A Type and Effect System for Deterministic Parallel Java

Robert L. Bocchino Jr.
Sarita V. Adve Stephen Heumann
Patrick Simmons

Vikram S. Adve

Hyojin Sung

Danny Dig
Rakesh Komuravelli Jeffregriey
Mohsen Vakilian

Department of Computer Science
University of lllinois at Urbana-Champaign

dpj@cs.uiuc.edu

Abstract

Today’s shared-memory parallel programming models are

Language Constructs and Features—Concurrent Program-
ming Structures

complex and error-prone. While many parallel programs are General Terms Languages, Verification, Performance

intended to be deterministic, unanticipated thread iater

ings can lead to subtle bugs and nondeterministic semantics

In this paper, we demonstrate that a practigpe and ef-
fect systerman simplify parallel programming lyuarantee-
ing deterministic semantiegith modular, compile-time type

Keywords Determinism, deterministic parallelism, effects,
effect systems, commutativity

1. Introduction

checking even in a rich, concurrent object-oriented laggua The advent of multicore processors demands parallel pro-
such as Java. We describe an object-oriented type and effecgramming by mainstream programmers. The dominant model
system that provides several new capabilities over previou Of concurrency today, multithreaded shared memory pro-
systems for expressing deterministic parallel algorititds ~ gramming, is inherently complex due to the number of possi-
also describe a language called Deterministic Paralled Jav ble thread interleavings that can cause nondeterminissic p
(DPJ) that incorporates the new type system features, anddram behaviors. This nondeterminism causes subtle bugs:
we show that a core subset of DPJ is sound. We describe arflata races, atomicity violations, and deadlocks. The [gdral
experimental validation showing that DPJ can express a wideProgrammer today prunes away the nondeterminism using
range of realistic parallel programs; that the new typessyst ~ constructs such as locks and semaphores, dedigsthe
features are useful for such programs; and that the parallelProgram to eliminate the symptoms. This task is tedious,
programs exhibit good performance gains (coming close to €rror prone, and extremely challenging even with good de-

or beating equivalent, nondeterministic multithreadea* pr
grams where those are available).

Categories and Subject Descriptors D.1.3 [Softwaré:
Concurrent Programming—Parallel Programming; D.3.1
[Softwarg: Formal Definitions and Theory; D.3.2Spft-
warg]: Language Classifications—Concurrent, distributed,
and parallel languages; D.3.3¢ftwaré: Language Class-
ifications—Object-oriented languages; D.3.Softwaré:

* This work was supported by the National Science Foundataleugrants
CCF 07-02724 and CNS 07-20772, and by Intel, Microsoft aed.thiver-
sity of lllinois through UPCRC lllinois.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.
Copyright(© 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

bugging tools.

The irony is that a vast number of computational algo-
rithms (though not all) are in fadeterministica given input
is always expected to produce the same output. Almost all
scientific computing, encryption/decryption, sortingjeo
piler and program analysis, and processor simulation algo-
rithms exhibit deterministic behavior. Today’s parallebp
gramming models force programmers to implement such al-
gorithms in a nondeterministic notation and then convince
themselves that the behavior will be deterministic.

By contrast, adeterministic-by-default programming
model[9] can guaranteethat any legal program produces
the same externally visible results in all executions with a
particular inputunlessnondeterministic behavior is explic-
itly requested by the programmer in disciplined ways. Such a
model can make parallel application development and main-
tenance easier for several reasons. Programmers do not have
to reason about notoriously subtle and difficult issues such
as data races, deadlocks, and memory models. They can start
with a sequential implementation and incrementally add par
allelism, secure in the knowledge that the program behavior

will remain unchanged. They can use familiar sequential Our effect system can support all of the above capa-
tools for debugging and testing. Importantly, they canaast bilities, using several novel features. We introduegion
application only once for each input [19]. path lists or RPLs, which enable more flexible effect sum-
Unfortunately, while guaranteed determinism is available maries, including effects on nested structures. RPLs also
for some restricted styles of parallel programming (e.gtad allow more flexible subtyping than previous work. We in-
parallel, or pure functional), it remains a challenging re- troduce anindex-parameterized array typghat allows ref-
search problem to guarantee determinism for imperative, erences to provably distinct objects to be stored in an ar-
object-oriented languages such as Java, C++, and C#. In suclay while still permitting arbitrary aliasing of the objects
languages, object references, aliasing, and updates & mut through references outside the arraffe are not aware of
ble state obscure the data dependences between parts of any statically checked type system that provides this dkpab
program, making it hard to prove that those dependencesity. We define the notions cdubarrays(i.e., one array that
are respected by the program’s synchronization. This is ashares storage with another) apalrtition operations that
very important problem as many applications that need to betogether enable in-place parallel divide and conquer epera
ported to multicore platforms are written in these langgage tions on arrays. Subarrays and partitioning provide a aatur
We believe that aype and effect systef@7, 26, 12, 30] object-oriented way to encode disjoint segments of ariays,
is an important part of the solution to providing guaranteed contrast to lower-level mechanisms like separation 10g8f4 [
deterministic semantics for imperative, object-orieritad that specify array index ranges directly. We also introcutce
guages. A type and effect system (or effect system for short) invocation effegttogether with simpleommutativity anno-
allows the programmer to give names to distinct parts of tations to permit the parallel invocation of operations that
the heap (we call themegiong and specify the kind of ac- may actually interfere at the level of reads and writes, but
cesses to parts of the heap (ergad or write effectgin dif- still commute logically, i.e., produce the same final (I@djc
ferent parts of the program. The compiler can then check, behavior. This mechanism supports concurrent data struc-
using simple modular analysis, that all pairs of memory ac- tures such as concurrent sets, hash maps, atomic counters,
cesses either commute with each other (e.g., they are bottetc.
reads, or they access disjoint parts of the heap) or are prop- We have designed a language calzterministic Paral-
erly synchronized to ensure determinism. A robust type and lel Java (DPJ) incorporating these features. DPJ is an ex-
effect system with minimal runtime checks is valuable be- tension to Java that enforces deterministic semantics via
cause it enables checking at compile time rather than run-compile-time type checking. Because of the guaranteed de-
time, eliminates unnecessary runtime checks (thus leading terministic semantics, existing Java code can be ported to
less overhead and/or less implementation complexity), andDPJincrementally Furthermore, porting to DPJ will have
contributes to program understanding by showivitgerein minimal impact on program testing: developers can use the
the code parallelism is expressed — and where code mussame tests and testing methodology for the ported parallel
be rewritten to make parallelism available. Effect annota- code as they had previously used for their sequential code.
tions can also provide an enforceable contract at interface The choice of Java for our work is not essential; simi-
boundaries, leading to greater modularity and composabil- lar extensions could be applied to other object-orientad la
ity of program components. An effect system can be supple- guages, and we are currently developing a version of the lan-
mented with runtime speculation [23, 51, 38, 31, 50] or other guage and compiler for C++. We are also exploring how to
runtime checks [43, 20, 47, 6] to enable greater expregsivit extend our type system and language to provide disciplined
In this paper, we develop a new type and effect system for support for explicitly nondeterministic computations.
expressing important patterns of deterministic paraihelin This paper makes the following contributions:
imperative, object-oriented programs. FX [33, 27] showed
how to use regions and effects in limited ways for determin-
istic parallelism in a mostly functional language. Laterko
on object-oriented effects [26, 12, 30] and object owner-
ship [16, 32, 14] introduced more sophisticated mechanisms
for specifying effects. However, studying a wide range of
realistic parallel algorithms has shown us that some signifi-
cantly more powerful capabilities are needed for such algo-
rithms. In particular, all of the existing work lacks gerlera 2. Formal definition. For a core subset of the type system,
support for fundamental parallel patterns such as parallel ~We have developed a formal definition of the static and

1. Novel features.We introduce a new region-based type
and effect system with several novel features (RPLs,
index-parameterized arrays, subarrays, and invocation
effects) for expressing core parallel programming pat-
terns in imperative languages. These features guarantee
determinism at compile-time.

updates on distinct fields of nested data structures, phrall dynamic semantics, and a detailed proof that our system
array updates, in-place divide and conquer algorithms, and ~ allows sound static inference about noninterference of ef-
commutative parallel operations. fects. We present an outline of the formal definition and

proof in this paper. The full details are in an accompany-
ing technical report [10] available via the Web [1].

class TreeNode<region P> {

3. Language Definition. We have designed a language ; celiode regron
N region Links, L, R;
called DPJ that incorporates the type and effect system ; double mass in P;
into a modern O-O language (Java) in such a way that * TreeNode<L> left in Links;
. e . 5 TreeNode<R> right <n Links;
it supports the full flexibility of the sequential subset of ¢ void setMass(double mass) writes P { this.mass = mass; }
Java, enables incremental porting of Java code to DPJ, ’

void initTree(double mass) {

. R 8 cobegin {
and guarantees semantic equivalence between a DPJ pro- /% reads Links writes L #/
gram and its obvious sequential Java version. We have *° left.mass = mass;
; . 11 /* reads Links writes R */
implemented a prototype compiler for DPJ that performs ;. right.mass = mass;
the necessary type checking and then maps parallelism » N ¥
down to the ForkJoinTask dynamic scheduling frame- s 3
work.

4. Empirical evaluation. We study six real-world parallel Figure 1. Basic features of DPJ. Type and effect annota-

programs written in DPJ. This experience shows that DPJ tions are |taI|C|zeq. Notelthat methaditTree (line 7) has
can express a range of parallel programming patternS'no effect annotation, so it gets the default effect summaéry o

that all the novel type system features are useful in real ’
programs; and that the language is effective at achieving

reads and writes the entire heap.”

significant speedups on these codes on a commodity 24- e ———

core shared-memory processor. In fact, in 3 out of 6 TrooNodecie oo | Lk

codes, equivalent, manually parallelized versions writte TreeNode<R> rightChild | Links

to use Java threads are available for comparison, and the \

DPJ versions come close to or beat the performance of TreeNode<L> TreeNode<R>

the Java threads versions. double mass L double mass R
TreeNode<L> left Links TreeNode<L> left Links

The rest of this paper proceeds as follows. Section 2 pro- TreeNode<R>right | Links TreeNode<R>right | Links

vides an overview of some basic features of DPJ, and Sec-
tions 3-5 explain the new features in the type system (RPLs,
arrays, and commutativity annotations). Section 6 summa-
rizes the formal results for a core subset of the Ianguage.feCtS without alias restrictions or interprocedural abasl-

Section 7 discusses our prototype implementation and-evalu YSis- A field region name functions like an ordinary class

ation of DPJ. Section 8 discusses related work, and Section 9member: it is inherited by subclasses, and outside the scope
concludes. of its defining class, it must be appropriately qualified (e.g

TreeNode.L). A local region declaratioris similar and de-
; g clares a region name at local scope.
2. Basic Capabilities Region %arametersDPJ providzs class and method re-
We begin by summarizing some basic capabilities of DPJ gion parameters that operate similarly to Java generic pa-
that are similar to previous work [33, 30, 26, 14, 15]. We re- rameters. We declare region parameters with the keyword
fer to the example in Figure 1, which shows a simple binary region, as shown in line 1, so that we can distinguish them
tree with three nodes and a methigli tTree that writes from Java generic type parameters (which DPJ fully sup-
into themass fields of the left and right child nodes. As we ports). When a region-parameterized class or method is used
describe more Capabilities of DPJ, we will also eXpand upon region arguments must be provided to the parametersy as
this example to make it more realistic, e.g., supportingdre shown in lines 4-5. Region parameters enable us to create
of arbitrary depth. multiple instances of the same class with their data in diffe
Region namedn DPJ, the programmer uses named re- gnt regions.
gions to partition the heap, and writes method effect sum- pisjointness constraintsTo control aliasing of region
maries Stating what regions are read and written by eachparametersy the programmer may write a disjointness con-
method. Afield region declaratiordeclares a new name straint [14] of the formP, # P, whereP; and P, are pa-
(called afield region nampthat can be used as a region rameters (or regions written with parameters; see Secion 3
name. For example, line 2 declares namaésks, L, andR, that are required to be disjoint. Disjointness of regions is
and these names are used as regions in lines 4 aAdigld fully explained in Section 3; in the case of simple names,
region name is associated with the static class in which it jt means the names must be different. The constraints are
is declared; this fact allows us to reason soundly about ef- checked when instantiating the class or calling the method.
If the disjointness constraints are violated, the compder
1As explained in Section 3, in general a DPJ region is reptedeas a

; ; e : sues a warning.
region path list(RPL), which is a colon-separated list of elements such as .
Root:L:L:R that expresses the nested structure of regions. When aesimpl Partitioning the heap.The programmer may place _the
namer functions as a region, as shown in this section, it is shofdot : . keywordin after a field declaration, followed by the region,

Figure 2. Runtime heap typing from Figure 1

as shown in lines 3-5. An operation on the field is treated

as an operation on the region when specifying and check-

ing effects. This effectively partitions the heap into ats.
See Figure 2 for an illustration of the runtime heap typing,
assuming the root node has been instantiated Ruittt.
Method effect summariegvery method (including all
constructors) must conservatively summarize its heapsffe
with an annotation of the fornteads region-listwrites
region-list as shown in line 6. Writes imply reads. When

3. Region Path Lists (RPLS)

An important concept in effect systemsregion nesting
which lets us partition the heap hierarchically so we can ex-
press that different computations are occurring on differe
parts of the heap. For example, to extend the code in Fig-
ure 1 to a tree of arbitrary depth, we need a tree of nested re-
gions. As discussed in Section 4, we can also use nesting to
express that two aggregate data structures (like arrag & ar
distinct regions, and the components of those structufes (I

one method overrides another, the effects of the superclassyq cells of the arrays) are in distinct regions, each nasted

method must contain the effects of the subclass method.

For example, if a method specifiesraites effect, then all
methods it overrides must specify that samra tes effect.

der the region containing the whole structure.
Effect systems that support nested regions are generally
based on object ownership [16, 14] or use explicit declara-

This constraint ensures that we can check effects Soundlytions that one region is under another [30, 26]. As discussed

in the presence of polymorphic method invocation [30, 26].
The full DPJ language also includefect variable$33], to

support writing a subclass whose effects are unknown at the

time of writing the superclass (e.g., in instantiating adity

below, we use a novel approach based on chains of elements
calledregion path listsor RPLs, that provides new capabil-
ities for effect specification and subtyping.

or framework class); however, we leave the discussion of 3.1 Specifying Single Regions

effect variables to future work.

Effects on local variables need not be declared, becauser
these effects are masked from the calling context. Nor must

initialization effects inside a constructor body be desthr

The region path list (RPL) generalizes the notion of a simple
egion namer. Each RPL names a singtegion, or set of
memory locations, on the heap. The set of all regions parti-
tions the heap, i.e., each memory location lies in exactéy on

because the DPJ type and effect system ensures that no Oth%gion. The regions are arranged in a tree with a special re-

task can accessis until after the constructor returns. Read
effects onfinal variables are also ignored, because those

reads can never cause a conflict. A method or construc-

tor with no externally visible heap effects may be declared
pure.

gionRoot as the root node. We say that one regionasted
under(or simply under) another if the first is a descendant of
the second in the tree. The tree structure guarantees that fo
any two distinct names ands”, the set of regions under

and the set of regions underhave empty intersection, and

To simplify programming and provide interoperability e ¢an yse this guarantee to prove disjointness of memory

with legacy code, we adopt the rule that no annotation means
“reads and writes the entire heap,” as shown in Figure 1. This

scheme allows ordinary sequential Java to work correctly,
but it requires the programmer to add the annotations in
order to introduce safe parallelism.

Expressing parallelismDPJ provides two constructs for
expressing parallelism, th®begin block and theforeach
loop. Thecobegin block executes each statement in its body
as a parallel task, as shown in lines 8-13. TFheeach
loop is used in conjunction with arrays and is described in
Section 4.1.

Proving determinism.To type check the program in
Figure 1, the compiler does the following. First, check
that the summarwrites P of methodsetMass (line 6)
is correct (i.e., it covers all effect of the method). It is,
because fieldnass is declared in regiorP (line 3), and

there are no other effects. Second, check that the paral-

lelism in lines 8-13 is safe. It is, because the effect of
line 10 isreads Links writes L; the effect of line 12 is
reads Links writes R; andLinks, L, andR are distinct
names. Notice that this analysis is entirely intraprocatur

accesses.

Syntactically, an RPL is a colon-separated list of names,
called RPL elementsbeginning withRoot. Each element
after Root is a declared region name? for example,
Root:A:B. As a shorthand, we can omit the leadiwgt. In
particular, a bare name can be used as an RPL, as illustrated
in Figure 1. The syntax of the RPL represents the nesting
of region names: one RPL is under another if the second is
a prefix of the first. For examplé,:R is underL. We write
Ri < Ry if Ry isunderRs.

We may also write a region parameter, instea@®edt,
at the head of an RPL, for exameA, whereP is a param-
eter. When a class with a region parameter is instantiated
at runtime, the parameter is resolved to an RPL beginning
with Root. Method region parameters are resolved similarly
at method invocation time. Because a parameisralways
bound to the same RPL in a particular scope, we can make
sound static inferences about parametric RPLs. For example
forallP,P:A <P,andP:A # P:Bif and only if A # B.

Figure 3 illustrates the use of region nesting and class
region parameters to distinguish different fields as well as
different objects. It extends the example from Figure 1 by

2 As noted in Section 2, this can be a package- or class-qubfifiene such
ascC.r; for simplicity, we use- throughout.

class TreeNode<region P> {
region Links, L, R, M, F;
double mass in P:M;
double force in P:F;
TreeNode<L> left in Links;
TreeNode<R> right in Links;
void initTree(double mass, double force) {
cobegin {
9 /* reads Links writes L:M x/
10 left.mass = mass;
11 /* reads Links writes L:F %/
12 left.force = force;
13 /* reads Links writes R:M */
14 right.mass = mass;
15 /* reads Links writes R:F x/
16 right.force = force;
17
18
19 }

1
2
3
4
5
6
7
8

Figure 3. Extension of Figure 1 showing the use of region
nesting and region parameters.

/

TreeNode<l>

TreeNode<Root>

TreeNode<L> left Links

TreeNode<R> right Links

AN

TreeNode<R>

M
vs.
*

double mass L: double mass

double force L: double force

|
1
1
|
|
|
|
S
|
|
|
|
1
'

vs.R:

Figure 4. Graphical depiction of the distinctions shown in
Figure 3. Thex denotes any sequence of RPL elements; this
notation is explained further in Section 3.2.

adding aforce field to theTreeNode class, and by making
theinitTree method (line 7) set theass andforce fields

of the left and right child in four parallel statements in a
cobegin block (lines 9-16).

To establish that the parallelism is safe (i.e., that lines
9-16 access disjoint locations), we place fietdss and
force in distinct regions®:M andP:F, and the linksleft
andright in a separate regiobinks (since they are only
read). The parameter appears in both regions arrdlis
bound to different regiong.@andr) for the left and right sub-
trees, because of the different instantiations of the patam
typeTreeNode for the fieldsleft andright. Because the
named. andR used in the types are distinct, we can distin-
guish the effects oneft (lines 10-12) from the effects on
right (lines 14-16). And because the nameandF are
distinct, we can distinguish the effects on the differeritie
within an objecti.e., lines 10 vs. 14 and lines 12 vs. 16, from
each other. Figure 4 shows this situation graphically.

3.2 Specifying Sets of Regions

Partially specified RPLsIo express recursive parallel algo-
rithms, we must specify effects @ets of regionge.g., “all
regions under?”). To do this, we introduceartially speci-
fied RPLs A patrtially specified RPL contains the symbol

class TreeNode<region P> {
region Links, L, R, M, F;
double mass in P:M;
double force in P:F;
TreeNode<P:L> left 4n Links;
TreeNode<P:R> right in Links;
TreeNode<*> link 4n Links;
void computeForces() reads Links, *:M writes P:*:F {
9 cobegin {
10 /* reads *:M writes P:F x/
11 this.force = (this.mass * link.mass) * R_GRAV;
12 /* reads Links, *:M writes P:L:*:F %/
13 if (left != null) left.computeForces();
14 /* reads Links, *:M writes P:R:*:F %/
15 if (right !'= null) right.computeForces();
16
17
18 }

1
2
3
4
5
6
7
8

Figure 5. Recursive computation showing the use of par-
tially specified RPLs for effects and subtyping.

(“star”) as an RPL element, standing in for some unknown
sequence of names. An RPL that containsi®fully spec-
ified.

For example, consider the code shown in Figure 5. Here
we are operating on the sarffeeeNode shown in Figs. 1
and 3, except that we have added (1}ink field (line
7) that points to some other node in the tree and (2) a
computeForces method (line 8) that recursively descends
the tree. At each nodesomputeForces follows 1ink to
another node, reads thess field of that node, computes the
force between that node and this one, and stores the resultin
theforce field of this node. This computation can safely be
done in parallel on the subtrees at each level, because each
call writes only theforce field of this, and the operations
on other nodes (throughink) are all reads of thaass,
which is distinct fromforce. To write this computation, we
need to be able to say, for example, that line 13 writes only
the left subtree, and does not touch the right subtree.

Distinctions from the leftin lines 11-15 of Figure 5,
we need to distinguish the write tthis.force (line 11)
from the writes to theforce fields in the subtrees (lines
13 and 15). We can use partially specified RPLs to do this.
For example, line 8 says thatmputeForces may read all
regions undeL.inks and write all regions under that end
with F.

If RPLs R, and R, are the same in the firstplaces, they
differ in placen + 1, and neither contains & in the first
n + 1 places, then (because the regions form a tree) the set
of regions underz; and the set of regions undé:, have
empty intersection. In this case we say tRat * and R, : *
are disjoint, and we know that effects on these two RPLs
are noninterfering. We call this a “distinction from thet/éef
because we are using the distinctness of the names to the left
of any star to infer that the region sets are non-intersgctin
For example, a distinction from the left establishes that th
region set®:F,P:L:*:F, andP:R:*:F (shown in lines 10-
15) are disjoint, because the RPLs all start vAthnd differ
in the second place.

Distinctions from the rightSometimes it is important to
specify “all fieldsz in any node of a tree.” For example, in
lines 10-15, we need to show that the reads ohtts fields
are distinct from the writes to thiorce fields. We can make
this kind of distinction by using different namedter the
star: if Ry and R, differ in thenth place from the right, and
neither contains & in the firstn places from the right, then

a simple syntactic argument shows that their region sets are

disjoint. We call this pattern a “distinction from the right
because the names that ensure distinctness appear tathe rig
of any star. For example, in lines 10-15, we can distinguish
the reads o¥: M from the writes tP:L: *:F andP:R: *:F.

More complicated patternddore complicated RPL pat-
terns likeRoot : *: A: x: B are supported by the type system.
Although we do not expect that programmers will need to
write such patterns, they sometimes arise via parameter sub
stitution when the compiler is checking effects.

3.3 Subtyping and Type Casts

SubtypingPartially specified RPLs are also useful for sub-
typing. For example, in Figure 5, we needed to write the type
of a reference that could point toTaeeNode<P>, for any
binding toP. With fully specified RPLs we cannot do this,

Tree<Root>

double force Root : F

double mass Root : M

Tree<Root : L> left Links

Tree<Root : R> right Links

Tree<™> link

»

Links

",

Tree<Root : L>

Tree<Root : R>

double force Root:L:F double force Root:R:F

double mass Root:L: M double mass Root:R: M

Tree<Root : L : L> left Links Tree<Root : R : L> left Links

Tree<Root : L : R> right Links Links

\
*. | Tree<Root : R : R> right
\

Tree<™ link Links Tree<™ link Links

Figure 6. Heap typing from Figure 5. Reference values are
shown by arrows; tree arrows are solid, and non-tree arrows
are dashed. Notice that all arrows obey the subtyping rules.

aClassCastException at runtime. However, a cast from
Object to B<ri1> is unsound and could violate the deter-
minism guarantee, because tigject could be aB<r2>,
which would not cause a runtime exception. The compiler
allows this cast, but it issues a warning.

because we cannot write a type to which we can assign both

TreeNode<L> and TreeNode<R>. The solution is to use a
partially specified RPL in the type, e.JreeNode<*>, as
shown in line 7 of Figure 5. Now we have a type that is flex-

4. Arrays

DPJ provides two novel capabilities for computing with

ible enough to allow the assignment, but retains SOUﬂdnGS&irrays;index-parameterized arrayand subarrays Index-

by explicitly saying that we do not know the actual region.

The subtyping rule is simpleC<R;> is a subtype of
C<Ry> if the set of regions denoted iy, is included in the
set of regions denoted Wy,. We write R C R, to denote set
inclusion for the corresponding sets of regiongz{fand R
are fully specified, the®; C R, impliesR = R,. Note that
nesting and inclusion are relate®; < R, implies R; C
Ry :*. However, nesting alone doest imply inclusion of
the corresponding sets. For exampleB < A, butA:B ¢ A,
because\:B andA denote distinct regions. In Section 6 we
discuss the rules for nesting, inclusion, and disjointrass
RPLs more formally.

Figure 6 illustrates one possible heap typing resulting
from the code in Figure 5. The DPJ typing discipline ensures
the object graph restricted to theft andright references
is a tree. However, the full object graph including thienk
references is more general and can even include cycles, a
illustrated in Figure 6. Note how our effect system is able to
prove that the updates to different subtrees are distinet) e

though (1) non-tree edges exist in the graph; and (2) those

edges are followed to do possibly overlapping reads.
Type castsDPJ allows any type cast that would be legal
for the types obtained by erasing the region variables. This

parameterized arrays allow us to traverse an array of object
references and safely update the objects in parallel, while
subarrays allow us to dynamically partition an array into
disjoint pieces, and give each piece to a parallel subtask.

4.1

A basic capability of any language for deterministic paral-
lelism is to operate on elements of an array in parallel. For
a loop over an array of values, it is sufficient to prove that
each iteration accesses a distinct array element (we ¢all th
aunique traversgl For a loop over an array of references to
mutable objects, however, a unique traversal is not enough:
we must also prove that any memory locations updated by
following references in distinct array cells (possiblyahgh

a chain of references) are distinct. Proving this propesty i
very hard in general, if assignments are allowed into refer-

Index-Parameterized Arrays

®nce cells of arrays. No previous effect system that we are

aware of is able to ensure disjointness of updates by follow-
ing references stored in arrays, and this seriously linhiés t
ability of those systems to express parallel algorithms.

In DPJ, we make use of the following insight:

Insight 1. We can define a special array type with the re-

approach is sound if the region arguments are consistent.striction that an object reference valweassigned to celh

For example, giverlass B<region R> extends A<R>,
a cast fromA<r> to B<r> is sound, because either the ref-
erence iB<r>, or it is not any sort oB, which will cause

(wheren is a natural number constant) of such an array
has a runtime type that is parameterized/hylf accesses
through celln touch only regiom (even by following a chain

1 class Body<region P> {

2 region Link, M, F;

3 double mass in P:M;

4 double force in P:F;

5 Body<*> link n Link;

6 void computeForce() reads Link, *:M writes P:F {
7 force = (mass * link.mass) * R_GRAV;

8 }

9 }

10

11 final Body</_J>[]1<[_]> bodies = new Body<[_J>[N]<[_]>;
12 foreach (int i in 0, N) {

13 /* writes [i] */

14 bodies[i] = new Body<[i]>();

15 }

16 foreach (int i in 0, N) {

17 /* reads [il, Link, *:M writes [i]:F */
18 bodies[i] . computeForce();

19 }

Figure 7. Example using an index-parameterized array.

10 90
Le] Lol
v Y
Body<Root : [10]> \ g < Body<Root : [90]>
double force Root : [10] : F double force Root : [90] : F
double mass Root : [10] : M double mass Root : [90] : M

Body<*> link Link Body<*> link Link

Figure 8. Heap typing from Figure 7. The type of array cell
1 is parameterized by. Cross-links are possible, but if any
links are followed to access other array cells, the effecs a
visible.

plified notation: the user may omit the and use an un-
derscore () as an implicitly declared variable. For example,

of references), then the accesses through different cedls a C<[-1>[1<[.1>is equivalentta<[i]>[1<[i]>#i.

guaranteed to be disjoint.

We call such an array type amdex-parameterized array

Figure 7 shows an example, which is similar in spirit to
the Barnes-Hut force computation discussed in Section 7.
Lines 1-9 declare a claBsdy. Line 11 declares and creates

To represent such arrays, we introduce two language con-ap, index-parameterized arraydies with N cells, such that

structs:

1. Anarray RPL elementvritten [e], wheree is an integer
expression.

2. Anindex-parameterized array typleat allows us to write
the region and type of array cellusing the array RPL
element[e]. For example, we can specify that cell
resides in regioRoot : [e] and has typ€<Root: [e]>.

At runtime, if e evaluates to a natural numbey then the
static array RPL elemerit] evaluates to thdynamic array
RPL elemenfn].

The key point here is that we can distinguitle;]>
from C<[es]> if e; ande, always evaluate to unequal val-
ues at runtime, just as we can distinguistr; > from C<ry>,

cell i resides in regior{i] and points to an object of type
Body< [i]>. Figure 8 shows a sample heap typing, for some
particular value: of N.

Lines 12—-15 show d@oreach loop that traverses the in-
dicesi € [0,n — 1] in parallel and initializes celi with
a new object of typ&8ody<[i]>. The loop is noninterfer-
ing because the type afodies says that celbodies[i]
resides in region[i], so distinct iterations and j write
disjoint regions[:] and [j]. Lines 16-19 are similar, ex-
cept that the loop callgomputeForce on each of the
objects. In iteration; of this loop, the effect of line 16
is reads [i], because it readsodies[i], together with
reads Link, *:M writes [¢]:F, which is the declared
effect of methodcomputeForce (line 6), after substituting

wherer; andr, are declared names, as discussed in Sec- [i] for P. Again, the effects are noninterfering fo# ;.

tion 3.1. Obviously, the compiler’s capability to distirighi

such types will be determined by its ability to prove the in-

equality of the symbolic expressionsande,. This is pos-

To maintain soundness, we just need to enforce the in-
variant that, at runtime, cell[i] never points to an object
of typeC<[j1>, if ¢ # j. The compiler can enforce this in-

sible in many common cases, for the same reason that arvariant through symbolic analysis, by requiring that ifeyp
ray dependence analysis is effective in many, though not all C<[e;]> is assigned to typé<[e;]1>, thene; ande, must

cases [24]. The key benefit is thtae type checker has then

always evaluate to the same value at runtime; if it cannot

proved the uniqueness of the target objects, which would notprove this fact, then it must conservatively disallow the as

follow from dependence analysis alone

signment. In many cases (as in the example above) the check

In DPJ, the notation we use for index-parameterized ar- is straightforward.

rays isT [1<R>#i, whereT is a type,R is an RPL #i de-
clares a fresh integer variablen scope over the type, and
[i] may appear as an array RPL elementZinor R (or
both). This notation says that array celfwheree is an in-
teger expression) has tyfid:; < ¢] and is located in region
R[i « e]. For exampleg<ri: [i]1>[1<r2: [i]>#i speci-
fies an array such that celhas typec<r1: [e] > and resides
in regionr2: [e]. If T itself is an array type, then nested

Note that because of the typing rules, no two distinct cells
of an index-parameterized array can point to the same object
However, it is perfectly legal to reach the same object by
following chains of references from distinct array cells, a
shown in Figure 8. In that case, in a parallel traversal over
the array, either the common object is not updated, in which
case the parallelism is safe; or a write effect on the same
region appears in two distinct iterations of a parallel ldap

index variable declarations can appear in the type. However which case the compiler can catch the error.

the most common case is a single-dimensional array, which

Note also that while no two cells in an index-parameterized

needs only one declaration. For that case, we provide a sim-array can alias, references may be freely shared with other

1 class QSort<region P> { object that represents a contiguous subrange of the caller’
2 DPJArrayInt<P> A in P; . X

3 QSort (DPJArray<P> A) pure { this.A = A; } array. We call this subrange subarray Notice that the

4 void sort() writes P:+ { DPJArray object doesiot replicate the underlying array; it

5 if (A.length <= SEQ_LENGTH) { .

6 seqSort () ; stores only a reference to the underlying array, and the val-
! } else { o ues of S and L. TheDPJArray object translates access to

8 /* Shuffle A and return pivot index */ . . .

9 int p = partition(A); element into access to elemest+ i of the underlying ar-

10 /* Divide A into two disjoint subarrays at p */ ray. If i < 0 ori > L, then an array bounds exception is
11 final DPJPartitionInt<P> segs = . s
12 new DPJPartitionInt<P>(A, p, OPEN); thrown, i.e., access through the subarray must stay within
1 cobegin { the specified segment of the original array.

14 /* writes segs:[0]:x */ . L

15 new QSort<segs: [0] : > (segs.get (0)) .sort () ; Second, DPJ provides a cla¥&JPartition, represent-

1 /* urites segs:[1l:x */ ing an indexed collection afPJArray objects, all of which

17 new QSort<segs:[1]:*>(segs.get(1)).sort();

18 by point into mutually disjoint segments of the original ar-
» N ¥ ray. To create &PJPartition, the programmer passes a
21 } DPJArray object into thedPJPartition constructor, along

with some arguments that say how to do the splitting. Lines
Figure 9. Writing quicksort with the partition operation. 11-12 of Figure 9 show how to split tb@ JArray A atindex
DPJArrayInt andDPJPartitionInt are specializationsto p, and indicate that positiomis to be left out of the resulting
int values. In line 12, the argumeBdREN indicates that we disjoint segments. The programmer can access segnoént
are omitting the partition index from the subarrays, ifeeyt the partitionsegs by sayingsegs.get(i), as shown in lines
are open intervals. 15and 17.

i i)))) Third, to support recursive computations, we need a slight
variables (including cells in other index-parameterized a oytansion to the syntax of RPLs (Section 3). Notice that we
rays), unIiI_<e linear types [26, 12, 13]. For e_xam_ple,_if cell annot use a simple region name, likefor the type of a
¢ of a particular array has typex [i]>, the object it points 5 rition segment, because different partitions can et
to coulql be referred to by cellof any number of other ar- ¢, e array in different ways. Instead, we allov inal
rays (with the same type), or by any reference of 99€>. |505| variable: (including this) of class type to appear
Thus, when we are traversing the array, we get the benefit of 3, ha head of an RPL, for exampler. The variablez
the alias restriction imposed by the typing, but we can still ganqs in for the object referenoestored into the variable
havg as many other outstanding references to the objects ag; runtime, which is the actual region. Using the object
we like. o reference as a region insures that different partitions get

The pattern does have some limitations: for example, We yitterent regions, and making the variabiénal ensures
cannot move an element from positibto positionj in the that it always refers to the same region.
array C<[i]>[]#i. However, we can copy the references \ye make these regions” into a tree as follows. H's
into a different arrayC'<x>[] and shuffle those references type isC<R, . ..>, thenz is nested undeR; the first region
as much as we like, though we cannot use those references s ameter of a class functions like themer parametein
to update the objects in parallel. We can also make a newyn, ghiect ownership system [18, 16]. In the particular cése o
copy of element with type C<[j]1> and store the New COpY pp 1p.rtition, if the type of: is DPJPartition<R>, then
into position;j. This effectively gives a kind of reshuffling, o type ofz.get (i) is z: [i] : , wherez < R. Internally,
although the copying adds performance overhead. Anothertheget method uses a type cast to gene_ram?aArray of
limitation is that ourforeach currently only allows regular typethis: [i] : * that points into the underlying array. The
array traversals (including strided traversals), thotighuld type cast is not sound within the type system, but it is hidden
be extended to other unique traversals. from the user code in such a way that all well-typed uses of
DPJPartition are noninterfering.

In Figure 9, the sequence of recursicert calls creates a
A familiar pattern for writing divide and conquer recursion tree ofgSort objects, each in its own region. Thebegin
is to partition an array into two or more disjoint pieces and in lines 13-17 is safe becaud@JPartition guarantees
give each array to a subtask. For example, Figure 9 showsthat the segmentsegs . get (0) andsegs.get (1) passed
a standard implementation of quicksort, which divides the into the recursive paralletort calls are disjoint. In the
array in two at each recursive step, then works in parallel yser code, the compiler uses the type and effect annota-
on the halves. DPJ supports this pattern with three noveltions to prove noninterference as follows. First, from the
features, which we illustrate with the quicksort example. type ofQSort and the declared effect ebrt (line 4), the

4.2 Subarrays

First, DPJ provides a clag®JArray that wraps an ordi- compiler determines that the effects of lines 15 and 17 are
nary Java array and provides a view into a contiguous seg-yrites segs: [0]:*andwrites segs: [1]:*, as shown.
ment of it, parameterized by start positiSrand lengthL. In Second, the regionsegs: [0] : * andsegs: [1] : * are dis-

Figure 9, theQSort constructor (line 3) takes BPJArray

joint, by a distinction from the left (Section 3.2). Finaltihe : class IntSet<region P> {

. . . . void add(int x) writes P { ... }
effectwrites P:* in line 4 correctly summarizes the ef- add commuteswith add;
fects ofsort, because lines 6 and 9 wrikelines 15 and 17 4}
write undersegs, andsegs is underp, as explained above. (a) Declaration of IntSet class with commutative methodadd
Notice thatDPJPartition can create multiple refer- | o\ 2. ot = new Intset<rs O

ences to overlapping data with different regions in the =2 foreach (int i ino, ™ ‘
types. Thus, there is potential for unsoundness here if § /7 iiokes tntSet.add with urites R +/
we are not careful. To make this work, we must do two

things. First, ifz; and zo represent different partitions of

the same array, them;.get(0) and z;.get(1) could : °1aS§o‘i‘gd:§;€;§:;zti;>{Set i D
overlap. Therefore, we must not treat them as disjoint. ; invokes IntSet.add with writes P {
This is why we putx at the end of the type: [:]:* : set.add(1);

of z.get (i); otherwise we could incorrectly distinguish ¢ 3

z1: [0] from 23 : [1], using a distinction from the right. Sec- 7 IntSet set = new IntSet<R>();
8 Adder<R> adder = new Adder<R>();

(b) Using commuteswith for parallelism

}

ond, if z has typeDPJPartition<R>, thenz.get (i) has 9 foreach (int i in 0, N)
typeDPJArray<z: [i] : *>and points into ®PJArray<R>. 10 /* invokes IntSet.add with writes R +/
11 adder.add(set, A[il);

Therefore, we must not treat: [i] : * as disjoint fromR.

Here, we simply do not include this distinction in our type (c) Usinginvokes to summarize effects
system. All we say is that: [i]:* < R. See Section 6.3
and Appendix C.2 for further discussion of the disjointness
rules in our type system.

Figure 10. Illustration of commuteswith andinvokes.

. . check effects soundly in the presence of commutativity an-

5. Commutativity Annotations notations: for example, in line 4 of Fig. 10(b), the compiler
Sometimes to express parallelism we need to look at inter- needs to record thatdd was invoked there (so it can dis-
ference in terms of higher-level operations than read andregard the effects of othexd invocationsyandthat the un-
write [29]. For example, insertions into a concurrgat can derlying effect of the method wagites R (so it can verify
go in parallel and preserve determinism even though the or-that there are no other interfering effects, e.g., readsitesv
der of interfering reads and writes inside e implemen- of R, in the invoking code).
tation is nondeterministic. Another such example is comput ~ When there are one or more intervening method calls be-
ing connected components of a graph in parallel. tween aforeach loop and a commutative operation, it may

In DPJ, we address this problem by adding two fea- also be necessary for a method effect summary irpthe
tures. First, classes may contain declarations of the farm gram textto specify that an invocation occurred inside the
commuteswithm’, wherem andm’ are method names, in- method. For example, in Figure 10(c), taeéd method is
dicating that any pair of invocations of the named methods called through a wrapper object. We could have correctly
may be safely done in parallekgardless of the read and specified the effect ofdder.add aswrites P, but this
write effects of the methodSee Figure 10(a). In effect, the would hide from the compiler the fact th&dder . add com-
commuteswith annotation says that (1) the two invocations mutes with itself. Of course we could usemmuteswith for
areatomicwith respect to each other, i.e., the result will be Adder.add, but this is highly unsatisfactory: it just propa-
as if one occurred and then the other; and (2) either order ofgates the unchecked commutativity annotation out through
invocation produces the same result. the call chain in the application code. The solution is to

The commutativity property itself is not checked by the specify the invocation effectnvokes IntSet.add with
compiler; we must rely on other forms of checking (e.g., writes P, as shown.
more complex program logic [52] or static analysis [42, 4]) Notice that the programmer-specified invocation effect
to ensure that methods declared to be commutative are reallyexposes an internal implementation detail (i.e., that a par
commutative. In practice, we anticipate thahmuteswith ticular method was invoked) at a method interface. However,
will be used mostly by library and framework code that is we believe that such exposure will be rare. In most cases, the
written by experienced programmers and extensively tested effectinvokes C.m with E will be conservatively summa-
Our effect system does guarantee deterministic results forrized asE (Section 6.1 gives the formal rules for covering
an application using a commutative operation, assumirtg tha effects). The invocation effect wilbnly be used for cases
the operation declared commutative is indeed commutative. where a commutative method is invoked, and the commu-

Second, our effect system provides a namebcation ef- tativity information needs to be exposed to the caller. We
fectof the forminvokes m with E. This effectrecordsthat believe these cases will generally be confined to high-level
an invocation of methodh occurred with underlying effects public APl methods, such &et.add in the example given
E. The type system needs this information to represent andin Figure 10.

Meaning Symbol Definition (a) Programs
Programs program regiori class’ e

Regions region regionr o > program Valid program >class Valid class definition
Classes class class O<P> { field” method comnf } >I Validenvironment T'>field Valid field
'fl:lla: fie]IZ 1;‘?‘}” 1;‘ 2| R:r|R:[i]| R+ I' > method Valid method I >comm Valid commutativity annotation
in f
Types T C<R>|T[]<R>#i (b) RPLs
Methods method T m(T z)E {e} .
Effects E 0 |reads R |writes R | >R Valid RPL , TeR< R’ RunderR’
invokes C.mwith E | EUE '>RCR Rincluded inR
Expressions e letxz = eine|this.f = z | this.f | () Types
z[n] = z | z[n] | z.m(z) | z | new C<R> |
new T'[n]<R>#i I'c>T Validtype T'>T <T’ T asubtypeofl’
Variables z this|z d) Eff
Commutativity comm m commuteswithm (d) Effects
I'>E Valideffect I's E C E’ FE asubeffect ofs’
Figure 11. Core DPJ syntaxC, P, f, m, z, r, andi are (e) Expressions
identifiers, andn is a natural number; denotes a fully Pee:T,E ehastypel and effects in I
specified RPL (i.e., containing ng. . . .
6. The Core DPJ Type System Figure 12. Core DPJ type judgments. We extend the judg-

ments to groups of things (e.d., field") in the obvious
We have formalized a subset of DPJ, cal@dre DPJ To way.

make the presentation more tractable and to focus attention
on the important aspects of the language, we make the fol-
lowing simplifications: We define the static semantics of Core DPJ with the

judgments stated in Figure 12. The judgments are defined

1. We present a simple expression-based language, omittindNith respect to an environmefit where each element ot
more complicated aspects of the real language such aSq one of the following:

statements and control flow.

2. Our language has classes and objects, but no inheritance.® A binding z — T stating that variable: has typeT'.
These elements come into scope when a new variable

3. Region names are declared at global scope, instead of (1et variable or formal parameter) is introduced.

at class scope. Every class has one region parameter, and
every method has one formal parameter_ e A constraintP g R Statlng that region parametﬂ IS

in scope and included in regidi. These elements come
into scope when we capture the type of a variable used
for an invocation (see the discussion of expression typing
Removing the first simplification adds complexity but raises ~ judgments below).

no significant technical issues. Adding inheritance raises o ap integer variablei. These elements come into scope

standard issues for formalizing an object-oriented laggua when we are evaluating an array type or new array ex-
We omit those here in order to focus on the novel aspects pression.

of our system, but we describe them in [10]. Removing

simplifications 3 and 4 is mostly a matter of bookkeeping. The formal rules for making the judgments are stated in full

To handle arrays in the full language, we need to prove in Appendix A. Below we briefly discuss each of the five

equivalence and non-equivalence of array index expression groups of judgments.

but this is a standard compiler capability. Programs These judgments state that a program and its
We have chosen to make Core DPJ a sequential languagetop-level components (classes, methods, etc.) are vabigt M

in order to focus on our mechanisms for expressing effects rules just require that the component’s components ard vali

and noninterference. In Section 6.4, we discuss how to ex-in the surrounding environment. The rule for valid method

tend the formalism to model thebegin andforeach con- definitions (METHOD) requires that the method body'’s type

structs of DPJ. and effect are a subtype and subeffect of the return type and

declared effect. These constraints ensure that we can use

the method declaration to reason soundly about a method’s

Figure 11 defines the syntax of Core DPJ. The syntax con-return type and effect when we are typing method invocation

sists of the key elements described in the previous sectionsexpressions.

(RPLs, effects, and commutativity annotations) hung upon RPLs These judgments define validity, nesting, and in-

a toy language that is sufficient to illustrate the featurmts y clusion of RPLs. Most rules are a straightforward formal

reasonable to formalize. A program consists of a number of translation of the relations that we described informatly i

region declarations, a number of class declarations, and anSection 3.2. The key rule states thatAfis underR’ in

expression to evaluate. Class definitions are similarta’'dav. some environment, theR is included inR’: * in that en-

with the restrictions noted above. vironment:

4. To avoid dealing with integer variables and expressions,
we require that array indices are natural number literals.

6.1 Syntax and Static Semantics

Meaning Symbol Definition

(INCLUDE-STAR) I's>R< R RPLs dRr Root | o ‘ dR : r | dR : [7,] | dR : [n] ‘ dR :
ToRCRE = Types dT" C<dR>
= ’ Effects dE (0| readsdR |writes dR |

) . invokes C.m with dE |dE UdE
Types These define when one type is a subtype of an-

other. The class subtyping rule is just the formal statement Figure 13. Dynamic syntax of Core DPdR; denotes a
of the rule we described informally in Section 3.3: fully-specified dynamic RPL (i.e., containing rj:

(SUBTYPE-CLASS) _ T'>RC R’ We also check that the actual argument type is a subtype
I'>C<R> < <> of the declared formal parameter type, and we report the

The array subtyping rule is similar: invocation of the method with its declared effect.

(SUBTYPE-ARRAY) T'U{i} > RC R'[i’ —i] T =T 6.2 Dynamic Semantics
T o T[[<R>#i < T'[[<R>#i

The syntax for entities appearing in the dynamic semantics

Here = means identity of element types up to the names is shown in Figure 13. At runtime, we have dynamic regions
of integer variables. More flexible element subtyping is (dR), dynamic typesdI’) and dynamic effectsdf), cor-

not possible without sacrificing soundness. We could allow fesponding to static regiongzj, types (") and effects [)
unsound assignments and check for them at runtime (as Jav4espectively. Dynamic regions and effects are not recorded
does for class subtyping of array elements), but this would in a real execution, but here we thread them through the ex-
require that we retain the class region binding informagibn ~ €cution state so we can formulate and prove soundness re-

runtime. sults [16]. We also have object refereneesvhich are the
Effects These judgments define when an effect is valid, actual values computed during the execution.
and when one effect is a subeffect of another. Intuitively, “ The dynamic execution state consists of (1) a héap

is a subeffect of2”” means thate’ contains all the effects of ~ Which is a function taking values to objects; and (2) a dy-
E, i.e., we can us&’ as a (possibly conservative) summary namic environmentl’, which is a set of elements of the
of E. The rules for reads, writes, and effect unions are form z — o (variablez is bound to value) or P — dR
standard [16, 33], but there are two new rules for invocation (région parametef” is bound to regiordfz). dI' defines a
effects. First, if &’ coversE, then an invocation of some hatural substitution on RPLs, where we replace the varsable
method with 2’ covers an invocation of the same method With values and the region parameters with regions as speci-
with E: fied in the environment. We denote this substitution on RPL
R asdI'(R), and we extend this notation to types and ef-
fects in the obvious way. Notice that we get the syntax of
Figure 13 by applying the substitutiail’ to the syntax of
Second, we can conservatively summarize the effectkes Figure 11.
C.mwith E as justE: An object s a partial function taking field names to object
references. If the function is undefined on all field names,
o vokes O vithECE then we say itis aull object We use null objects because we
N need to track the actual types of null references to establis

ExpressionsThese judgments tell us how to compute the soundness. Since the actual implementation does not need to
type and effect of an expression. They also ensure that thedo this tracking, it can just use the single vatua 1. Every
types of component expressions (for example at assignment®bject reference € Dom(H) has a type, determined when
and method parameter bindings) match in a way that guar-the object is created, and we writé> o : d7' to mean that
antees soundness. The rules for field and array access anthe reference has typed7” with respect to heapl .
assignment, variable lookup, and new classes and arrays are \We write the evaluation rules in large-step semantics no-
straightforward. In the rule fotet z = e in €/, we typee, tation, using the following evaluation function:
bind z to the type ofe, and typee’. If = appears in the type
or effect ofe/, we replace it withR:* to generate a type
and effect for the whole expression that is valid in the outer wheree is an expression to evaluat@l’ and H give the
scope. dynamic context for evaluatiom, is the result of the eval-

In the rule for method invocation (INVOKE), we translate uation, H' is the updated heap, amt¥y represents the ef-
the typeT, of the method formal parameter to the current fects of the evaluation. A program evaluates to reference
context by creating a fresh region paramedteincluded in with heapH and effectdE if its main expression is and
the regionR of 2's type. This technique is similar to how (e, 0,0) — (o, H,dE).

Java handles the capture of a generic wildcard. Note that Section B of the Appendix states the rules for program
simply substitutingr for paraniC') in translatingZ’,, would evaluation. The rules are standard for an imperative lan-
not be sound; see [10] for an explanation and an example.guage, except that we record read effects in DYN-FIELD-

(SE-INVOKES-1) r'sECE'
I'> invokes C.m with ¥ C invokes C.m with F/

(SE-INVOKES-2)

(e,dT’, H) — (o, H',dE),

ACCESS and DYN-ARRAY-ACCESS and write effects in
DYN-FIELD-ASSIGN and DYN-ARRAY-ASSIGN. Rules
DYN-LET and DYN-INVOKE accumulate the effects of

mute with reads; (2) writes commute with reads or writes if
the regions are disjoint; (3) invocations commute with othe
effects if the underlying effects are disjoint; and (4) twe i

the component expressions. Note that when we evaluatevocations commute if the methods are declared to commute,

new 1" we eliminate any from 7' in the dynamic type of
the new reference, e.gnew C<Root:*> is the same as
new C<Root>; this rule ensures that all object fields are al-
located in fully specified regions. This rule is sound for the
same reason that assigniatkRoot> to a variable of type
C<Root: *> is sound.

6.3 Soundness

regardless of interference between the underlying effects
Theorem 2 expresses the main soundness property of

Core DPJ, which is that the execution order of noninterfgrin

expressions does not matter. It states that in a well-typed

program, ife ande’ are expressions with types and 7"

and effects¥ andE’, andE andE’ are noninterfering, then

either order of evaluatingande’ produces the same values

o ando’, the same effectd ¥ anddE’, and the same final

Our key soundness result is that we can define and check sheapH.

static property of noninterference of effect between expre

sions in the language, such that static noninterference im-

The claim is true for dynamic effects from the commuta-
tivity of reads, the disjointness results of Section C.2] dre

plies dynamic noninterference. Appendix C states the major assumed correctness of the commutativity specifications fo

steps of the proof in formal terms. We divide the steps into
three groups: type and effect preservation (Section Cig), d
jointness (Section C.2), and noninterference of effect{Se
tion C.3).We provide further explanation and a full proof in
our technical report [10].

Type and effect preservatiom Section C.1, we assert
some preliminary definitions and the preservation result. A
dynamic environmendI is valid (Definition 1) if the types
and RPLs appearing on the right of its bindings are valid,
and it is internally consistent. A heald is valid (Defini-
tion 2) if the reference stored in every object field or array
cell of H is consistent with the declared type of the field or
cell, translated ta@l'. A dynamic environmendI" instanti-
atesa static environmerit (Definition 3) if the bindings to
variables indI" are consistent with the bindings to the corre-
sponding variables ifv, after translation tall".

Theorem 1 establishes that we can use the static types

and effects (Section 6.1) to reason soundly about dynamic

types and effects (Section 6.2). It states that if we type
an expressiore in environmentl’, and we evaluate in
dynamic environmerdI", wheredI" instantiated”, then (a)
the evaluation takes a valid heap to a valid heap; (b) thee stat
type ofe bounds the dynamic type of the valo¢hat results
from the evaluation; and (c) the static effectedfounds the
dynamic effect that results from the evaluation.

Disjoint RPLs In Section C.2, we formally define a dis-
jointness relation on pairs of RPLEX R # R’). The relation
formalizes distinctions from the left and right, as disagss
informally in Section 3.2Definition 4 formally expresses
how to interpret a dynamic RPL as a set of fully-specified
RPLs (i.e., regions)Definition 5 shows how to associate
every object field and array cell with a region of the heap.
Proposition 1 states that disjoint RPLs imply disjoint sets of
fully specified regions, i.e., disjoint sets of locatioRsopo-
sition 2 states that at runtime, disjoint fully-specified regions
imply disjoint locations.

Noninterference.In Section C.3, we formally define
a noninterference relation on pairs of static effedis>(

E # E’). The rules express four basic facts: (1) reads com-

methods. The claim is true for static effects by the type and
effect preservation property above. See [10] for the formal
proof.

6.4 Deterministic Parallelism

As discussed in Sections 2 and 4, the actual DPJ language in-
cludesforeach for parallel loops andobegin for a block

of parallel statements. We briefly discuss how to extend the
formalism to model these constructs.

We can easily simulateobegin by adding a parallel
composition operatoele’, which says to execute and e’
in the same environment, in an unspecified order, with an
implicit join at the end of the execution. We can simulate
foreach by allowing an induction variable to appear in
expressions inside the scope of @each, mappingi ton
over the index range of thioreach, and evaluating alt,,
in unspecified order. In both cases we can extend the static
typing rules to say that for any pair of expressiensnde’
as to which the order of execution is unspecified, then the
effects ofe ande’ must be noninterfering.

It follows directly from Theorem 2 that parallel composi-
tion of noninterfering expressions produces the sametresul
as sequential composition of those expressions. This guara
tees determinism of execution regardless of the order of par
allel execution. The formalization of this property is git#-
forward, and we omit it from our technical report.

7. Evaluation

We have carried out a preliminary evaluation of the language
and type system features presented in this paper. Our evalu-
ation addressed the following questions:

e ExpressivenessCan the type system express important
parallel algorithms on object-oriented data structures?
When does it fail to capture parallelism and why?

e Coverage.Are each of thenewfeatures in the DPJ type
system important to express one or more of these algo-
rithms?

e Performance.For each of the algorithms, what increase ; /; ‘t‘bstzac’ls Clﬂgsdfjr tree ggdjs */
. abstrac class ode<region
in performance is realized in practice? This is a quan- region MP; /% Region for mass and position */
titative measure of how much parallelism the type sys- * double mass in R:MP; /x Mass */
R . 5 Vector pos in R:MP; /* Position */
tem can express for each algorithm (note that the runtime 5 3
overheads introduced by DPJ are negligible). ’
8 /* Inner node of the tree */
. .) 1 I Nod i R ds Node<R> {
To do the evaluation, we extended Sujaisac compiler i epion Chirdrens | rvends Hodet
so that it compiles DPJ into ordinary Java source. We built 1) Node<R:*>[]<R:Children> children in R:Children;
a runtime system for DPJ using tl@rkJoinTaskframe- -
work that will be added to thgava.util.concurrent 14 /I Lea; gode of th; tree *(/i Hodecis ©
. . . 15 class o] y<region > extends ode<R>
standard library in Java 1.7 [2forkJoinTasksupports dy- 1 region Force; /% Region for force */

namic scheduling of lightweight parallel tasks, using akwor 17 Vector force in R:Force; /* Force on this body */
s’gealing scheFquer similar to that in Cilk [8]. The_DPJ com- g /+ Compute force of entire subtree on this body */
piler automatically translatetoreach to a recursive com- 20 Vector computeForce(Node<R:*> subtree)

. . L. . . 21 reads R:*:Children, R:*:MP { ... }
putation that successively divides the iteration space to ,, ;
depth that is tunable by the programmer, and it translates a2

i . . 24 /* Barnes-Hut tree */
cobegin bloc_klnto one_task fprevery statement. Code_us_lng 25 class Tree<region R> {
ForkJoinTaskis compatible with Java threads so an existing 2 region Tree; /* Region for tree ¥/
I . h d d J b . ” d 27 Node<R> root in R:Tree; /* Root */
multithreade ava program can be incrementally ported to 28 Body<R:[i]>[]<R:[i]>#i bodies in R:Tree; /* Leaves */
DPJ. Such code may still have some guarantees, e.g., the
/* Compute forces on all bodies */

DPJ portions will be guaranteed deterministic if the explic 3, 1054 conputororces () writes Rin ¢

itly threaded and DPJ portions are separate phases that do2 foreach (int i in 0, bodies.length) {
| 33 /* reads R:Tree, R:*:Node.Children, R:[i],
not rU-n concurrent y))) 34 R:*:Node.MP writes R:[i] :Node.Force */
Using the DPJ compiler, we studied the following pro- 3s bodies[i].force = bodies[i].computeForce(root);

grams: Parallel merge sort, two codes from the Java Grande:, } d

parallel benchmark suite (a Monte Carlo financial simula- 3
tion and IDEA encryption), the force computation from the — - -
Barnes-Hut n-body simulation [45], k-means clusteringfro ~ Figure 14. Using DPJ to write the Barnes-Hut force com-
the STAMP benchmarks [34], and a tree-based collision de- Putation.

tection algorithm from a large, real-world open source game together with an array dody objects pointing to the leaves
engine called JMonkey (we refer to this algorithm as Col- 4 the tree.

lision Tree). For all the codes, we began with a sequential The methodrree . computeForces does the force com-
version and modified it to add the DPJ type annotations. The putation by traversing the array of bodies and calling the
Java Grande benchmarks are explicitly parallel versions us methodBody . computeForce on each one, to compute the
ing Java threads (along with equivalent seguential Ves$ion force between the bodshis andsubtree. If subtree is a
and we compared DPJ's performance against those. We alsqyoqy, or is sufficiently far away that it can be approximated
wrote and carefully tuned the Barnes-Hut force computation 55 g point mass, theody . computeForce computes and

using Java threads as part of understanding performance istetyrns the pairwise interaction between the nodes. Other-
sues in the code, so we could compare Java and DPJ for thafyise it recursively callg omputeForce on the children of

one as well. subtree, and accumulates the result.
o We use a region parameter on the node classes to distin-
7.1 ARealistic Example guish instances of these nodes. Classe uses the param-

We use the Barnes-Hut force computation to show how eters to create an index-parameterized array of referéaces
to write a realistic parallel program in DPJ. Figure 14 shows distinct body objects; the parallel loop tomputeForces
a simplified version of this code. The main simplification is iterates over this array. This allows distinctions from lesfé
that theVector objects are immutable, witliinal fields for operations omodies[i] (Section 3). We also use dis-
(so there are no effects on these objects), whereas oul actudinct region names within each class (in particular, for the
implementation uses mutable objects. The clagk: repre- force, masses and positions, and the children array) to en-
sents an abstract tree node containing a mass and positionable distinctions from the right.
The mass and position represent the actual mass and position The key fact is that, from the effect summary in line 21
of a body (at a leaf) or the center of mass of a subtree (at anand the code in line 35, the compiler infers the effects shown
inner node). Th&ode class has two subclass@anerNode, in lines 33-34. Using distinctions from the left and righig t
representing an inner node of the tree, and storing an afray o compiler can now prove that (1) the updates are distinct for
children; andBody, representing the body data stored at the distinct iterations of theforeach; and (2) all the updates
leaves, and storing a force. Theee class stores the tree, are distinct from the reads. Notice also how the nested RPLs

allow us to describe the entire effect @mputeForces as Num | Monte Carlo IDEA Barnes Hut
. . hat i h id Id Cores | DPJ Java | DPJ Java DPJ | Java
ertes- R:*. T at IS, tot e outside wor pmputeFOrCe.S 2 2.00 1.80 1.95 1.99 1.08 1.99
just writes under the region parameterTafee. Thus with 3| 282 | 250 | 288 | 297 | 296 | 294
ful fRPL f kind of lati 4| 356 | 309|380 | 391 | 494 | 3.88
careful use of RPLs, we can enforce a kind of encapsulation 71553 | 2465| 640 | 670 | 679 | 7556
of effects, which is important for modular software design. 12 | 801 | 6.46 | 9.99 | 11.04 | 11.4 | 1365
17 | 10.02 | 7.18 | 12.70 | 1490 | 15.3 | 19.04

22 | 1150 | 7.98 | 18.70 | 17.79 | 23.9 | 23.33

7.2 Expressiveness and Coverage

Table 2. Comparison of DPJ vs. Java threads performance

We used DPJ to expreall available parallelism (except for .
P P (P for Monte Carlo, IDEA encryption, and Barnes Hut.

vector parallelism, which we do not consider here) for Merge
Sort, Monte Carlo, IDEA, K-Means, and Collision Tree. For
Barnes-Hut, the overall program includes four major phases
in each time step: tree building; center-of-mass compurati
force calculations; and position calculations. Expregsire
force, center of mass, and position calculations is sttiogh
ward, but we studied only the force computation (the domi-
nant part of the overall computation) for this work. DPJ can
also express the tree-building phase, but we would have 107 3 performance

use a divide-and-conquer approach, instead of insertidg bo
ies from the root via “hand-over-hand locking,” as in in [45] ~ We measured the performance of each of the benchmarks on

Briefly, we parallelized each of the codes as follows. & Dell R900 multiprocessor running Red Hat Linux with 24

MergeSort uses subarrays (Section 4.2) to perform in-placeC0res, comprising four six-core Xeon processors, and & tota
parallel divide and conquer operations for both merge and f 48GB of main memory. For each data point, we took the
sort, switching to sequential merge and sort for subproblem Minimum of five runs on an idle machine.

below a certain size. Monte Carlo uses index-parameterized e studied multiple inputs for each of the benchmarks
arrays (Section 4.1) to generate an array of tasks and com-and also experimented with d|ff_erent limits for recursive
pute an array of results, followed by commutativity anno- codes. We presentresults for the inputs and parameters/alue
tations (Section 5) to update to globally shared data inside that show the best performance, since our main aim is to
a reduction loop. IDEA uses subarrays to divide the input evaluate how well DPJ can express the parallelism in these
array into disjoint pieces, then useésreach to operate on codes.. Thg sensitivity of th.e parallelism to input size and/
each of the pieces. Section 7.1 describes our parallel Barne '€cursive limit parameters is a property of the algorithrd an
Hut force computation. Collision Tree recursively walktw Nt & consequence of using DPJ. _

trees, reading the trees and collecting a list of interagdti- Figure 15 presents the speedups of the six programs for
angles. At each node, a separate triangle list is computed in? € {1,2,3,4,7,12,17,22} processors. All speedups are
parallel for each subtree, and then the lists are merged. 0urrglat|ve to an equivalent s_equenual version of the program
implementation uses method-local regions to distinguisht ~ With no DPJ or other multithreaded runtime overhead
writes to the left and right subtree lists. K-Means uses com- S codes showed moderate to good scalability for all val-
mutativity annotations to perform simultaneous reducatjon U€s ofp. Barnes-Hut and Merge Sort showed near-ideal per-

one for each cluster. Table 1 summarizes the novel DPJ caformance scalability, with Barnes-Hut showing a supedine
pabilities used for each code. increase fop = 22 due to cache effects.

Notably, as shown in Table 2, for the three codes where
Table 1. Capabilities Used In The Benchmarks we have manually parallelized Java threads versions avail-
1. Index-parameterized array; 2. Distinctions from th¢; |8f Distinctions from the able, the DPJ versions achieved speedups close to (IDEA

parameterized array to update the bodies in parallel. As dis
cussed in Section 4.1, this requires that we copy each body
with the new destination regions at the point of re-insertio
As future work, we believe we can ease this restriction by
adding a mechanism for disjointness checking at runtime.

right; 4. Recursive subranges; 5. Commutativity annotatio and Barnes Hut), or better than (Monte Carlo), the Java ver-
Benchmak T 1T 2 3 4 5 sions, for the same inputs on the same machines. We believe
Merge Sort - Y - Y- the Java threads codes are all reasonably well tuned; the two
Monte Carlo Y Y - Y ..
IDEA Y VN Java Grande benchmarks were tuned by the original authors
Barnes-Hut | Y Y Y - - and the Barnes Hut code was tuned by us. The manually
Collision Tree | - Y - - - . o . .
K Means ...y parallelized Monte Carlo code exhibited a similar leveling

off in speedup as the DPJ version did beyond about 7 cores
because both have a significant sequential component that

Our evaluation and experience showed some interestingmakes copies of a large array for each parallel task. Over-
limitations of the current language design. To achieve good all, in all three programs, DPJ is able to express the avail-
cache performance in Barnes-Hut, the bodies must be re-able parallelism as efficiently as a lower-level hand coded
ordered according to their proximity in space on each time parallel programming model that provides no guarantees of
step [45]. As discussed in Section 7.1, we use an index-determinism or even race-freedom.

24
—%-Barnes-Hut (200,000)
—e- Merge Sort (100 million) Total Annotated Region Effect
20 4| ~=-IDEA Encryption (35 million) Program SLOC SLOC Decls RPLs Summ. Comm.
—x- K-Means (300,000) MergeSort 295 38 (12.9%) 15 41 7 0
—a—Collision Tree (360,000) Monte Carlo 2877 220 (7.6%) 13 301 161 1
16 [~Monte Carlo (60,000) IDEA 228 24 (10.5%) 8 22 2 0
a Barnes-Hut 682 80 (11.7%) 25 123 38 0
3 CollisionTree | 1032 233 (22.6%) 82 408 58 0
é’_ 12 K-means 501 5 (1.0%) 0 3 3 1
0 Total | 5615 600 (10.7%) 143 898 269 2
8 —+ . .
Table 3. Annotation counts for the case studies.
4 .
the programmer understands the sharing patterns, he or she
explicitly documents them in the code through region and ef-
0= R fect annotations, so other programmers can gain the benefit
0 4 8 12 16 20 24

Number of cores of his or her understanding.

Further, programming tools can alleviate the burden of
Figure 15. Speedups. Numbers in legend are input sizes. writing annotations. We have developed an interactive-port
ing tool, DPJzER [49], that infers many of these annota-
tions, using iterative constraint solving over the whole-pr
gram. DPIZER is implemented as an Eclipse plugin and
correctly infers method effect summaries for a program that
is already annotated with region information. We are cur-
rently extending DPIZER to infer RPLs, assuming that the
programmer declares the regions.

In addition, a good set of defaults can further reduce the
amount of manually written annotations. For example, if the
programmer does not annotate a class field, its default re-
gion could be the RPIldefault-parameteifield-name This
default distinguishes both instances of the same class and
7.4 Porting Effort fields within a class. The programmer can override the de-

. faults if she needs further refinements.
Table 3 shows the number of source lines changed and the

number of annotations, relative to the program size. Pragra

size is given in non-blank, non-comlla”ne%t lines of soSrce 8. Related Work
code, counted bgloccount The next column shows how We group the related work into five broad categories: ef-
many LOC were changed when annotating. The last four fect systems (not including ownership-based systems): own
columns show (1) the number of declarations using the ership types (including ownership with effects); uniquke re
region keyword (i.e., field regions, local regions, and re- erences; separation logic; and runtime checks.

gion parameters); (2) the number of RPLs appearing as ar-
guments toin, types, methods, and effect summaries; (3)
the number of method effect summaries, countirrgds
andwrites separately; and (4) the number of commutativ-
ity annotations. As the table shows, the fraction of lines of
code changed was not large, averaging 10.7% of the original
lines. Most of the changed lines were due to writing RPL
arguments when instantiating types (represented in column
four), followed by writing method effect summaries (column

Our experience so far has shown us that DPJ itself can
be very efficient, even though both the compiler and runtime
are preliminary. In particular (except for very small rumé
costs for the dynamic partitioning mechanism for subaiays
our type system requires no runtime checks or speculation
and thereforedds negligible runtime overhead for achiev-
ing determinismOn the other hand, it is possible that the
type system may constrain algorithmic design choices. The
limitation on reordering the array of bodies in Barnes-Hut,
explained in Section 7.2, is one such example.

Effect Systems:The seminal work on types and effects for
concurrency is FX [33, 27], which adds a region-based type
and effect system to a Scheme-like, implicitly parallel-lan
guage. Leino et al. [30] and Greenhouse and Boyland [26]
first added effects to an object-oriented language. None of
these systems can represent arbitrarily nested struabures
array partitioning, and they cannot specify arbitrarilygia
sets of regions. Also, the latter two systems rely on alias re
strictions and/or supplementary alias analysis for soassin

five).
More importantly, we believe that the overall effort of of effect, whereas DPJ does not.
writing, testing, and debugging a program wihy paral- Ownership Types: Some ownership-based type systems

lel programming model is dominated by the time required have been combined with effects to enable reasoning about
to understand the parallelism and sharing patterns (iaclud noninterference. Both JOE [16, 46] and MOJO [14] have
ing aliases), and to debug the parallel code. The regions andsophisticated effect systems that allow nested regions and
effects in DPJ provideoncrete guidance to the program- effects. However, neither has the capabilities of DPJayarr
mer on how to reason about parallelism and shari@mce partitioning and partially specified RPLs, which are crucia

to expressing the patterns addressed in this paper. JOE'dogic together with shape analysis for automatic parakeli
under effect shape is similar to DPJs but it cannot do tion of a sequential program.

the equivalent of our distinctions from the right. JOE akbow While SL is a promising approach, applying it to realis-
slightly more precision than our rule LET when a type or tic programs poses two key issues. First, SL isw-level
effect uses a local variable that goes out of scope, but wespecification language: it generally treats memory as a sin-
have found that this precision is not necessary for express-gle array of words, on which notions of objects and linked
ing deterministic parallelism. MOJO has a wildcard region data structures must be defined using SL predicates [40, 35].
specifier?, but it pertains to the orthogonal capability of Second, SL approaches generaityherrequire heavyweight
multiple ownershipwhich allows objects to be placed in theorem proving and/or a relatively heavy programmer an-
multiple regions. Leino’s system also has this capabiiity, notation burden [379r are fully automated, and thereby lim-
without arbitrary nesting. ited by what the compiler can infer [25, 39].

Lu and Potter [32] show how to use effect constraintsto In contrast, we chose to start from the extensive prior
break the owner dominates rule in limited ways while still work on regions and effects, which is more mature than
retaining meaningful guarantees. Taey context of [32] is SL for OO languages. As noted in [40], type systems and
identical toRoot : * in our system, but we can make more SL systems have many common goals but have developed
fine-grained distinctions. For example, we can conclude tha largely in parallel; as future research it would be useful to
a pair of references stored in variables of type?; : x> and understand better the relationship between the two.

C<Rs:x> can never alias, if?; : * and Ry : * are disjoint. Runtime Checks A number of systems enforce some form
Several researchers [11, 3, 28] have described effect sys- y

tems for enforcing a locking discipline in nondetermirgsti of disciplined parallelism via runtime checks. Jade [43] an

Prometheus [5] use runtime checks to guarantee determin-
programs, to prevent data races and deadlocks. Because they,. . .)
. . tic parallelism for programs that do not fail their checks
have different goals, these effect systems are very differe

from ours. e.0.. they Cannot express arravs or nested effect Jade also supports a simple form of commutativity annota-
. »€.9., ey . P Y tion [41]. Multiphase Shared Arrays [20] and PPL1 [47] are
Finally, an important difference between DPJ and most . .= ™ . S
. . . . similar in that they rely on runtime checks that may fail if
ownership systems is that we all@xplicit region declara- S
.) ; determinism is violated. None of these systems checks non-
tions like [33, 30, 26], whereas ownership systems gen- _ .. . o
: ;) : : trivial sharing patterns at compile time.
erally couple region creation with object creation. We have .) .
S Speculative parallelism [7, 23, 51] can achieve deter-
found many cases where a new region is needed but a new

object is not, so the ownership paradigm becomes awkward,m'n'sM with minimal programmer annotations, compared

Supporting field granularity effects also is difficult wittvo- .to DPJ. However, speculation gen_erally elther incurs igni
ership. icant software overheads or requires special hardware [38,

31, 50]. Grace [7] reduces the overhead of software-only
Unique References: Boyland [13] shows how to use alias speculation by running threads as separate processes-and us
restrictions to guarantee determinism for a simple languag ing commodity memory protection hardware to detect con-
with pointers. Terauchi and Aiken [48] have extended this flicts at page granularity. However, Grace does not effigrent
work with a type inference algorithm that simplifies the type support essential sharing patterns such as (1) fine-grain ac
annotations and elegantly expresses some simple patterns ccess distinctions (e.g., distinguishing different fieldsan
determinism. Alias restrictions are a well-known alteiveat ~ object, as in Barnes-Hut); (2) dynamically scheduled fine-
to effect annotations for reasoning about heap accesspand i grain tasks (e.gRorkJoinTasl or (3) concurrent data struc-
some cases they can complement effect annotations [26, 12]tures, which are usually finely interleaved in memory. Fur-
However, alias restrictions severely limit the expresgivi ther, unlike DPJ, a speculative solution does not document
of an object-oriented language. It is not clear whether the the parallelization strategy or show how the code must be
techniques in [13, 48] could be applied to a robust object- rewritten to expose parallelism.

oriented language. Clarke and Wrigstad’'s external unique- Kendo [36] and DMP [21] use runtime mechanisms to
ness [17] is better suited to an object-oriented style,ttigti guarantee equivalence to some (arbitrary) serial inteiriga

not clear whether external uniqueness is useful for determi of tasks; however, that interleaving is not necessarilyi-obv
istic parallelism. ous from the program text, as it is in DPJ. Further, Kendo’s
guarantee fails if the program contains data races, and DMP
requires special hardware support. SharC [6] uses a combi-
nation of static and dynamic checks to enforce race freedom,
but not necessarily deterministic semantics, in C programs

Separation Logic: Separation logic [40] (SL) is a poten-
tial alternative to effect systems for reasoning aboutesthar
resources. O’Hearn [35] and Gotsman et al. [25] use SL to

check race freedom, though O'Hearn includes some simple Finally, a determinism checker [44, 22] instruments code

proofs of noninterference. Parkinson [37] has extended C#to detect determinism violations at runtime. This approach

with SL predicates to allow sound inference in the presence. : .
. i .~ ~is not viable for production runs because of the slowdowns
of inheritance. Raza et al. [39] show how to use separation

caused by the instrumentation, and it is limited by the cover

age of the inputs used for the dynamic analysis. However, it [13] J. Boyland. Checking interference with fractional més-

is sound for the observed traces.

9. Conclusion

sions.SAS 2003.

[14] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith
Multiple ownership.OOPSLA 2007.

We have described a novel type and effect system, togethefd15] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. gtie,

with a language called DPJ that uses the system to enforce
deterministic semantics. Our experience shows that the new
type system features are useful for writing a range of pro-

K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computifi@OP-
SLA 2005.

grams, achieving moderate to excellent speedups on a 24116] D. Clarke and S. Drossopoulou. Ownership, encapsuliati

processor system with guaranteed determinism.

Our future goals are to exploit region and effect anno-

tations for optimizing memory hierarchy performance; to

add runtime support for more flexible operationson index-

parameterized arrays; to add support for object-oriended p
allel frameworks; and to add support for explicitly nondete
ministic algorithms.

Acknowledgments
The following persons provided invaluable insight at vaso

and the disjointness of type and effe@OPSLA 2002.

[17] D. Clarke and T. Wrigstad. External uniqueness is uaiqu
enough.ECOOR 2003.

[18] D. G. Clarke, J. M. Potter, and J. Noble. Ownership tyfoes
flexible alias protectionOOPSLA 1998.

[19] J. Dennis. Keynote addresBPOPPR, 2009.

[20] J. DeSouza and L. V. Kale. MSA: Multiphase specifically
shared arrayd.CPC, 2004.

[21] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deténm
istic Shared Memory MultiprocessingSPLOS$2009.

stages of this work: Ralph Johnson, Christopher Rodrigues,[22] M. Feng and C. E. Leiserson. Efficient detection of dwier

Marc Snir, Dan Grossman, Brad Chamberlain, John Brant,

Rajesh Karmani, and Maurice Rabb.

References
[1] http://dpj.cs.uiuc.edu.
[2] http://gee.cs.oswego.edu/dl/concurrency-interest.

[3] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for JavBOPLAS 2006.

[4] F. Aleen and N. Clark. Commutativity analysis for softea
parallelization: letting program transformations see Ibig
picture. ASPLOS$2009.

[5] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization

sets: A dynamic dependence-based parallel execution model

PPOPP, 2009.

[6] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC:
Checking data sharing strategies for multithreadedCDI,
2008.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C+€©O0OPSLA 2009.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisetson
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime systemPPOPR 1995.

[9] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel pro-
gramming must be deterministic by defaulEirst USENIX
Workshop on Hot Topics in Parallelism (HotPa2009.

[10] R. L. Bocchino and V. S. Adve. Formal definition and proof

of soundness for Core DPJ. Technical Report UIUCDCS-R-

2008-2980, U. lllinois, 2008.

[11] C. Boyapati, R. Lee, and M. Rinard. Ownership types &fes
programming: Preventing data races and deadld@IGPSLA
2002.

[12] J. Boyland. The interdependence of effects and unigsgn
Workshop on Formal Techs. for Java Prograr2801.

nacy races in Cilk program&PAA 1997.

[23] C. Flanagan and M. Felleisen. The semantics of futudeisn
use in program optimizatiorPOPL, 1995.

[24] R. Ghiya, D. Lavery, and D. Sehr. On the importance of
points-to analysis and other memory disambiguation method
for C programsPLDI, 2001.

[25] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-
modular shape analysi®LDI, 2007.

[26] A. Greenhouse and J. Boyland. An object-oriented &ffec
system.ECOOR 1999.

[27] R. T. Hammel and D. K. Gifford. FX-87 performance

measurements: Dataflow implementation. Technical Report
MIT/LCS/TR-421, 1988.

[28] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and
W. Schulte. A programming model for concurrent object-
oriented programsTOPLAS 2008.

[29] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions.PLDI, 2007.

[30] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Usingtd
groups to specify and check side effed®.DI, 2002.

[31] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: a TLS compiler that exploits program
structure.PPOPP 2006.

[32] Y. Lu and J. Potter. Protecting representation witreeff
encapsulationPOPL, 2006.

[33] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys
tems.POPL, 1988.

[34] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi
processinglISWGC 2008.

[35] P. W. O’Hearn. Resources, concurrency, and local réago
Theor. Comp. Sci2007.

[36] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: iffit
Deterministic Multithreading in SoftwarddSPLOS2009.

[37] M. J. Parkinson and G. M. Bierman. Separation logictrales
tion and inheritancePOPL, 2008.

[38] M. K. Prabhu and K. Olukotun. Using thread-level speeul
tion to simplify manual parallelizatiorPPOPP, 2003.

[39] M. Raza, C. Calcagno, and P. Gardner. Automatic pdizdle
tion with separation logicESOR 2009.

classC with type T to a null reference of typdI'(T"), and
new(T'[n]) is the function taking each indexX € [0,n — 1]
to a null reference of typdl(T')[i < n’].

The rules for dynamic RPLs, types, and effects are nearly
identical to their static counterparts. Instead of writmgf
all the rules, we describe how to generate them via simple
substitution from the rules given in Section A. For every
rule given there except RPL-VAR, RPL-PARAM, UNDER-
VAR, INCLUDE-PARAM, and INCLUDE-FULL, do the
following: (1) append DYN- to the front of the name; (2)
replace” with A and[:] with [n]; and (3) replac& with dR,
T with dT', and E with dE. For example, here are the rules
for dynamic class subtyping, generated by the substitution
above from the rule SUBTYPE-CLASS:

[40] J. C. Reynolds. Separation logic: A logic for shared ainle
data structuresSymp. on Logic in Comp. Sc002.

[41] M. C. Rinard. The design, implementation and evaluation of
Jade: A portable, implicitly parallel programming languag
PhD thesis, Stanford University, 1994.

[42] M. C. Rinard and P. C. Diniz. Commutativity analysis: A
new analysis technique for parallelizing compileTOPLAS
1997.

[43] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of Jadd.OPLAS 1998.

[44] C. Sadowski, S. N. Freund, and C. Flanagan. SingleTrack
A dynamic determinism checker for multithreaded programs.

(DYN-SUBTYPE-CLASS) HpdR C dR'/

H > C<dR> < C<dR">

Then add the following rules:

(DYN-RPL-REF) H>o:dT (DYN-UNDER-REF) H b o: C<dR>

ESOR 20009. Hboo "Hpbo<dR
[45] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Technical rgpor (DYN-TYPE-ARRAY) H > dT[i <+ n] H > dR[i < n]

Stanford University, 1992. H > dT[<dR>#1

[46] M. Smith. Towards an effects system for ownership dorsai
ECOOR, 2005.

[47] M. Snir. Parallel Programming Language 1 (PPL1), V0.9 —
Draft. Technical Report UIUCDCS-R-2006-2969, U. lllinpis
2006.

[48] T. Terauchi and A. Aiken. A capability calculus for came
rency and determinismTOPLAS 2008.

[49] M. Vakilian, D. Dig, R. Bocchino, J. Overbey, V. Adve, &n
R. Johnson. Inferring Method Effect Summaries for Nested
Heap RegionsASE 2009. To appear.

[50] C. von Praun, L. Ceze, and C. Cascaval. Implicit patisin
with ordered transaction®POPR 2007.

[51] A. Welc, S. Jagannathan, and A. Hosking. Safe futures fo
Java.OOPSLA 2005.

[52] K. Zee, V. Kuncak, and M. Rinard. Full functional verditton
of linked data structure€?LDI, 2008.

C. Soundness
C.1 Type and Effect Preservation

Definition 1 (Valid dynamic environments)A dynamic en-
vironment d" is valid with respect to heapl/ (H © dI) if
the following hold: (1) for every binding — o € dI,
H o : dT; (2) for every bindingP — dR € dI', H > dR;
and (3) if this — o € dI', thenH >0 : C'<dR>, and
param(C) — dR € dI.

Definition 2 (Valid heaps) A heapH is valid (~H) if for
eacho € Dom(H), one of the following holds:

1. (@)H F o: C<dR>and (b)H > C<dR>and (c) for each
fieldT f in Ry € defC), if H(o)(f) is defined, then
H>H(o)(f):dl'andH >dT and H >dT < T[o «—
this|[dR — paramC)]; or

2. (@) H o : dT'[|<dR>#i and (b) H > dT'[|<dR>#i and
(c) if H(o)(n) is defined, thedd > H(o)(n) : dI" and

A. Static Semantics Rules
We divide the static semantics in to five parts: rules fordsali

program elementsHgure 16), rules for validity, nesting,
and inclusion of RPLs Figure 17), rules for valid types and
subtypes Figure 18), rules for valid effects and subeffects
(Figure 19), and rules for typing expressiorisigure 20).

B. Dynamic Semantics Rules

Figure 21 gives the rules for evaluating programsy If:
A — B is a function, thenf U {z — vy} is the function
f': Au{x} — BU{y} defined byf'(a) = f(a) if a # x
and f'(z) = y. new(C) is the function taking each field of

Hp>dl'andH > dT’ < dT'[i < n).

Definition 3 (Instantiation of static environmentsp dy-
namic environmentId instantiates a static environment
(Hedl' < I)if oI, »>H, and H > dI'; the same variables
appear in Don(l') as in Don{dl"); and for each pairz —
TeTandz—oecdl, H>v:dT"andH >dT" < dI'(T).

Theorem 1 (Preservation) For a well-typed program, if
I've:T,FandH>dl' <T and(e,dl’, H) — (o, H',dE),
then (a)>H’; and (b) H' >dT < dI'(T"), whereH' >0 : dT;
and (c)H'>dFE;and (d)H' > dE C dT'(E).

(PROGRAM) pclass’ Ope:T,E (CLASS) {this — C<P>} > field* method comni (ENV) V2T eI, T>T VPCReIT>R
>class e >class C<P> { field® method comni } >T

(FELD) T>T I'> R (METHOD) I'bT,,To,E I =TU{z — T} be:T' E TI'pT <T. I">E CE
I'>T finR PoT, m(Ty) E{e}

(COMM) this — C<P> e I' 3def(C.m), def(C.m")
T > m commuteswith m’

Figure 16. Rules for valid program elements. §€frm) means the definition of method in classC.

(RPL-ROOT) (RPLVAR) z+— C<R> €T (RPL-PARAM) this — C<P>c VP CReT (RPL-NAME) I'> R regionr € program
I' > Root T T'sz ' P I'sR:r
(RPLINDEX) 'R icI (RPL-STAR) IR (UNDER-ROOT) (UNDER-VAR) z — C<R> € T

T'>R:[i > R:x* I'> R < Root 'sz<R
(UNDER-NAME) TI'>R< R’ (UNDER-INDEX) ' R< R (UNDER-STAR) TI' R< R’ (UNDER-INCLUDE) I'>R C R’
TR 7 <R ToR [<R ToR:*<R TSR<R
(INCLUDE-NAME) I'>RCR (INCLUDE-INDEX) I'>RCR (INCLUDE-STAR) T'>R< R’
IT'>R:7CR :r ' R:[{ CR :[i I'>RCR :x

(INCLUDE-PARAM) P C ReT (INCLUDE-FULL) T'> R C Ry
T>PCR ToR, CR

Figure 17. Rules for valid RPLs, nesting of RPLs, and inclusion of RPLise nesting and inclusion relations are reflexive
and transitive (obvious rules omitted).

(TYPE-CLASS) 3def(C) T'>R (TYPE-ARRAY) TI'U {i}>T, R

T'>C<R> T > T[[<R>#1i
(SUBTYPE-CLASS) '>RCR (SUBTYPE-ARRAY) TU{i}b RC R'[i' «—i] T =T’
I'> C<R> < C<R’> T o T[[<R>#i < T'[[<R>#i

Figure 18. Rules for valid types and subtypes. @& means the definition of clags. 7' = T’ means thaf” and7’ are
identical up to the names of variables

(EFFECT-EMPTY) (EFFECT-READS) 'R (EFFECT-WRITES) 'R (EFFECT-INVOKES) Jdef(C.m) T'> E

>0 I'>reads R I'>uwrites R I'> invokes C.m with F
(EFFECT-UNION) ' E TI'> E’ (SE-EMPTY) (SE-READS) I'sRCR (SE-WRITES) I'sRCR
I'sEUE I'>0CE I'>reads R C reads R I'>writes R C writes R
(SE-READS-WRITES) I'sRCR (SE-INVOKES-1) I'sECE
I'>reads R C writes R I'> invokes C.m with E C invokes C.m with F
(SE-INVOKES-2) (SE-UNION-1) T ECE'VI>ECE” (SE-UNION-2) T E'CE T E’CE
I' > invokes C.mwith E C E T>ECE UE” T>E UE"CE

Figure 19. Rules for valid effects and subeffects.

(LET) I've:C<R>,E TU{z— C<R>}pe :T' E' (FIELD-ACCESS) T fin Ry € def(C) this — C<param{C)> € T’
Tpletz=eine : T [z R:%],EUE [z — R: %] T' > this.f : T, reads Ry

(FIELD-ASSIGN) this — C<paran{C)> €T z—T el T finR; €defC) T'>T < T’
I'>this.f = 2z : T,writes Ry

(ARRAY-ACCESS) 2o T[<R>#i € T (ARRAY-ASSIGN) {z r T[|<R>#i,2' T} CT TpT' < T[i — n]
> z[n]: T[i < n],reads R[i < n] T z2[n] =2 : T, writes R[i < n]

(INVOKE) {z — C<R>,2' T} CT T, m(Tyz)E{e} €def(C) TU{P C R}>T < T,[this « z][paran(C) — P]
T'>z.m(2") : T)[this « z][param{C) <« R], invokes C.m with E[this «— z][paran{C) «— R]

(VAR) z— T T (NEW-CLASS) T'> C<R> (NEW-ARRAY) T T[<R>#i
T'bz:T,0 T'>new C<R>: C<R>, 0 T >new T'[n]<R>#i : T[|[<R>#1,0

Figure 20. Rules for typing expressions. paréf) means the parameter of claSs

(DYN-LET) (e, dT, H) — (0, H',dE) (¢/,dU'U {z — o}, H') — (o, H ,dE’) (DYN-VAR) 2 0€dl
(letz =ecine/,d',H) — (o', H”,dE UdE") (z,dI', H) — (o, H,0)

(DYN-FIELD-ACCESS) this 0 € df Hpo:C<dR> T fin Ry € def(C)
(this.f,dl’, H) — (H(o)(f), H,reads d'(Ry))

(DYN-FIELD-ASSIGN) {this — 0,2 0’} Cdl Hpo:C<dR> T finR; € def(C)
(this.f = 2,dT, H) — (o, HU {o— (H(o) U{f — 0'})},writesd['(Ry))

(DYN-ARRAY-ACCESS) s 0cdl Hpo:dT[<dR>#i
(2[n],dT’, H) — (H(0)(n), H,reads dR[i < n])

(DYN-ARRAY-ASSIGN) {z— 0,2/ +— 0o} Cdl' Hpo:dT[|<dR>#i
(z[n] =2",dI' H) — (o', HU {o — (H(o) U{n +— o'})},writes dR[i < n])

(DYN-INVOKE) H Fo:C<dR> T, m(T,z)E{e} €def(C) (e, {this— o,paran{C) — dR,z — o'}, H) — (o'', H',dE)
(zm(z"),{z — 0,2 — o'} Udl', H) — (0", H', invokes C.m with dE)

(DYN-NEW-CLASS) o ¢ Dom(H) H' = HU{o~ new(C)} H’'po:C<dl(R[: * < €])>
(new C<R>,dT", H) — (o, H,0)

(DYN-NEW-ARRAY) o ¢ Dom(H) H' = H U {0+ new(T[n])} H'>o:dl(T)[]<d'(R[: x «— €])>
(new T[n]<R>#i,dl, H) — (o, H, D)

Figure 21. Rules for program evaluation.

(NI-READ)
DISJOINT-LEFT-NAME) r #+' T's R< Ry:r >R < Ry :r/ I'>reads R # reads I/
f f
T>oR#R

(NI-READ-WRITE) ' R#R
T > reads R# writes R’

(DISJOINT-LEFT-INDEX) i #i T R<Ry:[i] I'>R < Rs:[i]
ToR#R (NI-WRITE) ' R# R’
I'>writes R # writes R

(DISJOINT-LEFT-NAME-INDEX) T'> R < Ry :r I'>b R’ < Ry : [i]
'>R#R (NI-INVOKES-1) ToE#E
I'> invokes C.omwith E # E

(DISJIOINT-RIGHT-NAME) r#£r
T'bR:7#R :r

(NI-INVOKES-2) m commuteswith m’ € def(C)
T'> invokes C.m with E # invokes C.m’ with E’

(DISJOINT-RIGHT-INDEX) i # 4
To R #R 7] (NI-EMPTY)
IT>0#E

(DISJOINT-RIGHT-NAME-INDEX)
e —
ToR:r#R :[i (NI-UNION) T'>E#E” T'sE' #E”

T>EUE #E

(DISJOINT-NAME) ' R# R
IT'bR:r#R :r

(DISJOINT-INDEX) o R# R Figure 23. _The nonmt_erferer_lce relation on effects. Nonin-
To R [#R 1 terference is symmetric (obvious rule omitted).

Figure 22. Rules for disjointness of RPLs. The disjointness proposition 1 (Disjointness of region sets)f H>dR # dR’,
relation is symmetric (obvious rule omitted). thenS(dR, H) N S(dR', H) = ().

Proposition 2 (Distinctness of disjoint regions)if H
C.2 Disjointness region(o, f, H)+#regiono', f’, H), then eithero # o' or
Figure 22 gives the rules for concluding that two static RPLs ./ # /*; and/ if H > regllon(o, n, H)#tregion(o’,n’, H), then
are disjoint; we extend them to dynamic RPLs as in Sec- €ithero # o' orn # n'.

tion B. C.3 Noninterference of Effect

Definition 4 (Set interpretation of dynamic RPLs).et D_H Figure 23 gives the noninterference relation on staticesfe

and H > dR. Then S(dR, H) is defined as follows: (1) \ne extend this relation to dynamic effects as in Section B.

S(dRs, H) = {dR;}; (2) S(AR : v, H) = {dR; : r|dR; € ,

S(dR, H)}; (3) S(dR : [n],H) = {dR; : [n]|dR; € Theorem %(Sourlldntass of nomnterferlencei)l“pe T, E

S(dR, H)};and (4)S(dR : =, H) = {dR;|H>dR; <dRr}. ~ andl>¢" : T".E andT' > E#E and H > dI' <
o)) ' I and (e,dlI'H) — (o,H',dE) and (¢/,dI',H") —

Definition 5 (Region of a field or array cel)If H > o : (o', H" dE"), then there exist&"” such that(e, dT", /) —

C<dR>andT f in Ry € def(C), then regiofio, f, H) = (O/’H//; dE’) and (e, dr’, H") — (o, H" dE).7 7

Rj[this — o|[param(C) — dR]. If H > o : dT[|<dR>#i, Y T T

then regiotio, n, H) = dR[i < n].

