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Abstract
Today’s shared-memory parallel programming models are
complex and error-prone. While many parallel programs are
intended to be deterministic, unanticipated thread interleav-
ings can lead to subtle bugs and nondeterministic semantics.
In this paper, we demonstrate that a practicaltype and ef-
fect systemcan simplify parallel programming byguarantee-
ing deterministic semanticswith modular, compile-time type
checking even in a rich, concurrent object-oriented language
such as Java. We describe an object-oriented type and effect
system that provides several new capabilities over previous
systems for expressing deterministic parallel algorithms. We
also describe a language called Deterministic Parallel Java
(DPJ) that incorporates the new type system features, and
we show that a core subset of DPJ is sound. We describe an
experimental validation showing that DPJ can express a wide
range of realistic parallel programs; that the new type system
features are useful for such programs; and that the parallel
programs exhibit good performance gains (coming close to
or beating equivalent, nondeterministic multithreaded pro-
grams where those are available).

Categories and Subject Descriptors D.1.3 [Software]:
Concurrent Programming—Parallel Programming; D.3.1
[Software]: Formal Definitions and Theory; D.3.2 [Soft-
ware]: Language Classifications—Concurrent, distributed,
and parallel languages; D.3.2 [Software]: Language Class-
ifications—Object-oriented languages; D.3.3 [Software]:
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1. Introduction
The advent of multicore processors demands parallel pro-
gramming by mainstream programmers. The dominant model
of concurrency today, multithreaded shared memory pro-
gramming, is inherently complex due to the number of possi-
ble thread interleavings that can cause nondeterministic pro-
gram behaviors. This nondeterminism causes subtle bugs:
data races, atomicity violations, and deadlocks. The parallel
programmer today prunes away the nondeterminism using
constructs such as locks and semaphores, thendebugsthe
program to eliminate the symptoms. This task is tedious,
error prone, and extremely challenging even with good de-
bugging tools.

The irony is that a vast number of computational algo-
rithms (though not all) are in factdeterministic: a given input
is always expected to produce the same output. Almost all
scientific computing, encryption/decryption, sorting, com-
piler and program analysis, and processor simulation algo-
rithms exhibit deterministic behavior. Today’s parallel pro-
gramming models force programmers to implement such al-
gorithms in a nondeterministic notation and then convince
themselves that the behavior will be deterministic.

By contrast, a deterministic-by-default programming
model [9] can guaranteethat any legal program produces
the same externally visible results in all executions with a
particular inputunlessnondeterministic behavior is explic-
itly requested by the programmer in disciplined ways. Such a
model can make parallel application development and main-
tenance easier for several reasons. Programmers do not have
to reason about notoriously subtle and difficult issues such
as data races, deadlocks, and memory models. They can start
with a sequential implementation and incrementally add par-
allelism, secure in the knowledge that the program behavior



will remain unchanged. They can use familiar sequential
tools for debugging and testing. Importantly, they can testan
application only once for each input [19].

Unfortunately, while guaranteed determinism is available
for some restricted styles of parallel programming (e.g., data
parallel, or pure functional), it remains a challenging re-
search problem to guarantee determinism for imperative,
object-oriented languages such as Java, C++, and C#. In such
languages, object references, aliasing, and updates to muta-
ble state obscure the data dependences between parts of a
program, making it hard to prove that those dependences
are respected by the program’s synchronization. This is a
very important problem as many applications that need to be
ported to multicore platforms are written in these languages.

We believe that atype and effect system[27, 26, 12, 30]
is an important part of the solution to providing guaranteed
deterministic semantics for imperative, object-orientedlan-
guages. A type and effect system (or effect system for short)
allows the programmer to give names to distinct parts of
the heap (we call themregions) and specify the kind of ac-
cesses to parts of the heap (e.g.,read or write effects) in dif-
ferent parts of the program. The compiler can then check,
using simple modular analysis, that all pairs of memory ac-
cesses either commute with each other (e.g., they are both
reads, or they access disjoint parts of the heap) or are prop-
erly synchronized to ensure determinism. A robust type and
effect system with minimal runtime checks is valuable be-
cause it enables checking at compile time rather than run-
time, eliminates unnecessary runtime checks (thus leadingto
less overhead and/or less implementation complexity), and
contributes to program understanding by showingwherein
the code parallelism is expressed – and where code must
be rewritten to make parallelism available. Effect annota-
tions can also provide an enforceable contract at interface
boundaries, leading to greater modularity and composabil-
ity of program components. An effect system can be supple-
mented with runtime speculation [23, 51, 38, 31, 50] or other
runtime checks [43, 20, 47, 6] to enable greater expressivity.

In this paper, we develop a new type and effect system for
expressing important patterns of deterministic parallelism in
imperative, object-oriented programs. FX [33, 27] showed
how to use regions and effects in limited ways for determin-
istic parallelism in a mostly functional language. Later work
on object-oriented effects [26, 12, 30] and object owner-
ship [16, 32, 14] introduced more sophisticated mechanisms
for specifying effects. However, studying a wide range of
realistic parallel algorithms has shown us that some signifi-
cantly more powerful capabilities are needed for such algo-
rithms. In particular, all of the existing work lacks general
support for fundamental parallel patterns such as parallel
updates on distinct fields of nested data structures, parallel
array updates, in-place divide and conquer algorithms, and
commutative parallel operations.

Our effect system can support all of the above capa-
bilities, using several novel features. We introduceregion
path lists, or RPLs, which enable more flexible effect sum-
maries, including effects on nested structures. RPLs also
allow more flexible subtyping than previous work. We in-
troduce anindex-parameterized array typethat allows ref-
erences to provably distinct objects to be stored in an ar-
ray while still permitting arbitrary aliasing of the objects
through references outside the array. We are not aware of
any statically checked type system that provides this capabil-
ity. We define the notions ofsubarrays(i.e., one array that
shares storage with another) andpartition operations, that
together enable in-place parallel divide and conquer opera-
tions on arrays. Subarrays and partitioning provide a natural
object-oriented way to encode disjoint segments of arrays,in
contrast to lower-level mechanisms like separation logic [35]
that specify array index ranges directly. We also introducean
invocation effect, together with simplecommutativity anno-
tations, to permit the parallel invocation of operations that
may actually interfere at the level of reads and writes, but
still commute logically, i.e., produce the same final (logical)
behavior. This mechanism supports concurrent data struc-
tures such as concurrent sets, hash maps, atomic counters,
etc.

We have designed a language calledDeterministic Paral-
lel Java (DPJ) incorporating these features. DPJ is an ex-
tension to Java that enforces deterministic semantics via
compile-time type checking. Because of the guaranteed de-
terministic semantics, existing Java code can be ported to
DPJ incrementally. Furthermore, porting to DPJ will have
minimal impact on program testing: developers can use the
same tests and testing methodology for the ported parallel
code as they had previously used for their sequential code.

The choice of Java for our work is not essential; simi-
lar extensions could be applied to other object-oriented lan-
guages, and we are currently developing a version of the lan-
guage and compiler for C++. We are also exploring how to
extend our type system and language to provide disciplined
support for explicitly nondeterministic computations.

This paper makes the following contributions:

1. Novel features.We introduce a new region-based type
and effect system with several novel features (RPLs,
index-parameterized arrays, subarrays, and invocation
effects) for expressing core parallel programming pat-
terns in imperative languages. These features guarantee
determinism at compile-time.

2. Formal definition. For a core subset of the type system,
we have developed a formal definition of the static and
dynamic semantics, and a detailed proof that our system
allows sound static inference about noninterference of ef-
fects. We present an outline of the formal definition and
proof in this paper. The full details are in an accompany-
ing technical report [10] available via the Web [1].



3. Language Definition. We have designed a language
called DPJ that incorporates the type and effect system
into a modern O-O language (Java) in such a way that
it supports the full flexibility of the sequential subset of
Java, enables incremental porting of Java code to DPJ,
and guarantees semantic equivalence between a DPJ pro-
gram and its obvious sequential Java version. We have
implemented a prototype compiler for DPJ that performs
the necessary type checking and then maps parallelism
down to the ForkJoinTask dynamic scheduling frame-
work.

4. Empirical evaluation. We study six real-world parallel
programs written in DPJ. This experience shows that DPJ
can express a range of parallel programming patterns;
that all the novel type system features are useful in real
programs; and that the language is effective at achieving
significant speedups on these codes on a commodity 24-
core shared-memory processor. In fact, in 3 out of 6
codes, equivalent, manually parallelized versions written
to use Java threads are available for comparison, and the
DPJ versions come close to or beat the performance of
the Java threads versions.

The rest of this paper proceeds as follows. Section 2 pro-
vides an overview of some basic features of DPJ, and Sec-
tions 3–5 explain the new features in the type system (RPLs,
arrays, and commutativity annotations). Section 6 summa-
rizes the formal results for a core subset of the language.
Section 7 discusses our prototype implementation and evalu-
ation of DPJ. Section 8 discusses related work, and Section 9
concludes.

2. Basic Capabilities
We begin by summarizing some basic capabilities of DPJ
that are similar to previous work [33, 30, 26, 14, 15]. We re-
fer to the example in Figure 1, which shows a simple binary
tree with three nodes and a methodinitTree that writes
into themass fields of the left and right child nodes. As we
describe more capabilities of DPJ, we will also expand upon
this example to make it more realistic, e.g., supporting trees
of arbitrary depth.

Region names.In DPJ, the programmer uses named re-
gions to partition the heap, and writes method effect sum-
maries stating what regions are read and written by each
method. Afield region declarationdeclares a new namer
(called afield region name) that can be used as a region
name. For example, line 2 declares namesLinks, L, andR,
and these names are used as regions in lines 4 and 5.1 A field
region name is associated with the static class in which it
is declared; this fact allows us to reason soundly about ef-

1 As explained in Section 3, in general a DPJ region is represented as a
region path list(RPL), which is a colon-separated list of elements such as
Root:L:L:R that expresses the nested structure of regions. When a simple
namer functions as a region, as shown in this section, it is short for Root:r.

1 class TreeNode<region P> {

2 region Links, L, R;
3 double mass in P ;

4 TreeNode<L> left in Links;
5 TreeNode<R> right in Links;
6 void setMass(double mass) writes P { this.mass = mass; }

7 void initTree(double mass) {
8 cobegin {

9 /* reads Links writes L */
10 left.mass = mass;

11 /* reads Links writes R */
12 right.mass = mass;
13 }

14 }
15 }

Figure 1. Basic features of DPJ. Type and effect annota-
tions are italicized. Note that methodinitTree (line 7) has
no effect annotation, so it gets the default effect summary of
“reads and writes the entire heap.”T r e e N o d e < R o o t >d o u b l e m a s s R o o tT r e e N o d e < L > l e f t C h i l d L i n k sT r e e N o d e < R > r i g h t C h l l d L i n k sT r e e N o d e < L >d o u b l e m a s s LT r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k s T r e e N o d e < R >d o u b l e m a s s RT r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k s

Figure 2. Runtime heap typing from Figure 1

fects without alias restrictions or interprocedural aliasanal-
ysis. A field region name functions like an ordinary class
member: it is inherited by subclasses, and outside the scope
of its defining class, it must be appropriately qualified (e.g.,
TreeNode.L). A local region declarationis similar and de-
clares a region name at local scope.

Region parameters.DPJ provides class and method re-
gion parameters that operate similarly to Java generic pa-
rameters. We declare region parameters with the keyword
region, as shown in line 1, so that we can distinguish them
from Java generic type parameters (which DPJ fully sup-
ports). When a region-parameterizedclass or method is used,
region arguments must be provided to the parameters, as
shown in lines 4–5. Region parameters enable us to create
multiple instances of the same class with their data in differ-
ent regions.

Disjointness constraints.To control aliasing of region
parameters, the programmer may write a disjointness con-
straint [14] of the formP1 # P2, whereP1 andP2 are pa-
rameters (or regions written with parameters; see Section 3)
that are required to be disjoint. Disjointness of regions is
fully explained in Section 3; in the case of simple names,
it means the names must be different. The constraints are
checked when instantiating the class or calling the method.
If the disjointness constraints are violated, the compileris-
sues a warning.

Partitioning the heap.The programmer may place the
keywordin after a field declaration, followed by the region,



as shown in lines 3–5. An operation on the field is treated
as an operation on the region when specifying and check-
ing effects. This effectively partitions the heap into regions.
See Figure 2 for an illustration of the runtime heap typing,
assuming the root node has been instantiated withRoot.

Method effect summaries.Every method (including all
constructors) must conservatively summarize its heap effects
with an annotation of the formreads region-list writes
region-list, as shown in line 6. Writes imply reads. When
one method overrides another, the effects of the superclass
method must contain the effects of the subclass method.
For example, if a method specifies awrites effect, then all
methods it overrides must specify that samewrites effect.
This constraint ensures that we can check effects soundly
in the presence of polymorphic method invocation [30, 26].
The full DPJ language also includeseffect variables[33], to
support writing a subclass whose effects are unknown at the
time of writing the superclass (e.g., in instantiating a library
or framework class); however, we leave the discussion of
effect variables to future work.

Effects on local variables need not be declared, because
these effects are masked from the calling context. Nor must
initialization effects inside a constructor body be declared,
because the DPJ type and effect system ensures that no other
task can accessthis until after the constructor returns. Read
effects onfinal variables are also ignored, because those
reads can never cause a conflict. A method or construc-
tor with no externally visible heap effects may be declared
pure.

To simplify programming and provide interoperability
with legacy code, we adopt the rule that no annotation means
“reads and writes the entire heap,” as shown in Figure 1. This
scheme allows ordinary sequential Java to work correctly,
but it requires the programmer to add the annotations in
order to introduce safe parallelism.

Expressing parallelism. DPJ provides two constructs for
expressing parallelism, thecobegin block and theforeach
loop. Thecobeginblock executes each statement in its body
as a parallel task, as shown in lines 8–13. Theforeach

loop is used in conjunction with arrays and is described in
Section 4.1.

Proving determinism.To type check the program in
Figure 1, the compiler does the following. First, check
that the summarywrites P of methodsetMass (line 6)
is correct (i.e., it covers all effect of the method). It is,
because fieldmass is declared in regionP (line 3), and
there are no other effects. Second, check that the paral-
lelism in lines 8–13 is safe. It is, because the effect of
line 10 isreads Links writes L; the effect of line 12 is
reads Links writes R; andLinks, L, andR are distinct
names. Notice that this analysis is entirely intraprocedural.

3. Region Path Lists (RPLs)
An important concept in effect systems isregion nesting,
which lets us partition the heap hierarchically so we can ex-
press that different computations are occurring on different
parts of the heap. For example, to extend the code in Fig-
ure 1 to a tree of arbitrary depth, we need a tree of nested re-
gions. As discussed in Section 4, we can also use nesting to
express that two aggregate data structures (like arrays) are in
distinct regions, and the components of those structures (like
the cells of the arrays) are in distinct regions, each nestedun-
der the region containing the whole structure.

Effect systems that support nested regions are generally
based on object ownership [16, 14] or use explicit declara-
tions that one region is under another [30, 26]. As discussed
below, we use a novel approach based on chains of elements
calledregion path lists, or RPLs, that provides new capabil-
ities for effect specification and subtyping.

3.1 Specifying Single Regions

The region path list (RPL) generalizes the notion of a simple
region namer. Each RPL names a singleregion, or set of
memory locations, on the heap. The set of all regions parti-
tions the heap, i.e., each memory location lies in exactly one
region. The regions are arranged in a tree with a special re-
gionRoot as the root node. We say that one region isnested
under(or simply under) another if the first is a descendant of
the second in the tree. The tree structure guarantees that for
any two distinct namesr andr′, the set of regions underr
and the set of regions underr′ have empty intersection, and
we can use this guarantee to prove disjointness of memory
accesses.

Syntactically, an RPL is a colon-separated list of names,
called RPL elements, beginning withRoot. Each element
after Root is a declared region namer,2 for example,
Root:A:B. As a shorthand, we can omit the leadingRoot. In
particular, a bare name can be used as an RPL, as illustrated
in Figure 1. The syntax of the RPL represents the nesting
of region names: one RPL is under another if the second is
a prefix of the first. For example,L:R is underL. We write
R1 ≤ R2 if R1 is underR2.

We may also write a region parameter, instead ofRoot,
at the head of an RPL, for exampleP:A, whereP is a param-
eter. When a class with a region parameter is instantiated
at runtime, the parameter is resolved to an RPL beginning
with Root. Method region parameters are resolved similarly
at method invocation time. Because a parameterP is always
bound to the same RPL in a particular scope, we can make
sound static inferences about parametric RPLs. For example,
for all P, P:A ≤ P, andP:A 6= P:B if and only if A 6= B.

Figure 3 illustrates the use of region nesting and class
region parameters to distinguish different fields as well as
different objects. It extends the example from Figure 1 by

2 As noted in Section 2, this can be a package- or class-qualified name such
asC.r; for simplicity, we user throughout.



1 class TreeNode<region P> {

2 region Links, L, R, M, F;
3 double mass in P:M ;

4 double force in P:F ;
5 TreeNode<L> left in Links;
6 TreeNode<R> right in Links;

7 void initTree(double mass, double force) {
8 cobegin {

9 /* reads Links writes L:M */
10 left.mass = mass;

11 /* reads Links writes L:F */
12 left.force = force;
13 /* reads Links writes R:M */

14 right.mass = mass;
15 /* reads Links writes R:F */

16 right.force = force;
17 }
18 }

19 }

Figure 3. Extension of Figure 1 showing the use of region
nesting and region parameters.T r e e N o d e < R o o t >T r e e N o d e < L > l e f t L i n k sT r e e N o d e < R > r i g h t L i n k sT r e e N o d e < L >d o u b l e m a s s L : Md o u b l e f o r c e L : F T r e e N o d e < R >d o u b l e m a s s R : Md o u b l e f o r c e R : F

. . .
. . . . . .L : * v s . R : * * : Mv s .* : F

Figure 4. Graphical depiction of the distinctions shown in
Figure 3. The* denotes any sequence of RPL elements; this
notation is explained further in Section 3.2.

adding aforce field to theTreeNode class, and by making
theinitTreemethod (line 7) set themass andforce fields
of the left and right child in four parallel statements in a
cobegin block (lines 9–16).

To establish that the parallelism is safe (i.e., that lines
9–16 access disjoint locations), we place fieldsmass and
force in distinct regionsP:M andP:F, and the linksleft
andright in a separate regionLinks (since they are only
read). The parameterP appears in both regions andP is
bound to different regions (L andR) for the left and right sub-
trees, because of the different instantiations of the parametric
typeTreeNode for the fieldsleft andright. Because the
namesL andR used in the types are distinct, we can distin-
guish the effects onleft (lines 10–12) from the effects on
right (lines 14–16). And because the namesM andF are
distinct, we can distinguish the effects on the different fields
within an object i.e., lines 10 vs. 14 and lines 12 vs. 16, from
each other. Figure 4 shows this situation graphically.

3.2 Specifying Sets of Regions

Partially specified RPLs.To express recursive parallel algo-
rithms, we must specify effects onsets of regions(e.g., “all
regions underR”). To do this, we introducepartially speci-
fied RPLs. A partially specified RPL contains the symbol*

1 class TreeNode<region P> {

2 region Links, L, R, M, F;
3 double mass in P:M ;

4 double force in P:F ;
5 TreeNode<P:L> left in Links;
6 TreeNode<P:R> right in Links;

7 TreeNode<*> link in Links;
8 void computeForces() reads Links, *:M writes P:*:F {

9 cobegin {
10 /* reads *:M writes P:F */

11 this.force = (this.mass * link.mass) * R_GRAV;
12 /* reads Links, *:M writes P:L:*:F */
13 if (left != null) left.computeForces();

14 /* reads Links, *:M writes P:R:*:F */
15 if (right != null) right.computeForces();

16 }
17 }
18 }

Figure 5. Recursive computation showing the use of par-
tially specified RPLs for effects and subtyping.

(“star”) as an RPL element, standing in for some unknown
sequence of names. An RPL that contains no* is fully spec-
ified.

For example, consider the code shown in Figure 5. Here
we are operating on the sameTreeNode shown in Figs. 1
and 3, except that we have added (1) alink field (line
7) that points to some other node in the tree and (2) a
computeForces method (line 8) that recursively descends
the tree. At each node,computeForces follows link to
another node, reads themass field of that node, computes the
force between that node and this one, and stores the result in
theforce field of this node. This computation can safely be
done in parallel on the subtrees at each level, because each
call writes only theforce field of this, and the operations
on other nodes (throughlink) are all reads of themass,
which is distinct fromforce. To write this computation, we
need to be able to say, for example, that line 13 writes only
the left subtree, and does not touch the right subtree.

Distinctions from the left.In lines 11–15 of Figure 5,
we need to distinguish the write tothis.force (line 11)
from the writes to theforce fields in the subtrees (lines
13 and 15). We can use partially specified RPLs to do this.
For example, line 8 says thatcomputeForces may read all
regions underLinks and write all regions underP that end
with F.

If RPLsR1 andR2 are the same in the firstn places, they
differ in placen + 1, and neither contains a* in the first
n + 1 places, then (because the regions form a tree) the set
of regions underR1 and the set of regions underR2 have
empty intersection. In this case we say thatR1:* andR2:*

are disjoint, and we know that effects on these two RPLs
are noninterfering. We call this a “distinction from the left,”
because we are using the distinctness of the names to the left
of any star to infer that the region sets are non-intersecting.
For example, a distinction from the left establishes that the
region setsP:F, P:L:*:F, andP:R:*:F (shown in lines 10-
15) are disjoint, because the RPLs all start withP and differ
in the second place.



Distinctions from the right.Sometimes it is important to
specify “all fieldsx in any node of a tree.” For example, in
lines 10–15, we need to show that the reads of themass fields
are distinct from the writes to theforce fields. We can make
this kind of distinction by using different namesafter the
star: ifR1 andR2 differ in thenth place from the right, and
neither contains a* in the firstn places from the right, then
a simple syntactic argument shows that their region sets are
disjoint. We call this pattern a “distinction from the right,”
because the names that ensure distinctness appear to the right
of any star. For example, in lines 10–15, we can distinguish
the reads of*:M from the writes toP:L:*:F andP:R:*:F.

More complicated patterns.More complicated RPL pat-
terns likeRoot:*:A:*:B are supported by the type system.
Although we do not expect that programmers will need to
write such patterns, they sometimes arise via parameter sub-
stitution when the compiler is checking effects.

3.3 Subtyping and Type Casts

Subtyping.Partially specified RPLs are also useful for sub-
typing. For example, in Figure 5, we needed to write the type
of a reference that could point to aTreeNode<P>, for any
binding toP. With fully specified RPLs we cannot do this,
because we cannot write a type to which we can assign both
TreeNode<L> andTreeNode<R>. The solution is to use a
partially specified RPL in the type, e.g.,TreeNode<*>, as
shown in line 7 of Figure 5. Now we have a type that is flex-
ible enough to allow the assignment, but retains soundness
by explicitly saying that we do not know the actual region.

The subtyping rule is simple:C<R1> is a subtype of
C<R2> if the set of regions denoted byR1 is included in the
set of regions denoted byR2. We writeR ⊆ R2 to denote set
inclusion for the corresponding sets of regions. IfR1 andR2

are fully specified, thenR1 ⊆ R2 impliesR = R2. Note that
nesting and inclusion are related:R1 ≤ R2 implies R1 ⊆
R2:*. However, nesting alone doesnot imply inclusion of
the corresponding sets. For example,A:B ≤ A, butA:B 6⊆ A,
becauseA:B andA denote distinct regions. In Section 6 we
discuss the rules for nesting, inclusion, and disjointnessof
RPLs more formally.

Figure 6 illustrates one possible heap typing resulting
from the code in Figure 5. The DPJ typing discipline ensures
the object graph restricted to theleft andright references
is a tree. However, the full object graph including thelink

references is more general and can even include cycles, as
illustrated in Figure 6. Note how our effect system is able to
prove that the updates to different subtrees are distinct, even
though (1) non-tree edges exist in the graph; and (2) those
edges are followed to do possibly overlapping reads.

Type casts.DPJ allows any type cast that would be legal
for the types obtained by erasing the region variables. This
approach is sound if the region arguments are consistent.
For example, givenclass B<region R> extends A<R>,
a cast fromA<r> to B<r> is sound, because either the ref-
erence isB<r>, or it is not any sort ofB, which will cause

T r e e < R o o t : L >d o u b l e f o r c e R o o t : L : Fd o u b l e m a s s R o o t : L : MT r e e < R o o t : L : L > l e f t L i n k sT r e e < R o o t : L : R > r i g h t L i n k sT r e e < * > l i n k L i n k s

T r e e < R o o t >d o u b l e f o r c e R o o t : Fd o u b l e m a s s R o o t : MT r e e < R o o t : L > l e f t L i n k sT r e e < R o o t : R > r i g h t L i n k sT r e e < * > l i n k L i n k s T r e e < R o o t : R >d o u b l e f o r c e R o o t : R : Fd o u b l e m a s s R o o t : R : MT r e e < R o o t : R : L > l e f t L i n k sT r e e < R o o t : R : R > r i g h t L i n k sT r e e < * > l i n k L i n k s
Figure 6. Heap typing from Figure 5. Reference values are
shown by arrows; tree arrows are solid, and non-tree arrows
are dashed. Notice that all arrows obey the subtyping rules.

a ClassCastException at runtime. However, a cast from
Object to B<r1> is unsound and could violate the deter-
minism guarantee, because theObject could be aB<r2>,
which would not cause a runtime exception. The compiler
allows this cast, but it issues a warning.

4. Arrays
DPJ provides two novel capabilities for computing with
arrays: index-parameterized arraysand subarrays. Index-
parameterized arrays allow us to traverse an array of object
references and safely update the objects in parallel, while
subarrays allow us to dynamically partition an array into
disjoint pieces, and give each piece to a parallel subtask.

4.1 Index-Parameterized Arrays

A basic capability of any language for deterministic paral-
lelism is to operate on elements of an array in parallel. For
a loop over an array of values, it is sufficient to prove that
each iteration accesses a distinct array element (we call this
aunique traversal). For a loop over an array of references to
mutable objects, however, a unique traversal is not enough:
we must also prove that any memory locations updated by
following references in distinct array cells (possibly through
a chain of references) are distinct. Proving this property is
very hard in general, if assignments are allowed into refer-
ence cells of arrays. No previous effect system that we are
aware of is able to ensure disjointness of updates by follow-
ing references stored in arrays, and this seriously limits the
ability of those systems to express parallel algorithms.

In DPJ, we make use of the following insight:

Insight 1. We can define a special array type with the re-
striction that an object reference valueo assigned to celln
(wheren is a natural number constant) of such an array
has a runtime type that is parameterized byn. If accesses
through celln touch only regionn (even by following a chain



1 class Body<region P> {

2 region Link, M, F ;
3 double mass in P:M ;

4 double force in P:F ;
5 Body<*> link in Link;
6 void computeForce() reads Link, *:M writes P:F {

7 force = (mass * link.mass) * R_GRAV;
8 }

9 }
10

11 final Body<[_]>[]<[_] > bodies = new Body<[_]>[N]<[_]>;
12 foreach (int i in 0, N) {
13 /* writes [i] */

14 bodies[i] = new Body<[i]>();
15 }

16 foreach (int i in 0, N) {
17 /* reads [i], Link, *:M writes [i]:F */
18 bodies[i].computeForce();

19 }

Figure 7. Example using an index-parameterized array.

of references), then the accesses through different cells are
guaranteed to be disjoint.

We call such an array type anindex-parameterized array.
To represent such arrays, we introduce two language con-
structs:

1. An array RPL elementwritten[e], wheree is an integer
expression.

2. An index-parameterized array typethat allows us to write
the region and type of array celle using the array RPL
element[e]. For example, we can specify that celle

resides in regionRoot:[e] and has typeC<Root:[e]>.

At runtime, if e evaluates to a natural numbern, then the
static array RPL element[e] evaluates to thedynamic array
RPL element[n].

The key point here is that we can distinguishC<[e1]>

from C<[e2]> if e1 ande2 always evaluate to unequal val-
ues at runtime, just as we can distinguishC<r1> fromC<r2>,
wherer1 andr2 are declared names, as discussed in Sec-
tion 3.1. Obviously, the compiler’s capability to distinguish
such types will be determined by its ability to prove the in-
equality of the symbolic expressionse1 ande2. This is pos-
sible in many common cases, for the same reason that ar-
ray dependence analysis is effective in many, though not all,
cases [24]. The key benefit is thatthe type checker has then
proved the uniqueness of the target objects, which would not
follow from dependence analysis alone.

In DPJ, the notation we use for index-parameterized ar-
rays isT[]<R>#i, whereT is a type,R is an RPL,#i de-
clares a fresh integer variablei in scope over the type, and
[i] may appear as an array RPL element inT or R (or
both). This notation says that array celle (wheree is an in-
teger expression) has typeT [i← e] and is located in region
R[i ← e]. For example,C<r1:[i]>[]<r2:[i]>#i speci-
fies an array such that celle has typeC<r1:[e]> and resides
in regionr2:[e]. If T itself is an array type, then nested
index variable declarations can appear in the type. However,
the most common case is a single-dimensional array, which
needs only one declaration. For that case, we provide a sim-

B o d y < R o o t : [ 1 0 ] >d o u b l e f o r c e R o o t : [ 1 0 ] : Fd o u b l e m a s s R o o t : [ 1 0 ] : MB o d y < * > l i n k L i n k. . . . . . . . .1 0 9 0B o d y < R o o t : [ 9 0 ] >d o u b l e f o r c e R o o t : [ 9 0 ] : Fd o u b l e m a s s R o o t : [ 9 0 ] : MB o d y < * > l i n k L i n k
Figure 8. Heap typing from Figure 7. The type of array cell
i is parameterized byi. Cross-links are possible, but if any
links are followed to access other array cells, the effects are
visible.

plified notation: the user may omit the#i and use an un-
derscore () as an implicitly declared variable. For example,
C<[ ]>[]<[ ]> is equivalent toC<[i]>[]<[i]>#i.

Figure 7 shows an example, which is similar in spirit to
the Barnes-Hut force computation discussed in Section 7.
Lines 1–9 declare a classBody. Line 11 declares and creates
an index-parameterized arraybodies with N cells, such that
cell i resides in region[i] and points to an object of type
Body<[i]>. Figure 8 shows a sample heap typing, for some
particular valuen of N.

Lines 12–15 show aforeach loop that traverses the in-
dicesi ∈ [0, n − 1] in parallel and initializes celli with
a new object of typeBody<[i]>. The loop is noninterfer-
ing because the type ofbodies says that cellbodies[i]
resides in region[i], so distinct iterationsi and j write
disjoint regions[i] and[j]. Lines 16–19 are similar, ex-
cept that the loop callscomputeForce on each of the
objects. In iterationi of this loop, the effect of line 16
is reads [i], because it readsbodies[i], together with
reads Link, *:M writes [i]:F, which is the declared
effect of methodcomputeForce (line 6), after substituting
[i] for P. Again, the effects are noninterfering fori 6= j.

To maintain soundness, we just need to enforce the in-
variant that, at runtime, cellA[i] never points to an object
of typeC<[j]>, if i 6= j. The compiler can enforce this in-
variant through symbolic analysis, by requiring that if type
C<[e1]> is assigned to typeC<[e2]>, thene1 ande2 must
always evaluate to the same value at runtime; if it cannot
prove this fact, then it must conservatively disallow the as-
signment. In many cases (as in the example above) the check
is straightforward.

Note that because of the typing rules, no two distinct cells
of an index-parameterizedarray can point to the same object.
However, it is perfectly legal to reach the same object by
following chains of references from distinct array cells, as
shown in Figure 8. In that case, in a parallel traversal over
the array, either the common object is not updated, in which
case the parallelism is safe; or a write effect on the same
region appears in two distinct iterations of a parallel loop, in
which case the compiler can catch the error.

Note also that while no two cells in an index-parameterized
array can alias, references may be freely shared with other



1 class QSort<region P> {

2 DPJArrayInt<P> A in P ;
3 QSort(DPJArray<P> A) pure { this.A = A; }

4 void sort() writes P:* {
5 if (A.length <= SEQ_LENGTH) {
6 seqSort();

7 } else {
8 /* Shuffle A and return pivot index */

9 int p = partition(A);
10 /* Divide A into two disjoint subarrays at p */

11 final DPJPartitionInt<P> segs =
12 new DPJPartitionInt<P>(A, p, OPEN);
13 cobegin {

14 /* writes segs:[0]:* */
15 new QSort<segs:[0]:*>(segs.get(0)).sort();

16 /* writes segs:[1]:* */
17 new QSort<segs:[1]:*>(segs.get(1)).sort();
18 }

19 }
20 }

21 }

Figure 9. Writing quicksort with the partition operation.
DPJArrayIntandDPJPartitionIntare specializations to
int values. In line 12, the argumentOPEN indicates that we
are omitting the partition index from the subarrays, i.e., they
are open intervals.

variables (including cells in other index-parameterized ar-
rays), unlike linear types [26, 12, 13]. For example, if cell
i of a particular array has typeC<[i]>, the object it points
to could be referred to by celli of any number of other ar-
rays (with the same type), or by any reference of typeC<*>.
Thus, when we are traversing the array, we get the benefit of
the alias restriction imposed by the typing, but we can still
have as many other outstanding references to the objects as
we like.

The pattern does have some limitations: for example, we
cannot move an element from positioni to positionj in the
arrayC<[i]>[]#i. However, we can copy the references
into a different arrayC<*>[] and shuffle those references
as much as we like, though we cannot use those references
to update the objects in parallel. We can also make a new
copy of elementi with typeC<[j]> and store the new copy
into positionj. This effectively gives a kind of reshuffling,
although the copying adds performance overhead. Another
limitation is that ourforeach currently only allows regular
array traversals (including strided traversals), though it could
be extended to other unique traversals.

4.2 Subarrays

A familiar pattern for writing divide and conquer recursion
is to partition an array into two or more disjoint pieces and
give each array to a subtask. For example, Figure 9 shows
a standard implementation of quicksort, which divides the
array in two at each recursive step, then works in parallel
on the halves. DPJ supports this pattern with three novel
features, which we illustrate with the quicksort example.

First, DPJ provides a classDPJArray that wraps an ordi-
nary Java array and provides a view into a contiguous seg-
ment of it, parameterized by start positionS and lengthL. In
Figure 9, theQSort constructor (line 3) takes aDPJArray

object that represents a contiguous subrange of the caller’s
array. We call this subrange asubarray. Notice that the
DPJArray object doesnot replicate the underlying array; it
stores only a reference to the underlying array, and the val-
ues ofS andL. TheDPJArray object translates access to
elementi into access to elementS + i of the underlying ar-
ray. If i < 0 or i ≥ L, then an array bounds exception is
thrown, i.e., access through the subarray must stay within
the specified segment of the original array.

Second, DPJ provides a classDPJPartition, represent-
ing an indexed collection ofDPJArray objects, all of which
point into mutually disjoint segments of the original ar-
ray. To create aDPJPartition, the programmer passes a
DPJArray object into theDPJPartition constructor, along
with some arguments that say how to do the splitting. Lines
11–12 of Figure 9 show how to split theDPJArray A at index
p, and indicate that positionp is to be left out of the resulting
disjoint segments. The programmer can access segmenti of
the partitionsegs by sayingsegs.get(i), as shown in lines
15 and 17.

Third, to support recursive computations, we need a slight
extension to the syntax of RPLs (Section 3). Notice that we
cannot use a simple region name, liker, for the type of a
partition segment, because different partitions can divide the
same array in different ways. Instead, we allow afinal

local variablez (including this) of class type to appear
at the head of an RPL, for examplez:r. The variablez

stands in for the object referenceo stored into the variable
at runtime, which is the actual region. Using the object
reference as a region insures that different partitions get
different regions, and making the variablefinal ensures
that it always refers to the same region.

We make these “z regions” into a tree as follows. Ifz’s
type isC<R,. . .>, thenz is nested underR; the first region
parameter of a class functions like theowner parameterin
an object ownership system [18, 16]. In the particular case of
DPJPartition, if the type ofz is DPJPartition<R>, then
the type ofz.get(i) is z:[i]:*, wherez ≤ R. Internally,
theget method uses a type cast to generate aDPJArray of
typethis:[i]:* that points into the underlying array. The
type cast is not sound within the type system, but it is hidden
from the user code in such a way that all well-typed uses of
DPJPartition are noninterfering.

In Figure 9, the sequence of recursivesort calls creates a
tree ofQSort objects, each in its own region. Thecobegin
in lines 13–17 is safe becauseDPJPartition guarantees
that the segmentssegs.get(0) andsegs.get(1) passed
into the recursive parallelsort calls are disjoint. In the
user code, the compiler uses the type and effect annota-
tions to prove noninterference as follows. First, from the
type ofQSort and the declared effect ofsort (line 4), the
compiler determines that the effects of lines 15 and 17 are
writes segs:[0]:*andwrites segs:[1]:*, as shown.
Second, the regionssegs:[0]:* andsegs:[1]:* are dis-



joint, by a distinction from the left (Section 3.2). Finally, the
effect writes P:* in line 4 correctly summarizes the ef-
fects ofsort, because lines 6 and 9 writeP, lines 15 and 17
write undersegs, andsegs is underP, as explained above.

Notice thatDPJPartition can create multiple refer-
ences to overlapping data with different regions in the
types. Thus, there is potential for unsoundness here if
we are not careful. To make this work, we must do two
things. First, ifz1 and z2 represent different partitions of
the same array, thenz1.get(0) and z2.get(1) could
overlap. Therefore, we must not treat them as disjoint.
This is why we put* at the end of the typez:[i]:*
of z.get(i); otherwise we could incorrectly distinguish
z1:[0] from z2:[1], using a distinction from the right. Sec-
ond, if z has typeDPJPartition<R>, thenz.get(i) has
typeDPJArray<z:[i]:*>and points into aDPJArray<R>.
Therefore, we must not treatz:[i]:* as disjoint fromR.
Here, we simply do not include this distinction in our type
system. All we say is thatz:[i]:* ≤ R. See Section 6.3
and Appendix C.2 for further discussion of the disjointness
rules in our type system.

5. Commutativity Annotations
Sometimes to express parallelism we need to look at inter-
ference in terms of higher-level operations than read and
write [29]. For example, insertions into a concurrentSet can
go in parallel and preserve determinism even though the or-
der of interfering reads and writes inside theSet implemen-
tation is nondeterministic. Another such example is comput-
ing connected components of a graph in parallel.

In DPJ, we address this problem by adding two fea-
tures. First, classes may contain declarations of the formm

commuteswithm′, wherem andm′ are method names, in-
dicating that any pair of invocations of the named methods
may be safely done in parallel,regardless of the read and
write effects of the methods. See Figure 10(a). In effect, the
commuteswith annotation says that (1) the two invocations
areatomicwith respect to each other, i.e., the result will be
as if one occurred and then the other; and (2) either order of
invocation produces the same result.

The commutativity property itself is not checked by the
compiler; we must rely on other forms of checking (e.g.,
more complex program logic [52] or static analysis [42, 4])
to ensure that methods declared to be commutative are really
commutative. In practice, we anticipate thatcommuteswith

will be used mostly by library and framework code that is
written by experienced programmers and extensively tested.
Our effect system does guarantee deterministic results for
an application using a commutative operation, assuming that
the operation declared commutative is indeed commutative.

Second, our effect system provides a novelinvocation ef-
fectof the forminvokesm withE. This effect records that
an invocation of methodm occurred with underlying effects
E. The type system needs this information to represent and

1 class IntSet<region P> {

2 void add(int x) writes P { ... }
3 add commuteswith add;

4 }

(a) Declaration ofIntSet class with commutative methodadd

1 IntSet<R> set = new IntSet<R>();
2 foreach (int i in 0, N)

3 /* invokes IntSet.add with writes R */
4 set.add(A[i]);

(b) Usingcommuteswith for parallelism

1 class Adder<region P> {
2 void add(IntSet<P> set, int i)

3 invokes IntSet.add with writes P {
4 set.add(i);

5 }
6 }

7 IntSet<R> set = new IntSet<R>();
8 Adder<R> adder = new Adder<R>();
9 foreach (int i in 0, N)

10 /* invokes IntSet.add with writes R */
11 adder.add(set, A[i]);

(c) Usinginvokes to summarize effects

Figure 10. Illustration ofcommuteswith andinvokes.

check effects soundly in the presence of commutativity an-
notations: for example, in line 4 of Fig. 10(b), the compiler
needs to record thatadd was invoked there (so it can dis-
regard the effects of otheradd invocations)and that the un-
derlying effect of the method waswrites R (so it can verify
that there are no other interfering effects, e.g., reads or writes
of R, in the invoking code).

When there are one or more intervening method calls be-
tween aforeach loop and a commutative operation, it may
also be necessary for a method effect summary in thepro-
gram textto specify that an invocation occurred inside the
method. For example, in Figure 10(c), theadd method is
called through a wrapper object. We could have correctly
specified the effect ofAdder.add as writes P, but this
would hide from the compiler the fact thatAdder.add com-
mutes with itself. Of course we could usecommuteswith for
Adder.add, but this is highly unsatisfactory: it just propa-
gates the unchecked commutativity annotation out through
the call chain in the application code. The solution is to
specify the invocation effectinvokes IntSet.add with

writes P, as shown.
Notice that the programmer-specified invocation effect

exposes an internal implementation detail (i.e., that a par-
ticular method was invoked) at a method interface. However,
we believe that such exposure will be rare. In most cases, the
effectinvokesC.m withE will be conservatively summa-
rized asE (Section 6.1 gives the formal rules for covering
effects). The invocation effect willonly be used for cases
where a commutative method is invoked, and the commu-
tativity information needs to be exposed to the caller. We
believe these cases will generally be confined to high-level
public API methods, such asSet.add in the example given
in Figure 10.



Meaning Symbol Definition
Programs program region∗ class∗ e

Regions region region r

Classes class class C<P> { field∗ method∗ comm∗}
RPLs R Root | P | z |R : r |R : [i] |R : ∗
Fields field T f in Rf

Types T C<R> | T []<R>#i

Methods method T m(T x) E { e }
Effects E ∅ | reads R | writes R |

invokes C.m with E | E ∪E

Expressions e let x = e in e | this.f = z | this.f |
z[n] = z | z[n] | z.m(z) | z | new C<R> |
new T [n]<R>#i

Variables z this | x
Commutativity comm m commuteswith m

Figure 11. Core DPJ syntax.C, P , f , m, x, r, andi are
identifiers, andn is a natural number.Rf denotes a fully
specified RPL (i.e., containing no∗).

6. The Core DPJ Type System
We have formalized a subset of DPJ, calledCore DPJ. To
make the presentation more tractable and to focus attention
on the important aspects of the language, we make the fol-
lowing simplifications:

1. We present a simple expression-based language, omitting
more complicated aspects of the real language such as
statements and control flow.

2. Our language has classes and objects, but no inheritance.

3. Region namesr are declared at global scope, instead of
at class scope. Every class has one region parameter, and
every method has one formal parameter.

4. To avoid dealing with integer variables and expressions,
we require that array indices are natural number literals.

Removing the first simplification adds complexity but raises
no significant technical issues. Adding inheritance raises
standard issues for formalizing an object-oriented language.
We omit those here in order to focus on the novel aspects
of our system, but we describe them in [10]. Removing
simplifications 3 and 4 is mostly a matter of bookkeeping.
To handle arrays in the full language, we need to prove
equivalence and non-equivalence of array index expressions,
but this is a standard compiler capability.

We have chosen to make Core DPJ a sequential language,
in order to focus on our mechanisms for expressing effects
and noninterference. In Section 6.4, we discuss how to ex-
tend the formalism to model thecobegin andforeach con-
structs of DPJ.

6.1 Syntax and Static Semantics

Figure 11 defines the syntax of Core DPJ. The syntax con-
sists of the key elements described in the previous sections
(RPLs, effects, and commutativity annotations) hung upon
a toy language that is sufficient to illustrate the features yet
reasonable to formalize. A program consists of a number of
region declarations, a number of class declarations, and an
expression to evaluate. Class definitions are similar to Java’s,
with the restrictions noted above.

(a) Programs

⊲ program Valid program ⊲ class Valid class definition
⊲Γ Valid environment Γ ⊲ field Valid field

Γ ⊲ method Valid method Γ ⊲ comm Valid commutativity annotation

(b) RPLs

Γ ⊲ R Valid RPL Γ ⊲ R ≤ R′ R underR′

Γ ⊲ R ⊆ R′ R included inR′

(c) Types

Γ ⊲ T Valid type Γ ⊲ T ≤ T ′ T a subtype ofT ′

(d) Effects

Γ ⊲ E Valid effect Γ ⊲ E ⊆ E′ E a subeffect ofE′

(e) Expressions

Γ ⊲ e : T, E e has typeT and effectE in Γ

Figure 12. Core DPJ type judgments. We extend the judg-
ments to groups of things (e.g.,Γ ⊲ field∗) in the obvious
way.

We define the static semantics of Core DPJ with the
judgments stated in Figure 12. The judgments are defined
with respect to an environmentΓ, where each element ofΓ
is one of the following:

• A binding z 7→ T stating that variablez has typeT .
These elements come into scope when a new variable
(let variable or formal parameter) is introduced.

• A constraintP ⊆ R stating that region parameterP is
in scope and included in regionR. These elements come
into scope when we capture the type of a variable used
for an invocation (see the discussion of expression typing
judgments below).

• An integer variablei. These elements come into scope
when we are evaluating an array type or new array ex-
pression.

The formal rules for making the judgments are stated in full
in Appendix A. Below we briefly discuss each of the five
groups of judgments.

Programs. These judgments state that a program and its
top-level components (classes, methods, etc.) are valid. Most
rules just require that the component’s components are valid
in the surrounding environment. The rule for valid method
definitions (METHOD) requires that the method body’s type
and effect are a subtype and subeffect of the return type and
declared effect. These constraints ensure that we can use
the method declaration to reason soundly about a method’s
return type and effect when we are typing method invocation
expressions.

RPLs. These judgments define validity, nesting, and in-
clusion of RPLs. Most rules are a straightforward formal
translation of the relations that we described informally in
Section 3.2. The key rule states that ifR is underR′ in
some environment, thenR is included inR′:* in that en-
vironment:



(INCLUDE-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R ⊆ R′ : ∗

Types. These define when one type is a subtype of an-
other. The class subtyping rule is just the formal statement
of the rule we described informally in Section 3.3:

(SUBTYPE-CLASS) Γ ⊲ R ⊆ R′

Γ ⊲ C<R> ≤ C<R′>

The array subtyping rule is similar:

(SUBTYPE-ARRAY) Γ ∪ {i} ⊲ R ⊆ R′[i′ ← i] T ≡ T ′

Γ ⊲ T []<R>#i ≤ T ′[]<R′>#i′

Here≡ means identity of element types up to the names
of integer variablesi. More flexible element subtyping is
not possible without sacrificing soundness. We could allow
unsound assignments and check for them at runtime (as Java
does for class subtyping of array elements), but this would
require that we retain the class region binding informationat
runtime.

Effects. These judgments define when an effect is valid,
and when one effect is a subeffect of another. Intuitively, “E

is a subeffect ofE′” means thatE′ contains all the effects of
E, i.e., we can useE′ as a (possibly conservative) summary
of E. The rules for reads, writes, and effect unions are
standard [16, 33], but there are two new rules for invocation
effects. First, ifE′ coversE, then an invocation of some
method withE′ covers an invocation of the same method
with E:

(SE-INVOKES-1) Γ ⊲ E ⊆ E′

Γ ⊲ invokes C.m with E ⊆ invokes C.m with E′

Second, we can conservatively summarize the effectinvokes

C.m with E as justE:

(SE-INVOKES-2)
Γ ⊲ invokes C.m with E ⊆ E

Expressions. These judgments tell us how to compute the
type and effect of an expression. They also ensure that the
types of component expressions (for example at assignments
and method parameter bindings) match in a way that guar-
antees soundness. The rules for field and array access and
assignment, variable lookup, and new classes and arrays are
straightforward. In the rule forlet x = e in e′, we typee,
bind x to the type ofe, and typee′. If x appears in the type
or effect of e′, we replace it withR:* to generate a type
and effect for the whole expression that is valid in the outer
scope.

In the rule for method invocation (INVOKE), we translate
the typeTx of the method formal parameter to the current
context by creating a fresh region parameterP included in
the regionR of z’s type. This technique is similar to how
Java handles the capture of a generic wildcard. Note that
simply substitutingR for param(C) in translatingTx would
not be sound; see [10] for an explanation and an example.

Meaning Symbol Definition
RPLs dR Root | o | dR : r | dR : [i] | dR : [n] | dR : ∗
Types dT C<dR>

Effects dE ∅ | reads dR | writes dR |
invokes C.m with dE | dE ∪ dE

Figure 13. Dynamic syntax of Core DPJ.dRf denotes a
fully-specified dynamic RPL (i.e., containing no∗).

We also check that the actual argument type is a subtype
of the declared formal parameter type, and we report the
invocation of the method with its declared effect.

6.2 Dynamic Semantics

The syntax for entities appearing in the dynamic semantics
is shown in Figure 13. At runtime, we have dynamic regions
(dR), dynamic types (dT ) and dynamic effects (dE), cor-
responding to static regions (R), types (T ) and effects (E)
respectively. Dynamic regions and effects are not recorded
in a real execution, but here we thread them through the ex-
ecution state so we can formulate and prove soundness re-
sults [16]. We also have object referenceso, which are the
actual values computed during the execution.

The dynamic execution state consists of (1) a heapH ,
which is a function taking values to objects; and (2) a dy-
namic environmentdΓ, which is a set of elements of the
form z 7→ o (variablez is bound to valueo) or P 7→ dR

(region parameterP is bound to regiondR). dΓ defines a
natural substitution on RPLs, where we replace the variables
with values and the region parameters with regions as speci-
fied in the environment. We denote this substitution on RPL
R asdΓ(R), and we extend this notation to types and ef-
fects in the obvious way. Notice that we get the syntax of
Figure 13 by applying the substitutiondΓ to the syntax of
Figure 11.

An object is a partial function taking field names to object
references. If the function is undefined on all field names,
then we say it is anull object. We use null objects because we
need to track the actual types of null references to establish
soundness. Since the actual implementation does not need to
do this tracking, it can just use the single valuenull. Every
object referenceo ∈ Dom(H) has a type, determined when
the object is created, and we writeH ⊲ o : dT to mean that
the referenceo has typedT with respect to heapH .

We write the evaluation rules in large-step semantics no-
tation, using the following evaluation function:

(e, dΓ, H) → (o, H
′

, dE),

wheree is an expression to evaluate,dΓ andH give the
dynamic context for evaluation,o is the result of the eval-
uation,H ′ is the updated heap, anddE represents the ef-
fects of the evaluation. A program evaluates to referenceo

with heapH and effectdE if its main expression ise and
(e, ∅, ∅)→ (o, H, dE).

Section B of the Appendix states the rules for program
evaluation. The rules are standard for an imperative lan-
guage, except that we record read effects in DYN-FIELD-



ACCESS and DYN-ARRAY-ACCESS and write effects in
DYN-FIELD-ASSIGN and DYN-ARRAY-ASSIGN. Rules
DYN-LET and DYN-INVOKE accumulate the effects of
the component expressions. Note that when we evaluate
new T we eliminate any∗ from T in the dynamic type of
the new reference, e.g.,new C<Root:*> is the same as
new C<Root>; this rule ensures that all object fields are al-
located in fully specified regions. This rule is sound for the
same reason that assigningC<Root> to a variable of type
C<Root:*> is sound.

6.3 Soundness

Our key soundness result is that we can define and check a
static property of noninterference of effect between expres-
sions in the language, such that static noninterference im-
plies dynamic noninterference. Appendix C states the major
steps of the proof in formal terms. We divide the steps into
three groups: type and effect preservation (Section C.1), dis-
jointness (Section C.2), and noninterference of effect (Sec-
tion C.3).We provide further explanation and a full proof in
our technical report [10].

Type and effect preservation.In Section C.1, we assert
some preliminary definitions and the preservation result. A
dynamic environmentdΓ is valid (Definition 1) if the types
and RPLs appearing on the right of its bindings are valid,
and it is internally consistent. A heapH is valid (Defini-
tion 2) if the reference stored in every object field or array
cell of H is consistent with the declared type of the field or
cell, translated todΓ. A dynamic environmentdΓ instanti-
atesa static environmentΓ (Definition 3) if the bindings to
variables indΓ are consistent with the bindings to the corre-
sponding variables inΓ, after translation todΓ.

Theorem 1 establishes that we can use the static types
and effects (Section 6.1) to reason soundly about dynamic
types and effects (Section 6.2). It states that if we type
an expressione in environmentΓ, and we evaluatee in
dynamic environmentdΓ, wheredΓ instantiatesΓ, then (a)
the evaluation takes a valid heap to a valid heap; (b) the static
type ofe bounds the dynamic type of the valueo that results
from the evaluation; and (c) the static effect ofe bounds the
dynamic effect that results from the evaluation.

Disjoint RPLs. In Section C.2, we formally define a dis-
jointness relation on pairs of RPLs (Γ⊲R# R′). The relation
formalizes distinctions from the left and right, as discussed
informally in Section 3.2.Definition 4 formally expresses
how to interpret a dynamic RPL as a set of fully-specified
RPLs (i.e., regions).Definition 5 shows how to associate
every object field and array cell with a region of the heap.
Proposition 1states that disjoint RPLs imply disjoint sets of
fully specified regions, i.e., disjoint sets of locations.Propo-
sition 2 states that at runtime, disjoint fully-specified regions
imply disjoint locations.

Noninterference.In Section C.3, we formally define
a noninterference relation on pairs of static effects (Γ ⊲

E # E′). The rules express four basic facts: (1) reads com-

mute with reads; (2) writes commute with reads or writes if
the regions are disjoint; (3) invocations commute with other
effects if the underlying effects are disjoint; and (4) two in-
vocations commute if the methods are declared to commute,
regardless of interference between the underlying effects.

Theorem 2 expresses the main soundness property of
Core DPJ, which is that the execution order of noninterfering
expressions does not matter. It states that in a well-typed
program, ife and e′ are expressions with typesT andT ′

and effectsE andE′, andE andE′ are noninterfering, then
either order of evaluatinge ande′ produces the same values
o ando′, the same effectsdE anddE′, and the same final
heapH .

The claim is true for dynamic effects from the commuta-
tivity of reads, the disjointness results of Section C.2, and the
assumed correctness of the commutativity specifications for
methods. The claim is true for static effects by the type and
effect preservation property above. See [10] for the formal
proof.

6.4 Deterministic Parallelism

As discussed in Sections 2 and 4, the actual DPJ language in-
cludesforeach for parallel loops andcobegin for a block
of parallel statements. We briefly discuss how to extend the
formalism to model these constructs.

We can easily simulatecobegin by adding a parallel
composition operatore|e′, which says to executee and e′

in the same environment, in an unspecified order, with an
implicit join at the end of the execution. We can simulate
foreach by allowing an induction variablei to appear in
expressions inside the scope of aforeach, mappingi to n

over the index range of theforeach, and evaluating allen

in unspecified order. In both cases we can extend the static
typing rules to say that for any pair of expressionse ande′

as to which the order of execution is unspecified, then the
effects ofe ande′ must be noninterfering.

It follows directly from Theorem 2 that parallel composi-
tion of noninterfering expressions produces the same result
as sequential composition of those expressions. This guaran-
tees determinism of execution regardless of the order of par-
allel execution. The formalization of this property is straight-
forward, and we omit it from our technical report.

7. Evaluation
We have carried out a preliminary evaluation of the language
and type system features presented in this paper. Our evalu-
ation addressed the following questions:

• Expressiveness.Can the type system express important
parallel algorithms on object-oriented data structures?
When does it fail to capture parallelism and why?

• Coverage.Are each of thenewfeatures in the DPJ type
system important to express one or more of these algo-
rithms?



• Performance.For each of the algorithms, what increase
in performance is realized in practice? This is a quan-
titative measure of how much parallelism the type sys-
tem can express for each algorithm (note that the runtime
overheads introduced by DPJ are negligible).

To do the evaluation, we extended Sun’sjavaccompiler
so that it compiles DPJ into ordinary Java source. We built
a runtime system for DPJ using theForkJoinTaskframe-
work that will be added to thejava.util.concurrent
standard library in Java 1.7 [2].ForkJoinTasksupports dy-
namic scheduling of lightweight parallel tasks, using a work-
stealing scheduler similar to that in Cilk [8]. The DPJ com-
piler automatically translatesforeach to a recursive com-
putation that successively divides the iteration space, toa
depth that is tunable by the programmer, and it translates a
cobegin block into one task for every statement. Code using
ForkJoinTaskis compatible with Java threads so an existing
multithreaded Java program can be incrementally ported to
DPJ. Such code may still have some guarantees, e.g., the
DPJ portions will be guaranteed deterministic if the explic-
itly threaded and DPJ portions are separate phases that do
not run concurrently.

Using the DPJ compiler, we studied the following pro-
grams: Parallel merge sort, two codes from the Java Grande
parallel benchmark suite (a Monte Carlo financial simula-
tion and IDEA encryption), the force computation from the
Barnes-Hut n-body simulation [45], k-means clustering from
the STAMP benchmarks [34], and a tree-based collision de-
tection algorithm from a large, real-world open source game
engine called JMonkey (we refer to this algorithm as Col-
lision Tree). For all the codes, we began with a sequential
version and modified it to add the DPJ type annotations. The
Java Grande benchmarks are explicitly parallel versions us-
ing Java threads (along with equivalent sequential versions),
and we compared DPJ’s performance against those. We also
wrote and carefully tuned the Barnes-Hut force computation
using Java threads as part of understanding performance is-
sues in the code, so we could compare Java and DPJ for that
one as well.

7.1 A Realistic Example

We use the Barnes-Hut force computation to show how
to write a realistic parallel program in DPJ. Figure 14 shows
a simplified version of this code. The main simplification is
that theVector objects are immutable, withfinal fields
(so there are no effects on these objects), whereas our actual
implementation uses mutable objects. The classNode repre-
sents an abstract tree node containing a mass and position.
The mass and position represent the actual mass and position
of a body (at a leaf) or the center of mass of a subtree (at an
inner node). TheNode class has two subclasses:InnerNode,
representing an inner node of the tree, and storing an array of
children; andBody, representing the body data stored at the
leaves, and storing a force. TheTree class stores the tree,

1 /* Abstract class for tree nodes */

2 abstract class Node<region R> {
3 region MP; /* Region for mass and position */

4 double mass in R:MP; /* Mass */
5 Vector pos in R:MP; /* Position */
6 }

7

8 /* Inner node of the tree */

9 class InnerNode<region R> extends Node<R> {
10 region Children;

11 Node<R:*>[]<R:Children> children in R:Children;
12 }
13

14 /* Leaf node of the tree */
15 class Body<region R> extends Node<R> {

16 region Force; /* Region for force */
17 Vector force in R:Force; /* Force on this body */
18

19 /* Compute force of entire subtree on this body */
20 Vector computeForce(Node<R:*> subtree)

21 reads R:*:Children, R:*:MP { ... }
22 }

23

24 /* Barnes-Hut tree */
25 class Tree<region R> {

26 region Tree; /* Region for tree */
27 Node<R> root in R:Tree; /* Root */

28 Body<R:[i]>[]<R:[i]>#i bodies in R:Tree; /* Leaves */
29

30 /* Compute forces on all bodies */

31 void computeForces() writes R:* {
32 foreach (int i in 0, bodies.length) {

33 /* reads R:Tree, R:*:Node.Children, R:[i],
34 R:*:Node.MP writes R:[i]:Node.Force */

35 bodies[i].force = bodies[i].computeForce(root);
36 }
37 }

38 }

Figure 14. Using DPJ to write the Barnes-Hut force com-
putation.

together with an array ofBody objects pointing to the leaves
of the tree.

The methodTree.computeForces does the force com-
putation by traversing the array of bodies and calling the
methodBody.computeForce on each one, to compute the
force between the bodythis andsubtree. If subtree is a
body, or is sufficiently far away that it can be approximated
as a point mass, thenBody.computeForce computes and
returns the pairwise interaction between the nodes. Other-
wise, it recursively callscomputeForce on the children of
subtree, and accumulates the result.

We use a region parameter on the node classes to distin-
guish instances of these nodes. ClassTree uses the param-
eters to create an index-parameterized array of referencesto
distinct body objects; the parallel loop incomputeForces
iterates over this array. This allows distinctions from theleft
for operations onbodies[i] (Section 3). We also use dis-
tinct region names within each class (in particular, for the
force, masses and positions, and the children array) to en-
able distinctions from the right.

The key fact is that, from the effect summary in line 21
and the code in line 35, the compiler infers the effects shown
in lines 33–34. Using distinctions from the left and right, the
compiler can now prove that (1) the updates are distinct for
distinct iterations of theforeach; and (2) all the updates
are distinct from the reads. Notice also how the nested RPLs



allow us to describe the entire effect ofcomputeForces as
writes R:*. That is, to the outside world,computeForces
just writes under the region parameter ofTree. Thus with
careful use of RPLs, we can enforce a kind of encapsulation
of effects, which is important for modular software design.

7.2 Expressiveness and Coverage

We used DPJ to expressall available parallelism (except for
vector parallelism, which we do not consider here) for Merge
Sort, Monte Carlo, IDEA, K-Means, and Collision Tree. For
Barnes-Hut, the overall program includes four major phases
in each time step: tree building; center-of-mass computation;
force calculations; and position calculations. Expressing the
force, center of mass, and position calculations is straightfor-
ward, but we studied only the force computation (the domi-
nant part of the overall computation) for this work. DPJ can
also express the tree-building phase, but we would have to
use a divide-and-conquer approach, instead of inserting bod-
ies from the root via “hand-over-hand locking,” as in in [45].

Briefly, we parallelized each of the codes as follows.
MergeSort uses subarrays (Section 4.2) to perform in-place
parallel divide and conquer operations for both merge and
sort, switching to sequential merge and sort for subproblems
below a certain size. Monte Carlo uses index-parameterized
arrays (Section 4.1) to generate an array of tasks and com-
pute an array of results, followed by commutativity anno-
tations (Section 5) to update to globally shared data inside
a reduction loop. IDEA uses subarrays to divide the input
array into disjoint pieces, then usesforeach to operate on
each of the pieces. Section 7.1 describes our parallel Barnes-
Hut force computation. Collision Tree recursively walks two
trees, reading the trees and collecting a list of intersecting tri-
angles. At each node, a separate triangle list is computed in
parallel for each subtree, and then the lists are merged. Our
implementation uses method-local regions to distinguish the
writes to the left and right subtree lists. K-Means uses com-
mutativity annotations to perform simultaneous reductions,
one for each cluster. Table 1 summarizes the novel DPJ ca-
pabilities used for each code.

Table 1. Capabilities Used In The Benchmarks
1. Index-parameterized array; 2. Distinctions from the left; 3. Distinctions from the
right; 4. Recursive subranges; 5. Commutativity annotations.

Benchmark 1 2 3 4 5
Merge Sort - Y - Y -
Monte Carlo Y Y - - Y
IDEA - Y - Y -
Barnes-Hut Y Y Y - -
Collision Tree - Y - - -
K Means - - - - Y

Our evaluation and experience showed some interesting
limitations of the current language design. To achieve good
cache performance in Barnes-Hut, the bodies must be re-
ordered according to their proximity in space on each time
step [45]. As discussed in Section 7.1, we use an index-

Num Monte Carlo IDEA Barnes Hut
Cores DPJ Java DPJ Java DPJ Java

2 2.00 1.80 1.95 1.99 1.98 1.99
3 2.82 2.50 2.88 2.97 2.96 2.94
4 3.56 3.09 3.80 3.91 4.94 3.88
7 5.53 4.65 6.40 6.70 6.79 7.56

12 8.01 6.46 9.99 11.04 11.4 13.65
17 10.02 7.18 12.70 14.90 15.3 19.04
22 11.50 7.98 18.70 17.79 23.9 23.33

Table 2. Comparison of DPJ vs. Java threads performance
for Monte Carlo, IDEA encryption, and Barnes Hut.

parameterized array to update the bodies in parallel. As dis-
cussed in Section 4.1, this requires that we copy each body
with the new destination regions at the point of re-insertion.
As future work, we believe we can ease this restriction by
adding a mechanism for disjointness checking at runtime.

7.3 Performance

We measured the performance of each of the benchmarks on
a Dell R900 multiprocessor running Red Hat Linux with 24
cores, comprising four six-core Xeon processors, and a total
of 48GB of main memory. For each data point, we took the
minimum of five runs on an idle machine.

We studied multiple inputs for each of the benchmarks
and also experimented with different limits for recursive
codes. We present results for the inputs and parameter values
that show the best performance, since our main aim is to
evaluate how well DPJ can express the parallelism in these
codes. The sensitivity of the parallelism to input size and/or
recursive limit parameters is a property of the algorithm and
not a consequence of using DPJ.

Figure 15 presents the speedups of the six programs for
p ∈ {1, 2, 3, 4, 7, 12, 17, 22} processors. All speedups are
relative to an equivalent sequential version of the program,
with no DPJ or other multithreaded runtime overheads. All
six codes showed moderate to good scalability for all val-
ues ofp. Barnes-Hut and Merge Sort showed near-ideal per-
formance scalability, with Barnes-Hut showing a superlinear
increase forp = 22 due to cache effects.

Notably, as shown in Table 2, for the three codes where
we have manually parallelized Java threads versions avail-
able, the DPJ versions achieved speedups close to (IDEA
and Barnes Hut), or better than (Monte Carlo), the Java ver-
sions, for the same inputs on the same machines. We believe
the Java threads codes are all reasonably well tuned; the two
Java Grande benchmarks were tuned by the original authors
and the Barnes Hut code was tuned by us. The manually
parallelized Monte Carlo code exhibited a similar leveling
off in speedup as the DPJ version did beyond about 7 cores
because both have a significant sequential component that
makes copies of a large array for each parallel task. Over-
all, in all three programs, DPJ is able to express the avail-
able parallelism as efficiently as a lower-level hand coded
parallel programming model that provides no guarantees of
determinism or even race-freedom.



Figure 15. Speedups. Numbers in legend are input sizes.

Our experience so far has shown us that DPJ itself can
be very efficient, even though both the compiler and runtime
are preliminary. In particular (except for very small runtime
costs for the dynamic partitioning mechanism for subarrays),
our type system requires no runtime checks or speculation
and thereforeadds negligible runtime overhead for achiev-
ing determinism. On the other hand, it is possible that the
type system may constrain algorithmic design choices. The
limitation on reordering the array of bodies in Barnes-Hut,
explained in Section 7.2, is one such example.

7.4 Porting Effort

Table 3 shows the number of source lines changed and the
number of annotations, relative to the program size. Program
size is given in non-blank, non-comment lines of source
code, counted bysloccount. The next column shows how
many LOC were changed when annotating. The last four
columns show (1) the number of declarations using the
region keyword (i.e., field regions, local regions, and re-
gion parameters); (2) the number of RPLs appearing as ar-
guments toin, types, methods, and effect summaries; (3)
the number of method effect summaries, countingreads

andwrites separately; and (4) the number of commutativ-
ity annotations. As the table shows, the fraction of lines of
code changed was not large, averaging 10.7% of the original
lines. Most of the changed lines were due to writing RPL
arguments when instantiating types (represented in column
four), followed by writing method effect summaries (column
five).

More importantly, we believe that the overall effort of
writing, testing, and debugging a program withany paral-
lel programming model is dominated by the time required
to understand the parallelism and sharing patterns (includ-
ing aliases), and to debug the parallel code. The regions and
effects in DPJ provideconcrete guidance to the program-
mer on how to reason about parallelism and sharing. Once

Total Annotated Region Effect

Program SLOC SLOC Decls RPLs Summ. Comm.

MergeSort 295 38 (12.9%) 15 41 7 0

Monte Carlo 2877 220 (7.6%) 13 301 161 1

IDEA 228 24 (10.5%) 8 22 2 0

Barnes-Hut 682 80 (11.7%) 25 123 38 0

CollisionTree 1032 233 (22.6%) 82 408 58 0

K-means 501 5 (1.0%) 0 3 3 1

Total 5615 600 (10.7%) 143 898 269 2

Table 3. Annotation counts for the case studies.

the programmer understands the sharing patterns, he or she
explicitly documents them in the code through region and ef-
fect annotations, so other programmers can gain the benefit
of his or her understanding.

Further, programming tools can alleviate the burden of
writing annotations. We have developed an interactive port-
ing tool, DPJIZER [49], that infers many of these annota-
tions, using iterative constraint solving over the whole pro-
gram. DPJIZER is implemented as an Eclipse plugin and
correctly infers method effect summaries for a program that
is already annotated with region information. We are cur-
rently extending DPJIZER to infer RPLs, assuming that the
programmer declares the regions.

In addition, a good set of defaults can further reduce the
amount of manually written annotations. For example, if the
programmer does not annotate a class field, its default re-
gion could be the RPLdefault-parameter:field-name. This
default distinguishes both instances of the same class and
fields within a class. The programmer can override the de-
faults if she needs further refinements.

8. Related Work
We group the related work into five broad categories: ef-
fect systems (not including ownership-based systems); own-
ership types (including ownership with effects); unique ref-
erences; separation logic; and runtime checks.

Effect Systems:The seminal work on types and effects for
concurrency is FX [33, 27], which adds a region-based type
and effect system to a Scheme-like, implicitly parallel lan-
guage. Leino et al. [30] and Greenhouse and Boyland [26]
first added effects to an object-oriented language. None of
these systems can represent arbitrarily nested structuresor
array partitioning, and they cannot specify arbitrarily large
sets of regions. Also, the latter two systems rely on alias re-
strictions and/or supplementary alias analysis for soundness
of effect, whereas DPJ does not.

Ownership Types: Some ownership-based type systems
have been combined with effects to enable reasoning about
noninterference. Both JOE [16, 46] and MOJO [14] have
sophisticated effect systems that allow nested regions and
effects. However, neither has the capabilities of DPJ’s array
partitioning and partially specified RPLs, which are crucial



to expressing the patterns addressed in this paper. JOE’s
under effect shape is similar to DPJ’s∗, but it cannot do
the equivalent of our distinctions from the right. JOE allows
slightly more precision than our rule LET when a type or
effect uses a local variable that goes out of scope, but we
have found that this precision is not necessary for express-
ing deterministic parallelism. MOJO has a wildcard region
specifier?, but it pertains to the orthogonal capability of
multiple ownership, which allows objects to be placed in
multiple regions. Leino’s system also has this capability,but
without arbitrary nesting.

Lu and Potter [32] show how to use effect constraints to
break the owner dominates rule in limited ways while still
retaining meaningful guarantees. Theany context of [32] is
identical toRoot:* in our system, but we can make more
fine-grained distinctions. For example, we can conclude that
a pair of references stored in variables of typeC<R1:*> and
C<R2:*> can never alias, ifR1:* andR2:* are disjoint.

Several researchers [11, 3, 28] have described effect sys-
tems for enforcing a locking discipline in nondeterministic
programs, to prevent data races and deadlocks. Because they
have different goals, these effect systems are very different
from ours, e.g., they cannot express arrays or nested effects.

Finally, an important difference between DPJ and most
ownership systems is that we allowexplicit region declara-
tions, like [33, 30, 26], whereas ownership systems gen-
erally couple region creation with object creation. We have
found many cases where a new region is needed but a new
object is not, so the ownership paradigm becomes awkward.
Supporting field granularity effects also is difficult with own-
ership.

Unique References: Boyland [13] shows how to use alias
restrictions to guarantee determinism for a simple language
with pointers. Terauchi and Aiken [48] have extended this
work with a type inference algorithm that simplifies the type
annotations and elegantly expresses some simple patterns of
determinism. Alias restrictions are a well-known alternative
to effect annotations for reasoning about heap access, and in
some cases they can complement effect annotations [26, 12].
However, alias restrictions severely limit the expressivity
of an object-oriented language. It is not clear whether the
techniques in [13, 48] could be applied to a robust object-
oriented language. Clarke and Wrigstad’s external unique-
ness [17] is better suited to an object-oriented style, but it is
not clear whether external uniqueness is useful for determin-
istic parallelism.

Separation Logic: Separation logic [40] (SL) is a poten-
tial alternative to effect systems for reasoning about shared
resources. O’Hearn [35] and Gotsman et al. [25] use SL to
check race freedom, though O’Hearn includes some simple
proofs of noninterference. Parkinson [37] has extended C#
with SL predicates to allow sound inference in the presence
of inheritance. Raza et al. [39] show how to use separation

logic together with shape analysis for automatic paralleliza-
tion of a sequential program.

While SL is a promising approach, applying it to realis-
tic programs poses two key issues. First, SL is alow-level
specification language: it generally treats memory as a sin-
gle array of words, on which notions of objects and linked
data structures must be defined using SL predicates [40, 35].
Second, SL approaches generallyeitherrequire heavyweight
theorem proving and/or a relatively heavy programmer an-
notation burden [37]or are fully automated, and thereby lim-
ited by what the compiler can infer [25, 39].

In contrast, we chose to start from the extensive prior
work on regions and effects, which is more mature than
SL for OO languages. As noted in [40], type systems and
SL systems have many common goals but have developed
largely in parallel; as future research it would be useful to
understand better the relationship between the two.

Runtime Checks: A number of systems enforce some form
of disciplined parallelism via runtime checks. Jade [43] and
Prometheus [5] use runtime checks to guarantee determin-
istic parallelism for programs that do not fail their checks.
Jade also supports a simple form of commutativity annota-
tion [41]. Multiphase Shared Arrays [20] and PPL1 [47] are
similar in that they rely on runtime checks that may fail if
determinism is violated. None of these systems checks non-
trivial sharing patterns at compile time.

Speculative parallelism [7, 23, 51] can achieve deter-
minism with minimal programmer annotations, compared
to DPJ. However, speculation generally either incurs signif-
icant software overheads or requires special hardware [38,
31, 50]. Grace [7] reduces the overhead of software-only
speculation by running threads as separate processes and us-
ing commodity memory protection hardware to detect con-
flicts at page granularity. However, Grace does not efficiently
support essential sharing patterns such as (1) fine-grain ac-
cess distinctions (e.g., distinguishing different fields of an
object, as in Barnes-Hut); (2) dynamically scheduled fine-
grain tasks (e.g.,ForkJoinTask); or (3) concurrent data struc-
tures, which are usually finely interleaved in memory. Fur-
ther, unlike DPJ, a speculative solution does not document
the parallelization strategy or show how the code must be
rewritten to expose parallelism.

Kendo [36] and DMP [21] use runtime mechanisms to
guarantee equivalence to some (arbitrary) serial interleaving
of tasks; however, that interleaving is not necessarily obvi-
ous from the program text, as it is in DPJ. Further, Kendo’s
guarantee fails if the program contains data races, and DMP
requires special hardware support. SharC [6] uses a combi-
nation of static and dynamic checks to enforce race freedom,
but not necessarily deterministic semantics, in C programs.

Finally, a determinism checker [44, 22] instruments code
to detect determinism violations at runtime. This approach
is not viable for production runs because of the slowdowns
caused by the instrumentation, and it is limited by the cover-



age of the inputs used for the dynamic analysis. However, it
is sound for the observed traces.

9. Conclusion
We have described a novel type and effect system, together
with a language called DPJ that uses the system to enforce
deterministic semantics. Our experience shows that the new
type system features are useful for writing a range of pro-
grams, achieving moderate to excellent speedups on a 24-
processor system with guaranteed determinism.

Our future goals are to exploit region and effect anno-
tations for optimizing memory hierarchy performance; to
add runtime support for more flexible operationson index-
parameterized arrays; to add support for object-oriented par-
allel frameworks; and to add support for explicitly nondeter-
ministic algorithms.
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A. Static Semantics Rules
We divide the static semantics in to five parts: rules for valid
program elements (Figure 16), rules for validity, nesting,
and inclusion of RPLs (Figure 17), rules for valid types and
subtypes (Figure 18), rules for valid effects and subeffects
(Figure 19), and rules for typing expressions (Figure 20).

B. Dynamic Semantics Rules
Figure 21 gives the rules for evaluating programs. Iff :
A → B is a function, thenf ∪ {x 7→ y} is the function
f ′ : A ∪ {x} → B ∪ {y} defined byf ′(a) = f(a) if a 6= x

andf ′(x) = y. new(C) is the function taking each field of

classC with typeT to a null reference of typedΓ(T ), and
new(T [n]) is the function taking each indexn′ ∈ [0, n− 1]
to a null reference of typedΓ(T )[i← n′].

The rules for dynamic RPLs, types, and effects are nearly
identical to their static counterparts. Instead of writingout
all the rules, we describe how to generate them via simple
substitution from the rules given in Section A. For every
rule given there except RPL-VAR, RPL-PARAM, UNDER-
VAR, INCLUDE-PARAM, and INCLUDE-FULL, do the
following: (1) append DYN- to the front of the name; (2)
replaceΓ with H and[i] with [n]; and (3) replaceR with dR,
T with dT , andE with dE. For example, here are the rules
for dynamic class subtyping, generated by the substitution
above from the rule SUBTYPE-CLASS:

(DYN-SUBTYPE-CLASS) H ⊲ dR ⊆ dR′

H ⊲ C<dR> ≤ C<dR′>

Then add the following rules:

(DYN-RPL-REF) H ⊲ o : dT

H ⊲ o

(DYN-UNDER-REF) H ⊲ o : C<dR>

H ⊲ o ≤ dR

(DYN-TYPE-ARRAY) H ⊲ dT [i← n] H ⊲ dR[i← n]
H ⊲ dT []<dR>#i

C. Soundness
C.1 Type and Effect Preservation

Definition 1 (Valid dynamic environments). A dynamic en-
vironment dΓ is valid with respect to heapH (H ⊲ dΓ) if
the following hold: (1) for every bindingz 7→ o ∈ dΓ,
H ⊲ o : dT ; (2) for every bindingP 7→ dR ∈ dΓ, H ⊲ dR;
and (3) if this 7→ o ∈ dΓ, thenH ⊲ o : C<dR>, and
param(C) 7→ dR ∈ dΓ.

Definition 2 (Valid heaps). A heapH is valid (⊲H) if for
eacho ∈ Dom(H), one of the following holds:

1. (a)H ⊢ o : C<dR> and (b)H ⊲ C<dR> and (c) for each
field T f in Rf ∈ def(C), if H(o)(f) is defined, then
H ⊲ H(o)(f) : dT andH ⊲ dT andH ⊲ dT ≤ T [o ←
this][dR← param(C)]; or

2. (a)H ⊲ o : dT []<dR>#i and (b)H ⊲ dT []<dR>#i and
(c) if H(o)(n) is defined, thenH ⊲ H(o)(n) : dT ′ and
H ⊲ dT andH ⊲ dT ′ ≤ dT [i← n].

Definition 3 (Instantiation of static environments). A dy-
namic environment dΓ instantiates a static environmentΓ
(H ⊲ dΓ ≤ Γ) if ⊲Γ, ⊲H , andH ⊲ dΓ; the same variables
appear in Dom(Γ) as in Dom(dΓ); and for each pairz 7→
T ∈ Γ andz 7→ o ∈ dΓ, H ⊲ v : dT andH ⊲ dT ≤ dΓ(T ).

Theorem 1 (Preservation). For a well-typed program, if
Γ ⊲ e : T, E andH ⊲ dΓ ≤ Γ and(e, dΓ, H)→ (o, H ′, dE),
then (a)⊲H ′; and (b)H ′ ⊲ dT ≤ dΓ(T ), whereH ′ ⊲ o : dT ;
and (c)H ′ ⊲ dE; and (d)H ′ ⊲ dE ⊆ dΓ(E).



(PROGRAM) ⊲class∗ ∅ ⊲ e : T, E

⊲class∗ e

(CLASS) {this 7→ C<P>} ⊲ field∗ method∗ comm∗

⊲class C<P> { field∗ method∗ comm∗ }
(ENV) ∀z 7→ T ∈ Γ.Γ ⊲ T ∀P ⊆ R ∈ Γ.Γ ⊲ R

⊲Γ

(FIELD) Γ ⊲ T Γ ⊲ R

Γ ⊲ T f in R

(METHOD) Γ ⊲ Tr , Tx, E Γ′ = Γ ∪ {x 7→ Tx} Γ′ ⊲ e : T ′, E′ Γ′ ⊲ T ′ ≤ Tr Γ′ ⊲ E′ ⊆ E

Γ ⊲ Tr m(Tx x) E { e }

(COMM) this 7→ C<P> ∈ Γ ∃def(C.m), def(C.m′)
Γ ⊲ m commuteswith m′

Figure 16. Rules for valid program elements. def(C.m) means the definition of methodm in classC.

(RPL-ROOT)
Γ ⊲ Root

(RPL-VAR) z 7→ C<R> ∈ Γ
Γ ⊲ z

(RPL-PARAM) this 7→ C<P> ∈ Γ ∨ P ⊆ R ∈ Γ
Γ ⊲ P

(RPL-NAME) Γ ⊲ R region r ∈ program
Γ ⊲ R : r

(RPL-INDEX) Γ ⊲ R i ∈ Γ
Γ ⊲ R : [i]

(RPL-STAR) Γ ⊲ R

Γ ⊲ R : ∗
(UNDER-ROOT)

Γ ⊲ R ≤ Root

(UNDER-VAR) z 7→ C<R> ∈ Γ
Γ ⊲ z ≤ R

(UNDER-NAME) Γ ⊲ R ≤ R′

Γ ⊲ R : r ≤ R′

(UNDER-INDEX) Γ ⊲ R ≤ R′

Γ ⊲ R : [i] ≤ R′

(UNDER-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R : ∗ ≤ R′

(UNDER-INCLUDE) Γ ⊲ R ⊆ R′

Γ ⊲ R ≤ R′

(INCLUDE-NAME) Γ ⊲ R ⊆ R′

Γ ⊲ R : r ⊆ R′ : r

(INCLUDE-INDEX) Γ ⊲ R ⊆ R′

Γ ⊲ R : [i] ⊆ R′ : [i]
(INCLUDE-STAR) Γ ⊲ R ≤ R′

Γ ⊲ R ⊆ R′ : ∗

(INCLUDE-PARAM) P ⊆ R ∈ Γ
Γ ⊲ P ⊆ R

(INCLUDE-FULL) Γ ⊲ R ⊆ Rf

Γ ⊲ Rf ⊆ R

Figure 17. Rules for valid RPLs, nesting of RPLs, and inclusion of RPLs.The nesting and inclusion relations are reflexive
and transitive (obvious rules omitted).

(TYPE-CLASS) ∃def(C) Γ ⊲ R

Γ ⊲ C<R>

(TYPE-ARRAY) Γ ∪ {i} ⊲ T, R

Γ ⊲ T []<R>#i

(SUBTYPE-CLASS) Γ ⊲ R ⊆ R′

Γ ⊲ C<R> ≤ C<R′>

(SUBTYPE-ARRAY) Γ ∪ {i} ⊲ R ⊆ R′[i′ ← i] T ≡ T ′

Γ ⊲ T []<R>#i ≤ T ′[]<R′>#i′

Figure 18. Rules for valid types and subtypes. def(C) means the definition of classC. T ≡ T ′ means thatT andT ′ are
identical up to the names of variablesi.

(EFFECT-EMPTY)
Γ ⊲ ∅

(EFFECT-READS) Γ ⊲ R

Γ ⊲ reads R

(EFFECT-WRITES) Γ ⊲ R

Γ ⊲ writes R

(EFFECT-INVOKES) ∃def(C.m) Γ ⊲ E

Γ ⊲ invokes C.m with E

(EFFECT-UNION) Γ ⊲ E Γ ⊲ E′

Γ ⊲ E ∪ E′

(SE-EMPTY)
Γ ⊲ ∅ ⊆ E

(SE-READS) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ reads R′

(SE-WRITES) Γ ⊲ R ⊆ R′

Γ ⊲ writes R ⊆ writes R′

(SE-READS-WRITES) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ writes R′

(SE-INVOKES-1) Γ ⊲ E ⊆ E′

Γ ⊲ invokes C.m with E ⊆ invokes C.m with E′

(SE-INVOKES-2)
Γ ⊲ invokes C.m with E ⊆ E

(SE-UNION-1) Γ ⊲ E ⊆ E′ ∨ Γ ⊲ E ⊆ E′′

Γ ⊲ E ⊆ E′ ∪E′′

(SE-UNION-2) Γ ⊲ E′ ⊆ E Γ ⊲ E′′ ⊆ E

Γ ⊲ E′ ∪E′′ ⊆ E

Figure 19. Rules for valid effects and subeffects.

(LET) Γ ⊲ e : C<R>, E Γ ∪ {x 7→ C<R>} ⊲ e′ : T ′, E′

Γ ⊲ let x = e in e′ : T ′[x← R : ∗], E ∪ E′[x← R : ∗]
(FIELD-ACCESS) T f in Rf ∈ def(C) this 7→ C<param(C)> ∈ Γ

Γ ⊲ this.f : T, reads Rf

(FIELD-ASSIGN) this 7→ C<param(C)> ∈ Γ z 7→ T ∈ Γ T ′ f in Rf ∈ def(C) Γ ⊲ T ≤ T ′

Γ ⊲ this.f = z : T, writes Rf

(ARRAY-ACCESS) z 7→ T []<R>#i ∈ Γ
Γ ⊲ z[n] : T [i← n], reads R[i← n]

(ARRAY-ASSIGN) {z 7→ T []<R>#i, z′ 7→ T ′} ⊆ Γ Γ ⊲ T ′ ≤ T [i← n]
Γ ⊲ z[n] = z′ : T ′, writes R[i← n]

(INVOKE) {z 7→ C<R>, z′ 7→ T} ⊆ Γ Tr m(Tx x) E { e } ∈ def(C) Γ ∪ {P ⊆ R} ⊲ T ≤ Tx[this← z][param(C)← P ]
Γ ⊲ z.m(z′) : Tr[this← z][param(C)← R], invokes C.m with E[this← z][param(C)← R]

(VAR) z 7→ T ∈ Γ
Γ ⊲ z : T, ∅

(NEW-CLASS) Γ ⊲ C<R>

Γ ⊲ new C<R> : C<R>, ∅
(NEW-ARRAY) Γ ⊲ T []<R>#i

Γ ⊲ new T [n]<R>#i : T []<R>#i, ∅

Figure 20. Rules for typing expressions. param(C) means the parameter of classC.



(DYN-LET) (e, dΓ, H) → (o, H′, dE) (e′, dΓ ∪ {x 7→ o}, H′)→ (o′, H′′, dE′)
(let x = e in e′, dΓ, H) → (o′, H′′, dE ∪ dE′)

(DYN-VAR) z 7→ o ∈ dΓ
(z, dΓ, H) → (o, H, ∅)

(DYN-FIELD-ACCESS) this 7→ o ∈ dΓ H ⊲ o : C<dR> T f in Rf ∈ def(C)
(this.f, dΓ, H) → (H(o)(f), H, reads dΓ(Rf ))

(DYN-FIELD-ASSIGN) {this 7→ o, z 7→ o′} ⊆ dΓ H ⊲ o : C<dR> T f in Rf ∈ def(C)
(this.f = z, dΓ, H) → (o′, H ∪ {o 7→ (H(o) ∪ {f 7→ o′})}, writes dΓ(Rf ))

(DYN-ARRAY-ACCESS) z 7→ o ∈ dΓ H ⊲ o : dT []<dR>#i

(z[n], dΓ, H) → (H(o)(n), H, reads dR[i← n])

(DYN-ARRAY-ASSIGN) {z 7→ o, z′ 7→ o′} ⊆ dΓ H ⊲ o : dT []<dR>#i

(z[n] = z′, dΓ, H)→ (o′, H ∪ {o 7→ (H(o) ∪ {n 7→ o′})}, writes dR[i← n])

(DYN-INVOKE) H ⊢ o : C<dR> Tr m(Tx x) E { e } ∈ def(C) (e, {this 7→ o, param(C) 7→ dR, x 7→ o′}, H) → (o′′, H′, dE)
(z.m(z′), {z 7→ o, z′ 7→ o′} ∪ dΓ, H)→ (o′′, H′, invokes C.m with dE)

(DYN-NEW-CLASS) o 6∈ Dom(H) H′ = H ∪ {o 7→ new(C)} H′ ⊲ o : C<dΓ(R[: ∗ ← ǫ])>
(new C<R>, dΓ, H) → (o, H′, ∅)

(DYN-NEW-ARRAY) o 6∈ Dom(H) H′ = H ∪ {o 7→ new(T [n])} H′ ⊲ o : dΓ(T )[]<dΓ(R[: ∗ ← ǫ])>
(new T [n]<R>#i, dΓ, H)→ (o, H′, ∅)

Figure 21. Rules for program evaluation.

(DISJOINT-LEFT-NAME) r 6= r′ Γ ⊲ R ≤ Rf : r Γ ⊲ R′ ≤ Rf : r′

Γ ⊲ R # R′

(DISJOINT-LEFT-INDEX) i 6= i′ Γ ⊲ R ≤ Rf : [i] Γ ⊲ R′ ≤ Rf : [i′]
Γ ⊲ R # R′

(DISJOINT-LEFT-NAME-INDEX) Γ ⊲ R ≤ Rf : r Γ ⊲ R′ ≤ Rf : [i]
Γ ⊲ R # R′

(DISJOINT-RIGHT-NAME) r 6= r′

Γ ⊲ R : r # R′ : r′

(DISJOINT-RIGHT-INDEX) i 6= i′

Γ ⊲ R : [i] # R′ : [i′]

(DISJOINT-RIGHT-NAME-INDEX)
Γ ⊲ R : r # R′ : [i]

(DISJOINT-NAME) Γ ⊲ R # R′

Γ ⊲ R : r # R′ : r

(DISJOINT-INDEX) Γ ⊲ R # R′

Γ ⊲ R : [i] # R′ : [i]

Figure 22. Rules for disjointness of RPLs. The disjointness
relation is symmetric (obvious rule omitted).

C.2 Disjointness

Figure 22 gives the rules for concluding that two static RPLs
are disjoint; we extend them to dynamic RPLs as in Sec-
tion B.

Definition 4 (Set interpretation of dynamic RPLs). Let ⊲H

and H ⊲ dR. Then S(dR, H) is defined as follows: (1)
S(dRf , H) = {dRf}; (2) S(dR : r, H) = {dRf : r|dRf ∈
S(dR, H)}; (3) S(dR : [n], H) = {dRf : [n]|dRf ∈
S(dR, H)}; and (4)S(dR : ∗, H) = {dRf |H⊲dRf ≤ dR}.

Definition 5 (Region of a field or array cell). If H ⊲ o :
C<dR> andT f in Rf ∈ def(C), then region(o, f, H) =
Rf [this ← o][param(C) ← dR]. If H ⊲ o : dT []<dR>#i,
then region(o, n, H) = dR[i← n].

(NI-READ)
Γ ⊲ reads R # reads R′

(NI-READ-WRITE) Γ ⊲ R # R′

Γ ⊲ reads R # writes R′

(NI-WRITE) Γ ⊲ R # R′

Γ ⊲ writes R # writes R′

(NI-INVOKES-1) Γ ⊲ E # E′

Γ ⊲ invokes C.m with E # E′

(NI-INVOKES-2) m commuteswith m′ ∈ def(C)
Γ ⊲ invokes C.m with E # invokes C.m′ with E′

(NI-EMPTY)
Γ ⊲ ∅# E

(NI-UNION) Γ ⊲ E # E′′ Γ ⊲ E′ # E′′

Γ ⊲ E ∪ E′ # E′′

Figure 23. The noninterference relation on effects. Nonin-
terference is symmetric (obvious rule omitted).

Proposition 1(Disjointness of region sets). If H⊲dR # dR′,
thenS(dR, H) ∩ S(dR′, H) = ∅.

Proposition 2 (Distinctness of disjoint regions). If H ⊲

region(o, f, H)#region(o′, f ′, H), then eithero 6= o′ or
f 6= f ′; and if H ⊲ region(o, n, H)#region(o′, n′, H), then
eithero 6= o′ or n 6= n′.

C.3 Noninterference of Effect

Figure 23 gives the noninterference relation on static effects.
We extend this relation to dynamic effects as in Section B.

Theorem 2 (Soundness of noninterference). If Γ ⊲ e : T, E

and Γ ⊲ e′ : T ′, E′ and Γ ⊲ E # E′ and H ⊲ dΓ ≤
Γ and (e, dΓ, H) → (o, H ′, dE) and (e′, dΓ, H ′) →
(o′, H ′′, dE′), then there existsH ′′′ such that(e′, dΓ, H)→
(o′, H ′′′, dE′) and(e, dΓ, H ′′′)→ (o, H ′′, dE).


