
t
ti
m
e

1

2

3

4

7

12

17

22

Figure 11. Ratio of optimized runtimes (with barrier elimination)
to unoptimized runtimes (without barrier elimination). A value
lower than 1 means the optimization increased performance.

0%

25%

50%

75%

100%

1 7 12 22 1 7 12 22 1 7 12 22 1 7 12 22

P
e
r
c
e
n
t
o
f
to
ta
l
b
a
r
r
ie
r
s

Remaining

Simplified

Eliminated

TSP-PQ TSP-R Delaunay OO7

Figure 12. Reduction in barriers due to optimizations, showing
the proportion of barriers from the unoptimized version that are
eliminated entirely, simplified to log-only write barriers, or that
remain as full barriers in the optimized version, for each ofthe
three benchmarks with 1, 7, 12, and 22 worker threads.

The optimization has a substantial impact on performance for
three of the four benchmarks (TSP-PQ, Delaunay, and OO7). The
performance improvements correlate well with the barrier reduc-
tions. The optimizations give essentially no improvement for TSP-
R, because the transactions are very short (reads and read-modify-
write operations on the best tour). As a result (1) there are few if
any barriers to remove; and (2) transactional overhead is not a sig-
nificant component of the overall runtime. On the other hand,TSP-
PQ, OO7, and Delaunay use longer transactions, providing more
opportunities for reducing overhead.

Our optimizations can eliminate barriers both by actually re-
moving barrier operations on certain statements and also byreduc-
ing the number of times that transactions must be retried. The latter
effect occurs because removing unnecessary barriers reduces the
number of false conflicts incurred by the STM system. As shown
in Table 1, this effect is more pronounced with larger numbers of
worker threads, so our optimizations not only reduce scalarover-
heads but also improve scalability. For example, in Delaunay, the
optimization changed this ratio from 0.944 to 0.999 on 2 threads
but from 0.244 to 0.944 on 22 threads.

Delaunay OO7
threads opt unopt opt unopt

2 0.999 0.944 0.944 0.932
3 0.975 0.848 0.877 0.872
4 0.998 0.810 0.822 0.560
7 0.993 0.647 0.700 0.210
12 0.996 0.405 0.539 0.100
17 0.995 0.291 0.442 0.071
22 0.994 0.244 0.369 0.071

Table 1. Ratio of committed transactions to started transactions
for Delaunay and OO7. Lower numbers indicate more aborted
transactions. For both versions of TSP, all numbers are 1.000.

Total Annotated Region Effect
Program SLOC SLOC Decls RPLs Params Summ.
TSP-PQ 433 77 (17.8%) 2(1) 101(4) 6(2) 14/20
TSP-R 200 34 (17%) 2(1) 42(4) 2(0) 6/12
OO7 1570 105 (6.7%) 4(1) 76(7) 6(0) 52/104
Delaunay 1994 302 (15.1%) 3(1) 374(3) 21(7) 165/216

Total 4197 518 (12.3%) 11(4) 593(18) 35(9) 237/352

Table 2. Annotation counts for the four benchmarks. In the middle
columns, the numbers in parentheses represent the number ofan-
notations markedatomic. In the last column,x/y means ofy total
method definitions in the program,x were annotated with effect
summaries.

6.4 Annotation Overhead

Table 2 provides a quantitative measure of the annotation overhead
of writing the four benchmarks in our language. Column 1 after the
vertical bar shows the total number of non-blank, non-comment
lines of source code, counted bysloccount. Column 2 gives the
count of annotated lines, as an absolute number and as a percentage
of the total lines. The following three columns show the number of
region declarations, RPLs (including arguments toin, arguments to
types and methods, and arguments to effect summaries), and region
parameters. The number of annotations markedatomic is shown
in parentheses after the main number. The last column shows the
number of effect summaries before the slash, and the number of
method definitions after the slash.

While the average number of annotated lines (12.3%) is nontriv-
ial, we believe it is not unduly high, given the strong safetyproper-
ties of the programming model. As in our prior work [17], mostof
the RPL annotations were arguments to types. The overhead could
be reduced by inferring some of the annotations [48], but we leave
that for future work.

Our approach does impose the limitation that if a programmer
wishes to use a class region parameter as an atomic region in some
context and a non-atomic region in some other context, then the
class must becloned: the programmer must create two copies of the
class, one with the atomic parameter and one with the non-atomic
parameter. The cloning is required because different barriers must
be generated for methods of the class that operate transactionally
on the parameter, depending on whether the region bound to the
parameter is atomic. The cloning could be done automatically by
the compiler, similarly to what C++ does for templates. While we
have not implemented this approach, we believe it does not raise
any significant technical issues.

In the benchmarks we studied, only Delaunay required class
cloning. In Delaunay, we needed both atomic and non-atomic ver-
sions of the list and map structures used in the benchmark.

7. Related Work
Type and Effect Systems:Several researchers have described ef-
fect systems for enforcing a locking discipline in nondeterministic
programs that prevents data races and deadlocks [5, 20, 34] or guar-
antees isolation for critical sections [29]. Matsakis et al. [41] have
recently proposed a type system that guarantees race-freedom for
locks and other synchronization constructs using a construct called
an “interval” for expressing parallelism. While there is some over-
lap with our work in the guarantees provided (race freedom, dead-
lock freedom, and isolation), the mechanisms are very different (ex-
plicit synchronization vs. atomic statements supported bySTM).
Further, these systems do not provide determinism by default. Fi-
nally, there is no other effect system we know of that provides both
race freedomandstrong isolation together.

STM Correctness (Language): STM Haskell [31] provides
an isolation guarantee, but for a pure functional language that
uses monads to limit effects to the transactional store, unlike our
imperative shared-memory language. Moore and Grossman [42]
and Abadi et al. [6] use types and effects to guarantee strong
isolation for an imperative language, but their languages permit
races where neither access occurs in a transaction. Finally, none
of these languages allows both transactional and non-transactional
effects to the same memory, as our language does.

Beckman et al. [12] show how to use a form of alias con-
trol calledaccess permissions[21] to verify that the placement of
atomic blocks in a threaded program respects the invariantsof a
specification written by the programmer — for example, that acon-
dition is checked and acted upon atomically. This approach is com-
plementary to ours: we provide guarantees of race freedom, strong
isolation, and determinism by default for all programs in our lan-
guage; on top of that one could check that additional programmer-
specified invariants are satisfied.

STM Correctness (Compiler and Runtime): Several STMs
guarantee strong isolation by preventing interference between
transactions and non-transactional accesses at runtime. Most of
these systems use a combination of sophisticated static whole-
program analysis, runtime optimizations, and other runtime tech-
niques like page protection to optimize strong isolation [7, 22, 46,
47]. While these techniques can significantly reduce the cost of
strong isolation, they cannot completely eliminate it. In contrast,
our language-based approach provides strong isolation without im-
posing extra runtime overhead.

Reducing STM Overheads: Much research has been devoted
to reducing the cost of compiler-generated STM barriers on trans-
actional memory accesses. Early work [8, 32] showed how to elim-
inate several classes of transactional overhead includingredundant
barriers, barriers for accesses to provably immutable memory lo-
cations, and certain barriers for accesses to objects allocated in a
transaction. Recent work by Afek et al. [9] uses the logic of pro-
gram reads and writes within a transaction to reduce STM over-
head: for example, a shared variable that is read several times can
be be read once and cached locally. These optimizations comple-
ment ours, as they target different kinds of STM overhead from our
work.

Beckman et al. [13] show how to use access permissions to re-
move STM synchronization overhead. While the goals are the same
as ours, the mechanisms are different (alias control vs. type and
effect annotations). The two mechanisms have different tradeoffs
in expressivity and power: for example, Beckman et al.’s method
can eliminate write barriers only if an object is accessed through
a unique reference, whereas our system can eliminate barriers for
access through shared references, so long as the access doesnot
cause interfering effects. However, alias restrictions can express
some patterns (such as permuting unique references in a datastruc-

ture) that our system cannot. As future work, it would be interesting
to explore these tradeoffs further.

Finally, several researchers have eliminated STM overheadfor
accesses to thread-local data using whole-program static escape
analysis [47] and programmer annotations to specify code blocks
that do not require instrumentation [52]. Unlike our work, this work
either requires whole-program analysis, or it relies on unverified
programmer annotations.

Nondeterministic Parallel Programming: Several research
efforts are developing parallel models for nondeterministic codes
with irregular data access patterns, such as Delaunay mesh refine-
ment. Galois [36] provides a form of isolation, but with iterations of
parallel loops (instead of atomic statements) as the isolated compu-
tations. Concurrency is increased by detecting conflicts atthe level
of method calls, instead of reads and writes, and using semantic
commutativity properties. Lublinerman et al. [39] have proposed
object assembliesas an alternative model for expressing irregular,
graph-based computations.

These models are largely orthogonal to our work. In Galois,
strong isolation holds if all shared data is accessed through well-
defined APIs, but this property is not enforced, either statically or
at runtime. We believe that our type and effect mechanisms could
be applied to Galois to ensure this property. The object assemblies
model may have stronger isolation guarantees than Galois, but it is
very specialized to irregular graph computations, in contrast to the
more general fork-join model we present here.

Kulkarni et al. [35] have recently proposedtask typesas a
way of enforcing a property they callpervasive atomicity. This
work shares with ours the broad goal of reducing the number of
concurrent interleavings the programmer must consider. However,
Kulkarni et al. adopt an actor-inspired approach, in which data is
non-shared by default, and sharing musk occur through special
“task objects.” This is in contrast to our approach of allowing
familiar shared-memory patterns of programming, but usingeffect
annotations to enforce safety properties. Finally, none ofthe work
discussed above provides any deterministic-by-default guarantee.

8. Conclusion
We have shown how to design a type and effect system that, to-
gether with a weakly atomic runtime system, achieves our stated
goals of providing disciplined and safe nondeterminism, including
race freedom, strong isolation of atomic operations and determinis-
tic parallel operations, compositional reasoning about deterministic
and nondeterministic operations, and determinism by default. We
have also shown how to leverage the system to remove unnecessary
barriers from the transactional implementation, thereby enhancing
performance.

Acknowledgements

This work was supported by the National Science Foundation under
grants CCF 07-02724 and CNS 07-20772, and by Intel, Microsoft,
and the University of Illinois through UPCRC Illinois. An anony-
mous reviewer encouraged us to study TSP-R. Dan Grossman and
Brad Chamberlain provided helpful suggestions on a draft ofthis
paper and the supporting proofs.

References
[1] http://iss.ices.utexas.edu/lonestar/.

[2] http://gee.cs.oswego.edu/dl/concurrency-interest.

[3] http://http://sites.google.com/site/deucestm.

[4] OpenMP Application Program Interface, Version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf, 2008.

[5] M. Abadi et al. Types for safe locking: Static race detection for Java.
TOPLAS, 2006.

[6] M. Abadi et al. Semantics of transactional memory and automatic
mutual exclusion. InPOPL, 2008.

[7] M. Abadi et al. Transactional memory with strong atomicity using
off-the-shelf memory protection hardware. InPPoPP, 2009.

[8] A.-R. Adl-Tabatabai et al. Compiler and runtime supportfor efficient
software transactional memory. InPLDI, 2006.

[9] Y. Afek et al. Lowering STM overhead with static analysis. In LCPC,
2010.

[10] M. D. Allen et al. Serialization sets: A dynamic dependence-based
parallel execution model. InPPOPP, 2009.

[11] A. Aviram et al. Efficient system-enforced deterministic parallelism.
2010.

[12] N. E. Beckman et al. Verifying correct usage of atomic blocks and
typestate. InOOPSLA, 2008.

[13] N. E. Beckman et al. Reducing STM overhead with access permis-
sions. InIWACO, 2009.

[14] T. Bergan et al. CoreDet: A compiler and runtime system for deter-
ministic multithreaded execution. InInt’l. Conf. on Arch. Support for
Programming Langs. and Operating Systs. (ASPLOS), 2010.

[15] E. D. Berger et al. Grace: Safe Multithreaded Programming for
C/C++. InOOPSLA, 2009.

[16] R. D. Blumofe et al. Cilk: An efficient multithreaded runtime system.
PPOPP, 1995.

[17] R. L. Bocchino et al. A type and effect system for Deterministic
Parallel Java. InOOPSLA, 2009.

[18] R. L. Bocchino et al. Parallel programming must be deterministic by
default. InHotPar, 2009.

[19] R. L. Bocchino Jr.An Effect System and Language for Deterministic-
by-Default Parallel Programming. PhD thesis, University of Illinois,
Urbana-Champaign, IL, 2010.

[20] C. Boyapati et al. Ownership types for safe programming: Preventing
data races and deadlocks. InOOPSLA, 2002.

[21] J. Boyland. Checking interference with fractional permissions.SAS,
2003.

[22] N. G. Bronson et al. Feedback-directed barrier optimization in a
strongly isolated STM. InPOPL, 2009.

[23] Z. Budimlic et al. Multicore implementations of the concurrent col-
lections programming model. InCPC, 2009.

[24] S. Burckhardt et al. Concurrent programming with revisions and
isolation types. InOOPSLA, 2010.

[25] M. J. Carey et al. A status report on the OO7 OODBMS benchmarking
effort. In OOPSLA, 1994.

[26] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces.
In SCG, 1993.

[27] J. Devietti et al. DMP: Deterministic Shared Memory Multiprocess-
ing. In ASPLOS, 2009.

[28] D. Dice et al. Transactional locking II. InDISC, 2006.

[29] C. Flanagan et al. Types for atomicity: Static checkingand inference
for Java.TOPLAS, 2008.

[30] A. Ghuloum et al. Ct: A flexible parallel programming model for tera-
scale architectures. Intel White Paper, 2007.

[31] T. Harris et al. Composable memory transactions. InPPoPP, 2005.

[32] T. Harris et al. Optimizing memory transactions. InPLDI, 2006.

[33] T. Harris and K. Fraser. Language support for lightweight transactions.
In OOPSLA, 2003.

[34] B. Jacobs et al. A programming model for concurrent object-oriented
programs.TOPLAS, 2008.

[35] A. Kulkarni et al. Task types for pervasive atomicity. In OOPSLA,
2010.

[36] M. Kulkarni et al. Optimistic parallelism requires abstractions. In
PLDI, 2007.

[37] J. Larus and R. Rajwar.Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, 2007.

[38] E. A. Lee. The problem with threads.Computer, 2006.

[39] R. Lublinerman et al. Parallel programming with objectassemblies.
In OOPSLA, 2009.

[40] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional
memory atomicity semantics.IEEE Comp. Arch. Letters, 5(2):17,
2006.

[41] N. D. Matsakis and T. R. Gross. A time-aware type system for data-
race protection and guaranteed initialization. InOOPSLA, 2010.

[42] K. F. Moore and D. Grossman. High-level small-step operational
semantics for transactions. InPOPL, 2008.

[43] M. Olszewski et al. Kendo: Efficient deterministic multithreading in
software. InASPLOS, 2009.

[44] C. Papadimitriou.The theory of database concurrency control. Com-
puter Science Press, Inc., 1986.

[45] M. C. Rinard and M. S. Lam. The design, implementation, and
evaluation of Jade.TOPLAS, 1998.

[46] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai.
Dynamic optimization for efficient strong atomicity. InOOPSLA,
2008.

[47] T. Shpeisman et al. Enforcing isolation and ordering inSTM. InPLDI,
2007.

[48] M. Vakilian et al. Inferring Method Effect Summaries for Determin-
istic Parallel Java. Technical Report UIUCDCS-R-2009-3038, U. Illi-
nois, 2009.

[49] C. von Praun et al. Implicit parallelism with ordered transactions. In
PPOPP, 2007.

[50] A. Welc et al. Safe futures for Java. InOOPSLA, 2005.

[51] A. Welc et al. Revocation techniques for Java concurrency. Concur-
rency and Computation: Practice and Experience, 2006.

[52] R. M. Yoo et al. Kicking the tires of software transactional memory:
Why the going gets tough. InSPAA, 2008.

