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Abstract

In today’s widely used parallel programming models,
subtle programming errors can lead to unintended nonde-
terministic behavior and hard to catch bugs. In contrast,
we argue for a parallel programming model that isdeter-
ministic by default: deterministic behavior isguaranteed
unless the programmer explicitly uses nondeterministic
constructs. This goal is particularly challenging for mod-
ern object-oriented languages with expressive use of ref-
erence aliasing and updates to shared mutable state. We
propose a broad research agenda in support of this goal,
and we describe some of our own work to further that
agenda.

1 Motivation

The general-purpose computing industry is at a major
crossroads. Power constraints and design complexity are
driving processor architects to place increasingly many
compute cores on a chip. Commodity applications, de-
veloped by programmers with a wide range of skills,
must harness this parallelism for increased performance.

Computations that use concurrency primarily for per-
formance can be modeled as taking an input and comput-
ing some output. In suchtransformationalcomputations,
concurrency is not part of the problem specification. This
is in contrast to event-based orreactivesystems (such as
web servers) where concurrency may be necessary for
functionality (e.g., a distributed system) or correctness
(e.g., bounded response times in interactive programs).

Many, though not all, transformational computations
are deterministic: a given input is always expected to
produce the same output. This category is vast; it in-
cludes almost all scientific computing, signal processing,
encryption/decryption, sorting and searching, compiler
and program analysis, and processor simulators.

Unfortunately, mainstream parallel programming
models today provide no special assistance for program-

ming deterministic algorithms. In fact, parallel appli-
cations today primarily use threads and shared mem-
ory, whether through libraries like pthreads and Intel’s
Threading Building Blocks (TBB), or multithreaded lan-
guages like Java and C#. Programs written in these mod-
els can be extremely difficult to understand and debug.
First, the use of shared memory is uncontrolled: any ac-
cess to a shared variable may result in an interaction with
another thread. Second, there is no guarantee of deter-
minism: the execution can follow one of a large num-
ber of interleavings of dependent memory accesses, and
different interleavings can produce different results. A
correctly written program may be deterministic, but cor-
rectness is difficult to check.

In a recent article [13], Lee eloquently argues that if
we are to have any hope of simplifying parallel program-
ming for the vast majority of programmers and applica-
tions, then parallel programming models must greatly
constrain the possible interleavings of program execu-
tions. In particular, deterministic algorithms must be
expressible in a style thatguaranteesdeterminism, and
nondeterministic behaviors, where desired, must be re-
quested explicitly. More generally, as we discuss in Sec-
tion 2, enforcing deterministic semantics simplifies com-
posing, porting, reasoning about, debugging, and testing
parallel software.

Deterministic parallel programming models exist to-
day. However, much of the prior work on determinism
has been in a context that is not general enough (e.g.,
regular data parallel operators [16]) and/or requires a sig-
nificant departure from mainstream programming styles
(e.g., a pure functional style [14]). In contrast, many
modern applications are developed in an object-oriented
style with expressive use of features such as reference
aliasing, imperative updates, dynamic method dispatch,
and extensive reuse of sophisticated libraries and frame-
works. Programmers are familiar with this style and pro-
ductive in using it. We believe it is crucial for parallel
languages to support this style.



In this paper, therefore, we argue that to simplify
parallel programming, determinism must be brought to
mainstream object-oriented programming languages. A
broad research agenda will be required to achieve this
goal:

How to guarantee determinism in a modern object-
oriented language?For reasons discussed in Section 3,
our philosophy is to providestaticguarantees through a
combination of a type system and (straightforward, in-
traprocedural) compiler analysis when possible, and to
fall back on runtime checks (that either result in excep-
tions or cause the execution to roll back and retry) only
when compile-time guarantees are infeasible. The key is
to determine when concurrent tasks make conflicting ac-
cesses. The language can help provide this capability by
enforcing structured parallel control flow (to make it easy
to analyze which tasks can execute concurrently) and by
providing type system mechanisms to convey explicitly
what data can be accessed or updated by a specific task.
These goals, and some techniques to achieve them, are
discussed in Section 4.1.

How to provide sound guarantees when parts of
the program either cannot be proved deterministic
or have “harmless” nondeterminism? Libraries and
frameworks written by expert programmers tend to be
widely reused, carefully designed, and thoroughly tested.
Such code may include components that are not deter-
ministic in isolation, yet can be combined to provide de-
terministic results. For example, a sequence of commu-
tative inserts to a concurrent search tree within a parallel
loop can be executed in arbitrary order and yet give de-
terministic results, as long as no other operation (e.g.,
a find) is interleaved between those inserts. Languages
should enable such libraries to express contracts that can
be enforced by the compiler. The system can then ensure
that a client application using the library is deterministic
so long as the library implementation meets its specifica-
tion. These goals are discussed in Section 4.2.

How to specify explicit nondeterminism when
needed?A deterministic-by-default language may need
to support transformational computations that permit
more than one acceptable answer. If so, the language
must achieve three goals. First, any nondeterministic
behavior must beexplicit, e.g., using nondeterministic
control statements; hence the term “deterministic by de-
fault.” Second, the nondeterminism should be carefully
controlledso that programmers can reason about possi-
ble executions with relatively few interleavings. Third,
nondeterministic code should beisolatedfrom determin-
istic code so that the programmer can reason determinis-
tically about the rest of the application. These goals are
discussed in Section 5.

How to make it easier to develop and port programs
to a deterministic-by-default language? The cost of
porting code to a new language can be significantly re-
duced if the language is downward compatible with an
existing, widely used language and supported by tools
that allow incremental porting. A properly designed lan-
guage will also have substantial, long-term productivity
benefits. These opportunities are discussed in Section 6.

2 Benefits and Costs of Determinism

A parallel program is deterministic if, for a given input,
every execution of the program produces identicalexter-
nally visibleoutput. Many transformationalparallel al-
gorithmshave this basic property. Here we restrict our
attention to nondeterminism introduced by concurrency,
and we ignore nondeterminism that can also occur in se-
quential programs (e.g., calls togettimeofday).

A parallel programming language is deterministic if
every legal program in that language is deterministic. A
deterministic parallel programming model (language or
library) has significant advantages:

• A deterministic program can be understood with-
out concern for execution interleavings, data races,
or complex memory consistency models: the pro-
gram behavior is completely defined by its sequen-
tial equivalent.

• Programmers canreason about programs,debug
them during development, anddiagnoseerror re-
ports after deployment using the development tech-
niques and tools currently used for sequential pro-
grams.

• Independent software vendors cantest codes as
they do for sequential programs, without being con-
cerned about the need to cover multiple possible ex-
ecutions for each input. The same test suites de-
veloped for the sequential code can be used for the
parallel code.

• Programmers can use an incremental parallelization
strategy, progressively replacing sequential con-
structs with parallel constructs, while preserving
program behavior.

• Two separately developed but deterministic parallel
components should be far easier to compose than
more general parallel code, because a deterministic
component should have the same behavior regard-
less of the external context within which it is exe-
cuted.

Deterministic semantics can also help with parallel
performance. In particular, an explicitly parallel loop has



sequential semanticswith aparallel performance model:
its performance will be what one would expect by as-
suming that parallel loop iterations do execute in par-
allel. In effect, both the semantic model and the per-
formance model for such a program can be defined us-
ing obvious composition rules [6]. Further, deterministic
programming models can enable programmers to spend
more time on performance tuning (often the determining
factor in performance for real-world software) and less
time finding and eliminating insidious concurrency bugs.

Some methods of enforcing determinism can hinder
performance, either by introducing high runtime over-
heads or by restricting expressiveness. We believe, how-
ever, that this problem is not fundamental. First, we can
enforce determinismwithout runtime checksfor a large
class of programs (Section 4.1). Second, when we must
relax determinism guarantees for high performance, we
can often still provide alibrary or framework interface
that appears deterministic to the user, with the nondeter-
ministic behavior hidden inside the implementation (Sec-
tion 4.2).

3 Guaranteeing Determinism

Practical alternatives to thread-based programming that
work for object-oriented languages are starting to emerge
for production use. The Cilk++ [1] language provides
a task programming model that simplifies the expres-
sion of parallelism. Java’s ForkJoinTask [2], Intel’s
Threading Building Blocks (TBB) [19], and Microsoft’s
TPL [3] provide similar capabilities using libraries. Fur-
ther, regular data parallel operations on arrays (update,
filter, map, reduce) can be expressed elegantly and cus-
tomized using emerging libraries and frameworks such
as ParallelArray for Java [2] and TBB’s templates for
C++.

These emerging object-oriented languages and li-
braries are a valuable step; however, they lack any guar-
antees of determinism or even freedom from data races
in the presence of shared references to mutable objects.
Similarly, emerging research techniques like Galois [12]
and Kendo [17] provide deterministic semantics for “cor-
rectly written” programs, but provide no guarantee that
those requirements are met at compile-time or runtime.

The fundamental challenge in guaranteeing determin-
istic parallel programming semantics is for the system to
“see” and check the shared memory interactions between
different parallel computations in the program. Broadly,
there are four approaches for this kind of checking:

• Language-basedapproaches (discussed further in
Section 4) use language extensions, usually in the
type system, for compile-time enforcement of shar-
ing constraints in a parallel program.

• Compiler-basedapproaches use parallelizing com-
piler technology (e.g., [11, 8]) to transform sequen-
tial programs (with or without annotations) into par-
allel form.

• Software runtime approaches (e.g., [20, 24, 5])
use software runtime checks to detect, and possi-
bly speculation to recover from, violations of de-
terministic semantics in the execution of a parallel
program.

• Hardware runtime approaches (e.g., hardware-
supported thread-level speculation (TLS) [21, 18]
or DMP [10]) use hardware support to achieve the
same goals but with less overhead, at the cost of in-
creased hardware complexity.

The four approaches involve different tradeoffs and
can be combined in different ways into a composite so-
lution. A language-based approach allows a high degree
of programmer control, documents the available paral-
lelism for future developers, and makes program behav-
ior and performance characteristics explicit. Language
information can also specify properties that hold at in-
terface boundaries, enhancing modularity. A compiler
approach can reduce the burden of writing parallel code,
compared to a pure language approach. However, for all
but very regular codes auto-parallelization is quite diffi-
cult; and even where successful it can be brittle (small
code changes can destroy performance) and hard to un-
derstand.

A robust runtime can reduce or eliminate the need for
the programmer or compiler to get the sharing patterns
correct. However, runtime approaches can add overhead
and make performance characteristics opaque. Further,
runtime techniques are inherently input-dependent: one
input may avoid determinism violations, while another
one causes a violation.

Overall, explicitly parallel, language-based ap-
proaches are the only ones that provide the benefits
of performance control, explicit interfaces, modular-
ity, documentation, and compile-time enforcement. We
therefore believe that such an approach is the most attrac-
tive in the long term. Such an approach can be combined
with limited runtime software and hardware checking to
enable greater expressivity, where needed.

4 Language Mechanisms for Determinism

It is particularly challenging to develop language mech-
anisms that provide deterministic semantics for general,
object-oriented languages. We discuss our ideas for ad-
dressing these challenges below.



4.1 Effect Systems

We believe that an important part of the solution to con-
trolling sharing is an object-orientedeffect system[15,
9, 7] providing annotations that partition the heap and
declare which parts of the heap are read and written by
each task. An effect system could easily show, for exam-
ple, that two distinct objects are being created at every
recursive call of a divide and conquer pattern, so the sub-
problem computations do not interfere.

In the Deterministic Parallel Java (DPJ) project [4], we
are developing a sophisticated effect system that parti-
tions the heap into hierarchicalregionsand uses those re-
gions to disambiguate accesses to distinct objects, as well
as distinct parts of the same object, referred to through
data structures such as sets, arrays, and trees [7]. A sim-
ple local type-checker (no whole-program analysis is re-
quired) can then ensure that there are no conflicting ac-
cesses to overlapping memory operations between con-
current tasks. In a correct DPJ program, nondeterminism
cannot happen “by accident”: any such behavior must be
explicitly requested by the user, and a DPJ program with
no such request has an “obvious” sequential equivalent.

When static checks do not work, either because the
analysis is not possible or the annotation burden is not
justified by the performance gains, we must fall back
on runtime techniques. One approach is to use software
speculation [24], with hardware support [18] to reduce
overhead if it is available. An alternative approach is a
fail-stop model that aborts the program if a determinis-
tic violation occurs [20]. This approach gives a weaker
guarantee, but it avoids the overhead of logging and roll-
back. Even in such cases, support for speculation will
still be valuable, for two reasons: it can simplify initial
porting of programs (see Section 6) and it can be used to
express algorithms that areinherently speculative, where
new tasks must be launched speculatively or the entire
algorithm would become serial [12].

4.2 Encapsulating Complex Behaviors

In realistic programs, the guarantee of determinism may
have to be weakened for parts of the program, for perfor-
mance or expressivity. However, if we can encapsulate
those parts behind an interface with suitable contracts,
and guarantee that client code satisfies those contracts,
then we can still provide sound guarantees for the rest
of the program. This approach is attractive because the
encapsulated code can often be placed in libraries and
frameworks written by expert programmers skilled in
low-level parallel programming and performance issues.

4.2.1 Local Nondeterminism

Algorithms that are deterministicoverall may benefit
from “locally nondeterministic” behaviors for higher
performance. Some operations, such as associative re-
ductions, have deterministic final results but require a
schedule-dependent order of internal operations for high
performance. Similarly, some sequences of operations
that produce deterministic final behavior as seen by an
external observer may have schedule-dependent internal
representations (i.e., memory state). Examples include a
sequence of insert operations on a set or on a splay tree,
or computing the connected components of a graph.

Experienced programmers should be able to write
such computations and encapsulate their code in libraries
that have deterministic external behavior, with well-
defined properties. E.g., programmers should be able to
definepure, associativeoperators, as in languages like
Fortress [22], which can then be used by a generic re-
duction or parallel prefix algorithm. The “pure and asso-
ciative” requirement is a contract that can be checked by
the compiler, possibly relying on effect annotations.

4.2.2 Unsoundness

In realistic applications, some parts of the program may
in fact be deterministic (unlike the “locally nondetermin-
istic” cases above), yet perform operations that cannot
feasibly be proved sound by the type system or run-
time checks. One example is a tree rebalancing. If the
type system can guarantee that a data structure is a tree,
then this guarantee can support sound parallel operations,
such as a divide and conquer traversal that updates each
subtree in parallel. However, rebalancing the tree in a
way that retains the guarantee may be difficult, without
imposing severe alias restrictions such as unique point-
ers. It is also difficult for a runtime to efficiently check
that the tree structure is maintained after a rebalancing.

We believe a practical solution in such cases is to
allow unsound operations, i.e., operations that may
break the determinism guarantee, but to encapsulate
those operations inside well-defined data structures and
frameworks using traditional object-oriented encapsu-
lation techniques (private and protected fields and in-
ner classes) supplemented by effect analysis and/or alias
control. The effect and alias restrictions can help keep
track of what is happening when references in the rest
of the code point to data inside an encapsulated struc-
ture [9]. Then the compiler can use the guarantees pro-
vided by the data structure or framework interface to pro-
vide sound guarantees for the rest of the program.



5 Explicit Nondeterminism

For some algorithms, nondeterministic behavior is con-
sidered acceptable, e.g., branch-and-bound search, graph
clustering, and many graphics and media processing ap-
plications. In all these examples, the final result must
meet some acceptance criterion, and multiple solutions
that meet the criterion are permissible. This property
can be exploited to write a simpler, or better performing,
parallel algorithm. In contrast to encapsulated nondeter-
minism in the context of a deterministic program (Sec-
tion 4.2.1), here thevisible program behavioris nonde-
terministic.

We wish to express such algorithms while achieving
the following goals. First, nondeterminism is explicitly
expressed, e.g., using a nondeterministic control state-
ment. Second, nondeterminism is carefully controlled,
so that the programmer need reason about only relatively
few program interleavings. Third, the nondeterministic
part of the application should not compromise the ability
to reason with determinism for the rest of the application.

We are investigating how to achieve these goals in
DPJ. For example, suppose we have two parallel itera-
tion constructs, one for iterating over independent ob-
jects (foreach), and another for iterating over objects
that may overlap (foreach nd, where “nd” stands for
“nondeterministic”).foreach is deterministic: it guar-
antees that the result is as if the iterates were executed
atomically and in sequential order.foreach nd is non-
deterministic and guarantees that the result is as if the
iterates were executed atomically and in some arbitrary
order. Theforeach nd construct achieves the three
goals above as follows:

• It makes nondeterministic behavior explicit.

• It allows the programmer to understand the behavior
of the loop by considering only the iteration order,
and not arbitrary interleavings of memory access
operations, or even arbitrary expressions or state-
ments, in the iterates.

• It ensures that program units that do not contain a
foreach nd statement in their dynamic scope ex-
ecute deterministically.

The Galois system [12] provides capabilities similar to
our foreach andforeach nd, except that it is pos-
sible to write incorrectly synchronized programs (for ex-
ample, that have data races) in Galois. Our aim is to
leverage the effect system described in Section 4.1 to
guaranteethe properties described above.

6 Usability

Common concerns with language-based solutions are the
cost to rewrite existing programs and to learn new lan-
guage features. We believe that (a) the costs tend to
be exaggerated and the benefits underestimated; and (b)
strong technical solutions can significantly reduce the
costs. We discuss both points briefly in turn.

(1) First, note that we are proposing a small set of ex-
tensions to an established base language (such as Java or
C#),not an entirely new language. This fact should mit-
igate the up-front cost of both learning the new features
and writing code that uses the new features. Further,
the extra effort to learn and use new language features is
likely to be dwarfed by the effort required to write, port,
tune, and test parallel code. A well-designed language
that simplifies the latter tasks can more than justify the
learning curve. Note also that because we are extending
a base language, porting can be doneincrementally, e.g.,
kernel by kernel.

(2) Although object-oriented effect notations require
some extra effort from the programmer, such effort is
not wasted. First, effect annotations on methods pro-
vide a compiler-checkableinterface that allows sound,
modular reasoning about program components, even in
the absence of all the source code (such as for a library
or framework). Thus, the annotations enhance modular-
ity and composability. Second, the reasoning required to
introduce regions and effects is exactly the reasoning re-
quired to understand the sharing patterns in the code. In
fact, the region and effect mechanisms give programmers
a concrete guide for how to carry out such reasoning.

(3) Non-trivial real-world applications are long-lived,
and initial development or porting costs are usually a
small fraction of long-term maintenance and enhance-
ment costs. A language that simplifies testing and docu-
ments sharing patterns in the code reduces maintenance
costs.

(4) Finally, we note that current threads-based lan-
guages have woefully inadequate shared memory mod-
els. The only memory model accepted today guarantees
sequential consistency for data race-free programs, as for
Java and (soon) C++. The difficulty lies in the semantics
of data races. C++ does not provide any; this is unten-
able for a safe language. Java provides semantics that are
complex and fragile. If we are to move towards safe par-
allel languages with tractable memory models, wemust
prohibit data races for all allowed programs. A type and
effect system, as discussed in Section 4.1, could accom-
plish this goal with low runtime overhead.

Sometechnical solutionscan further reduce the cost
of using new language extensions:

• Effect inference: In DPJ, we are exploring how
judicious use of effect inference (inferring region



and effect annotations) can reduce the programming
burden of type annotations for determinism [23].

• Runtime checks: The language can provide runtime
checks, as described in Section 4.1, so that large
programs can initially be ported without all the ef-
fect annotations needed for compile-time checking.
The overheads of runtime checks can then be incre-
mentally tuned away by introducing effect annota-
tions where the benefits justify the effort.

• Integrated development environment (IDE): An IDE
can use sophisticatedinteractive compiler paral-
lelization technology, combined with modern refac-
toring technology, to assist the initial porting pro-
cess. Making porting a one-time effort allows such
an environment to use powerful, but potentially
slow, interprocedural parallelization techniques (the
strengths of compilers); while making it interactive
allows programmers to influence the process and
avoid the problems of poor or brittle performance
(the weaknesses).

7 Summary

We agree with Lee [13] that unrestricted use of threads
is not an acceptable model for shared memory parallel
programming. In this paper we have argued that appro-
priate language design can bring determinism in a much
more flexible way to shared memory parallel computing,
even in rich, imperative, object-oriented languages. The
inevitable residuum of low-level shared memory code
written by experts can be encapsulated into libraries and
used by general programmers working within a safe, pro-
ductive parallel programming environment. The up-front
cost of using new language features will be more than
outweighed by the benefits over the life of an application,
and reduced through careful language design and appro-
priate interactive development tools. Achieving these
goals will require a concerted research effort by the lan-
guage, compiler, and architecture communities.
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